ЖУРНАЛ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И МАТЕМАТИЧЕСКОЙ ФИЗИКИ. 2023. том 63. № 8. с. 1272–1278

_____ ОБЩИЕ ЧИСЛЕННЫЕ _____ МЕТОЛЫ

УЛК 519.63

УЛУЧШЕННАЯ РАЗНОСТНАЯ СХЕМА ДЛЯ ЗАДАЧИ КОШИ В СЛУЧАЕ УРАВНЕНИЯ ПЕРЕНОСА

© 2023 г. Г. И. Шишкин^{1,*}. Л. П. Шишкина¹

¹ 620108 Екатеринбург, ул. С. Ковалевской, 16, ИММ УрО РАН, Россия *e-mail: shishkin@imm.uran.ru

> Поступила в редакцию 04.04.2023 г. Переработанный вариант 04.04.2023 г. Принята к публикации 28.04.2023 г.

Рассматривается задача Коши для регулярного уравнения переноса. Для этой задачи с использованием техники Ричардсона строится улучшенная разностная схема, сходящаяся в равномерной норме со вторым порядком скорости сходимости. Библ. 6.

Ключевые слова: уравнение переноса, задача Коши, стандартная разностная схема, равномерная сетка, невязка, разложение невязки, монотонность дифференциальной и сеточной задач, техника Ричардсона, улучшенная разностная схема, сходимость в равномерной норме. DOI: 10.31857/S0044466923080136. EDN: WTFOVG

1. ВВЕДЕНИЕ

В настоящее время большое внимание уделяется разработке численных методов для уравнений математической физики повышенного порядка точности. Здесь сложились два направления. Первое направление связано с повышением порядка аппроксимации разностных уравнений. Подходы, связанные с этим направлением, рассматривались в исследованиях Г.И. Марчука [1], Г.И. Марчука и В.В. Шайдурова [2], А.А. Самарского [3], Г.И. Шишкина и Л.П. Шишкиной [4]. Второе направление связано с построением решений на основе разностных уравнений сравнительно невысокого порядка на последовательности равномерных вложенных сеток. Эти методы получили название экстраполяций по Ричардсону, см., например, [5]. В настоящей работе для задачи Коши для уравнения переноса строятся разложения обратных разностных производных и соответствующих невязок по степеням шагов основной и разреженной сеток соответственно. Это позволяет применить технику Ричардсона на двух вложенных сетках и построить разностную схему, сходящуюся в равномерной норме со вторым порядком скорости сходимости.

О содержании работы. Постановка задачи Коши для уравнения переноса и цель исследования приводятся в разд. 2. Априорные оценки решения и производных устанавливаются в разд. 3. Стандартная разностная схема для задачи Коши для уравнения переноса рассматривается в разд. 4 и устанавливается ее сходимость в равномерной норме с первым порядком скорости сходимости. В разд. 5 и 6 построены разложения обратных разностных производных по степеням шагов основной и разреженной сеток соответственно. С использованием этих разложений получены разложения для соответствующих невязок. В разд. 7 на основе разложений невязок сеточных решений с применением техники Ричардсона строится схема, сходящаяся в равномерной норме со вторым порядком скорости сходимости. Выводы приводятся в разд. 8.

2. ПОСТАНОВКА ЗАДАЧИ КОШИ ДЛЯ УРАВНЕНИЯ ПЕРЕНОСА. ЦЕЛЬ ИССЛЕДОВАНИЯ

На полосе \overline{G} :

$$\bar{G} = G \cup S, \tag{2.1a}$$

гле

$$G = D \times (0,T], \quad D = (-\infty < x < \infty); \quad S = \{(x,t) : -\infty < x < \infty, t = 0\},$$
(2.16)

рассмотрим задачу Коши для регулярного уравнения переноса

$$Lu(x,t) = f(x,t), \quad (x,t) \in G; \quad u(x,t) = \varphi(x), \quad (x,t) \in S.$$
 (2.2)

Здесь

$$L = b(x,t)\frac{\partial}{\partial x} + c(x,t) + p(x,t)\frac{\partial}{\partial t}, \quad (x,t) \in G,$$
(2.3a)

функции b(x,t), c(x,t), p(x,t), f(x,t) предполагаются достаточно гладкими на \overline{G} , функция $\phi(x)$ предполагается достаточно гладкой на множестве S, причем,

$$b_0 \le b(x,t) \le b^0$$
, $0 \le c(x,t) \le c^0$, $p_0 \le p(x,t) \le p^0$, $|f(x,t)| \le M$, $(x,t) \in \overline{G}$; (2.36)

$$|\varphi(x)| \le M, \quad x \in D; \quad b_0, p_0 > 0.$$
 (2.3B)

Через *М* (через *m*) обозначаем достаточно большие (малые) положительные постоянные. В случае сеточных задач эти постоянные не зависят от шаблонов разностных схем.

Наша цель – для задачи Коши для уравнения переноса (2.2), (2.1) построить разностную схему, сходящуюся в равномерной норме с порядком скорости сходимости выше первого.

3. АПРИОРНЫЕ ОЦЕНКИ РЕШЕНИЯ И ПРОИЗВОДНЫХ

Рассмотрим ряд априорных оценок решения задачи (2.2), (2.1), необходимых при построении разностных схем и обосновании их сходимости. В разд. 5 и 6 нам потребуется ограниченность производных $\partial^k / \partial x^k u(x,t)$, $\partial^{k_0} / \partial t^{k_0} u(x,t)$, $(x,t) \in \overline{G}$, при $k + k_0 \leq 3$. Вывод оценок подобен выводу оценок решения и производных регулярных и сингулярных компонент решения сингулярно возмущенного уравнения переноса в [6].

3.1. Для задачи Коши для уравнения переноса (2.2), (2.1) справедлив *принцип максимума*, подобный принципу максимума для сингулярно возмущенного уравнения переноса в [6].

Теорема 3.1. Пусть для данных задачи Коши для уравнения переноса (2.2), (2.1) выполняется условие

$$Lu(x,t) \ge 0, \quad (x,t) \in G; \quad u(x,t) \ge 0, \quad (x,t) \in S.$$

Тогда для функции u(x,t) справедлива оценка $u(x,t) \ge 0, (x,t) \in \overline{G}$.

3.2. Приведем априорные оценки для решения задачи Коши (2.2), (2.1).

Применяя технику мажорантных функций (подобную приведенной в [6] для начально-краевой задачи для сингулярно возмущенного уравнения переноса), находим оценку решения задачи (2.2), (2.1)

$$|u(x,t)| \le M, \quad (x,t) \in \overline{G}. \tag{3.1}$$

При исследовании производных решения задачи Коши считаем, что коэффициенты и правая часть уравнения являются достаточно гладкими на \overline{G} : *b*,*c*, *p*, *f* $\in C^{k,k_0}(\overline{G})$, $k + k_0 \leq K$, $K \leq 3$, начальная функция – достаточно гладкая на множестве *S*, производные $\frac{\partial^k}{\partial x^k} \varphi(x)$, $k \leq K$, ограничены при K = 3. При этих условиях выполняется включение

$$u \in C^{k,k_0}(\overline{G}), \quad k + k_0 \le K. \tag{3.2}$$

Тогда для функции u(x,t) справедлива оценка

$$\left|\frac{\partial^{k+k_0}}{\partial x^k \partial t^{k_0}} u(x,t)\right| \le M, \quad (x,t) \in \overline{G}, \quad k+k_0 \le K.$$
(3.3)

Справедлива следующая

Теорема 3.2. Пусть для данных задачи Коши для уравнения переноса (2.2), (2.1) выполняется условие b, c, p, $f \in C^{k,k_0}(\overline{G})$, $k + k_0 \leq K$, K = 3. Тогда для решения задачи Коши u(x,t) и его производных справедливы оценки (3.1), (3.3).

ШИШКИН, ШИШКИНА

4. СТАНДАРТНАЯ РАЗНОСТНАЯ СХЕМА

Построим *стандартную разностную схему* на основе монотонной сеточной аппроксимации задачи Коши для уравнения переноса (2.2), (2.1) и исследуем ее сходимость.

4.1. На множестве \overline{G} введем сетку

$$\overline{G}_{h\tau} = \overline{\omega} \times \overline{\omega}_0. \tag{4.1}$$

Здесь $\overline{\omega}$ и $\overline{\omega}_0$ – равномерные сетки на множествах ($-\infty,\infty$) и [0,*T*] соответственно. Пусть *h* и τ – шаги сеток $\overline{\omega}$ и $\overline{\omega}_0$; узел (0,0) принадлежит сетке $\overline{G}_{h\tau}$.

Предполагаем выполненным условие $h \le M N^{-1}$, $\tau \le M N_0^{-1}$, где N + 1 и $N_0 + 1$ – число узлов на отрезке единичной длины на множестве ($-\infty,\infty$) и число узлов сетки $\overline{\omega}_0$ соответственно.

Задачу (2.2), (2.1) аппроксимируем стандартной разностной схемой [3]

$$\Lambda z(x,t) = f(x,t), \quad (x,t) \in G_{h\tau}; \quad z(x,t) = \varphi(x), \quad (x,t) \in S_{h\tau}.$$
 (4.2a)

Здесь $G_{h\tau} = G \cap \overline{G}_{h\tau}, S_{h\tau} = S \cap \overline{G}_{h\tau},$

$$\Lambda \equiv b(x,t)\delta_{\overline{x}} + c(x,t) + p(x,t)\delta_{\overline{t}}, \qquad (4.26)$$

 $\delta_{\bar{x}} z(x,t)$ и $\delta_{\bar{t}} z(x,t)$ – первые обратные разностные производные (производные назад) по x и t соответственно.

Разностная схема (4.2), (4.1) монотонна (определение монотонности разностных схем см., например, в [3]). Для схемы (4.2), (4.1) справедлив *сеточный принцип максимума*.

Теорема 4.1. Пусть для разностной схемы (4.2), (4.1) выполняются условия $\Lambda z(x,t) \ge 0$, $(x,t) \in G_{h\tau}$; $z(x,t) \ge 0$, $(x,t) \in S_{h\tau}$. Тогда для функции z(x,t) справедлива оценка $z(x,t) \ge 0$, $(x,t) \in \overline{G}_{h\tau}$.

4.2. С учетом априорных оценок устанавливаем сходимость в равномерной норме разностной схемы (4.2), (4.1).

С использованием оценок (3.3), где K = 2, подобно [6], получаем, что решение разностной схемы (4.2), (4.1) сходится в равномерной норме к решению задачи Коши (2.2), (2.1) с оценкой

$$|u(x,t) - z(x,t)| \le M[N^{-1} + N_0^{-1}], \quad (x,t) \in \overline{G}_{h\tau}.$$
(4.3)

Теорема 4.2. Пусть для решения задачи Коши (2.2), (2.1) выполняется оценка (3.3) при K = 2. Тогда решение разностной схемы (4.2), (4.1) сходится в равномерной норме и для него справедлива оценка (4.3).

5. РАЗЛОЖЕНИЯ РАЗНОСТНЫХ ПРОИЗВОДНЫХ И НЕВЯЗОК ПО СТЕПЕНЯМ ШАГОВ ПРОСТРАНСТВЕННОЙ И ВРЕМЕННОЙ СЕТОК

В случае разностной схемы (4.2), (4.1) построим разложения первых обратных разностных производных по *x* и *t* по степеням шагов *h* и τ равномерных сеток $\overline{\omega}$ и $\overline{\omega}_0$. С использованием этих разложений получим разложения по степеням шагов *h* и τ для соответствующих невязок, которые будем использовать в разд. 7 при построении схемы, сходящейся со вторым порядком скорости сходимости.

5.1. Рассмотрим разложение обратной разностной производной $\delta_x u(x,t)$ по шагу *h* в узле (x,t), где

$$\delta_{\bar{x}}u(x,t) = \frac{u(x,t) - u(x-h,t)}{h}, \quad (x,t) \in \overline{G}_{h\tau}.$$

Заметим, что узел (0,0) принадлежит сетке $\bar{G}_{h\tau}$.

Заметим, что для u(x - h, t) выполняется следующее разложение по степеням шага h:

$$u(x-h,t) = u(x,t) - h\frac{\partial}{\partial x}u(x,t) + 2^{-1}h^2\frac{\partial^2}{\partial x^2}u(x,t) - 6^{-1}h^3\frac{\partial^3}{\partial x^3}u(\vartheta,t),$$

(x,t) $\in G_{h\tau}, \quad \vartheta \in [x-h,x].$ (5.1)

С учетом разложения (5.1) для u(x - h, t) получаем разложение обратной разностной производной $\delta_{\bar{x}}u(x,t)$ по степеням шага *h* в узле (*x*,*t*)

$$\delta_{\overline{x}}u(x,t) = \frac{\partial}{\partial x}u(x,t) - 2^{-1}h\frac{\partial^2}{\partial x^2}u(x,t) + 6^{-1}h^2\frac{\partial^3}{\partial x^3}u(\vartheta,t),$$

(5.2)
$$(x,t) \in G_{h\tau}, \quad \vartheta \in [x-h,x].$$

Теперь, с учетом разложения (5.2) получаем разложение по степеням шага *h* в узле (*x*,*t*) для разности $\delta_{\overline{x}}u(x,t) - \partial/\partial xu(x,t)$, которую назовем *невязкой* по аналогии с определением у Н.Н. Калиткина [5]

$$\delta_{\bar{x}}u(x,t) - \frac{\partial}{\partial x}u(x,t) = -2^{-1}h\frac{\partial^2}{\partial x^2}u(x,t) + 6^{-1}h^2\frac{\partial^3}{\partial x^3}u(\vartheta,t), \quad (x,t) \in G_{h\tau}.$$
(5.3)

5.2. Рассмотрим разложение обратной разностной производной $\delta_{t}u(x,t)$ по степеням шага τ в узле (*x*,*t*), где

$$\delta_{\overline{\tau}}u(x,t) = \frac{u(x,t) - u(x,t-\tau)}{\tau}, \quad (x,t) \in G_{h\tau}$$

Узел (0,0) принадлежит сетке $\overline{G}_{h\tau}$.

Подобно разложению (5.1), для $u(x, t - \tau)$ выполняется следующее разложение по степеням шага τ :

$$u(x,t-\tau) = u(x,t) - \tau \frac{\partial}{\partial t} u(x,t) + 2^{-1} \tau^2 \frac{\partial^2}{\partial t^2} u(x,t) - 6^{-1} \tau^3 \frac{\partial^3}{\partial t^3} u(x,\eta),$$

(x,t) $\in G_{h\tau}, \quad \eta \in [t-\tau,t].$ (5.4)

С учетом разложения (5.4) для $u(x, t - \tau)$ получаем разложение обратной разностной производной $\delta_{\tau}u(x,t)$ по степеням шага τ

$$\delta_{\overline{t}}u(x,t) = \frac{\partial}{\partial t}u(x,t) - 2^{-1}\tau \frac{\partial^2}{\partial t^2}u(x,t) + 6^{-1}\tau^2 \frac{\partial^3}{\partial t^3}u(x,\eta), \quad (x,t) \in G_{h\tau}, \quad \eta \in [t-\tau,t].$$
(5.5)

Аналогично (5.3), с учетом разложения (5.5), получаем разложение по степеням шага τ в узле (*x*,*t*) для невязки $\delta_{\tau}u(x,t) - \partial/\partial tu(x,t)$:

$$\delta_{\overline{t}}u(x,t) - \frac{\partial}{\partial t}u(x,t) = -2^{-1}\tau \frac{\partial^2}{\partial t^2}u(x,t) + 6^{-1}\tau^2 \frac{\partial^3}{\partial t^3}u(x,\eta), \quad (x,t) \in G_{h\tau}.$$
(5.6)

5.3. Основные результаты о разложении обратных разностных производных по x и t и невязок по степеням сеточных шагов h и τ равномерных сеток $\overline{\omega}$ и $\overline{\omega}_0$.

Справедлива следующая

Теорема 5.1. Пусть для решения задачи Коши для уравнения переноса (2.2), (2.1) выполняется оценка (3.3) при K = 3. Тогда в случае разностной схемы (4.2), (4.1) для разностных производных $\delta_{\overline{x}}u(x,t)$ и $\delta_{\overline{t}}u(x,t)$, $(x,t) \in G_{h_{\overline{x}}}$ справедливы разложения (5.2) и (5.5) соответственно.

Также справедлива следующая

Теорема 5.2. Пусть выполняется условие теоремы 5.1. Тогда для невязок $\delta_{\overline{x}}u(x,t) - \frac{\partial}{\partial x}u(x,t)$ и $\delta_{\overline{t}}u(x,t) - \frac{\partial}{\partial t}u(x,t)$ справедливы разложения (5.3) и (5.6).

6. РАЗЛОЖЕНИЯ РАЗНОСТНЫХ ПРОИЗВОДНЫХ И НЕВЯЗОК ПО СТЕПЕНЯМ ШАГОВ РАЗРЕЖЕННЫХ СЕТОК

На основе сетки $\overline{G}_{h\tau(4.1)}$, введенной в (4.1), строим *разреженную сетку*, на которой для разностной схемы (4.2), аналогично построениям в разд. 5, строим разложения разностных производных по x и t по степеням шагов разреженных сеток и разложения для соответствующих невязок, ко-

торые будут использованы в разд. 7 при построении схемы улучшенного порядка точности, сходящейся со вторым порядком скорости сходимости.

6.1. На основе сетки $\overline{G}_{h_{\tau(4,1)}}$ строим следующую *разреженную сетку*:

$$\overline{G}^*_{h^*\tau^*} = \overline{\omega}^* \times \overline{\omega}^*_0. \tag{6.1}$$

Здесь $\overline{\omega}^*$ и $\overline{\omega}_0^*$ – равномерные сетки на множествах ($-\infty,\infty$) и [0,*T*] соответственно. Величины шагов *h* * и τ^* сеток $\overline{\omega}^*$ и $\overline{\omega}_0^*$ в два раза больше величины шагов *h* и τ сеток $\overline{\omega}$ и $\overline{\omega}_0$. Узел (0,0) принадлежит исходной сетке $\overline{G}_{h\tau}$.

На сетке $\bar{G}^*_{h^*\tau^*}$ рассмотрим *разностную схему*

$$\Lambda^* z^*(x,t) \equiv \left\{ b(x,t)\delta_{\overline{x}^*} + p(x,t)\delta_{\overline{t}^*} + c(x,t) \right\} z^*(x,t) = f(x,t), \quad (x,t) \in G_{h^*\tau^*}^*,$$

$$z^*(x,t) = \varphi(x), \quad (x,t) \in S_{h^*\tau^*}^*.$$
 (6.2)

Здесь $G_{h^*\tau^*}^* = G \cap \overline{G}_{h^*\tau^*}^*$, $S_{h^*\tau^*}^* = S \cap \overline{G}_{h^*\tau^*}^*$; $\delta_{\overline{x}*} z^*(x,t)$ и $\delta_{\overline{t}*} z^*(x,t)$ – первые обратные разностные производные на разреженной сетке

$$\delta_{\bar{x}^*} z^*(x,t) = \frac{z^*(x,t) - z^*(x - h^*,t)}{h^*}, \quad (x,t) \in \bar{G}_{h^*\tau^*}^*.$$
$$\delta_{\bar{t}^*} z^*(x,t) = \frac{z^*(x,t) - z^*(x,t - \tau^*)}{\tau^*}, \quad (x,t) \in G_{h^*\tau^*}^*.$$

Для функции

$$w^*(x,t) = z^*(x,t) - u(x,t), \quad (x,t) \in \overline{G}^*_{h^*\tau^*}$$

выполняется следующее соотношение:

$$\Lambda^* w^*(x,t) = \Lambda^* z^*(x,t) - \Lambda^* u(x,t) = (L - \Lambda^*) u(x,t) = b(x,t) \left[\frac{\partial}{\partial x} u(x,t) - \delta_{\overline{x}^*} u(x,t) \right] + p(x,t) \left[\frac{\partial}{\partial t} u(x,t) - \delta_{\overline{t}^*} u(x,t) \right], \quad (x,t) \in G^*_{h^* \tau^*},$$
(6.3)

причем

$$w^*(x,t) = 0, \quad (x,t) \in S^*_{h^*\tau^*}.$$

6.2. Рассмотрим разложение обратной разностной производной $\delta_{\overline{x}^*}u(x,t)$ по шагу h^* в узле (x,t).

Для производной $\delta_{\overline{x}^*} u(x,t)$ имеем следующее представление:

$$\delta_{\bar{x}^*}u(x,t) = \frac{u(x,t) - u(x-h^*,t)}{h^*}, \quad (x,t) \in \bar{G}^*_{h^*\tau^*}.$$

Узел (0,0) принадлежит сетке $\bar{G}^*_{h^*\tau^*}$.

Заметим, что для $u(x - h^*, t)$ выполняется следующее разложение по степеням шага h^* :

$$u(x - h^*, t) = u(x, t) - h^* \frac{\partial}{\partial x} u(x, t) + 2^{-1} h^{*2} \frac{\partial^2}{\partial x^2} u(x, t) - 6^{-1} h^{*3} \frac{\partial^3}{\partial x^3} u(\vartheta, t),$$

(6.4)
$$(x, t) \in G^*_{h^*\tau^*}, \quad \vartheta \in [x - h^*, x].$$

С учетом разложения (6.4) для $u(x - h^*, t)$ получаем разложение обратной разностной производной $\delta_{\nabla^*} u(x, t)$ по степеням шага h^*

$$\delta_{\overline{x}^*}u(x,t) = \frac{\partial}{\partial x}u(x,t) - 2^{-1}h^*\frac{\partial^2}{\partial x^2}u(x,t) + 6^{-1}h^{*2}\frac{\partial^3}{\partial x^3}u(\vartheta,t),$$

$$(x,t) \in G_{h^*\tau^*}^*, \quad \vartheta \in [x-h^*,x].$$
(6.5)

6.3. Подобно (6.4), для $u(x, t - \tau^*)$ выполняется следующее разложение по степеням шага τ^* :

$$u(x,t-\tau^{*}) = u(x,t) - \tau^{*} \frac{\partial}{\partial t} u(x,t) + 2^{-1} \tau^{*2} \frac{\partial^{2}}{\partial t^{2}} u(x,t) - 6^{-1} \tau^{*3} \frac{\partial^{3}}{\partial x^{3}} u(x,\eta),$$

(6.6)
$$(x,t) \in G^{*}_{h^{*}\tau^{*}}, \quad \eta \in [t-\tau^{*},t].$$

С учетом разложения (6.6) для $u(x, t - \tau^*)$, получаем разложение обратной разностной производной $\delta_{\tau^*}u(x,t)$ по степеням шага τ^*

$$\delta_{\overline{t}} u(x,t) = \frac{\partial}{\partial t} u(x,t) - 2^{-1} \tau^* \frac{\partial^2}{\partial t^2} u(x,t) + 6^{-1} \tau^{*2} \frac{\partial^3}{\partial \tau^3} u(x,\eta),$$

$$(x,t) \in G^*_{h^*\tau^*}, \quad \eta \in [t - \tau^*, t].$$
(6.7)

6.4. Основной результат о разложении разностных производных по x и t по степеням сеточных шагов разреженной сетки $G^*_{h^*\tau^*}$.

В силу разложений (6.5) и (6.7), для невязок $\delta_{\overline{x}*}u(x,t) - \frac{\partial}{\partial x}u(x,t)$ и $\delta_{\overline{t}*}u(x,t) - \frac{\partial}{\partial t}u(x,t)$ справедливы следующие разложения по степеням сеточных шагов h^* и τ^* :

$$\delta_{\bar{x}^{*}}u(x,t) - \frac{\partial}{\partial x}u(x,t) = -2^{-1}h^{*}\frac{\partial^{2}}{\partial x^{2}}u(x,t) + 6^{-1}h^{*2}\frac{\partial^{3}}{\partial x^{3}}u(\vartheta,t), \quad (x,t) \in G_{h^{*}\tau^{*}}^{*}, \quad \vartheta \in [x-h^{*},x];$$

$$\delta_{\bar{t}^{*}}u(x,t) - \frac{\partial}{\partial t}u(x,t) = -2^{-1}\tau^{*}\frac{\partial^{2}}{\partial t^{2}}u(x,t) + 6^{-1}\tau^{*2}\frac{\partial^{3}}{\partial t^{3}}u(x,\eta), \quad (x,t) \in G_{h^{*}\tau^{*}}^{*}, \quad \eta \in [t-\tau^{*},t].$$
(6.8)

Таким образом, справедлива следующая

Теорема 6.1. Пусть для данных задачи Коши для уравнения переноса (2.2), (2.1) выполняется условие $b, c, p, f \in C^{k,k_0}(\overline{G}), k + k_0 \leq K, K = 3$. Тогда для невязок $\delta_{\overline{x}^*}u(x,t) - \frac{\partial}{\partial x}u(x,t) u \delta_{\overline{t}^*}u(x,t) - \frac{\partial}{\partial t}u(x,t)$ справедливы разложения (6.8) на разреженной сетке $G_{h^*\tau^*}^*$.

7. РАЗНОСТНАЯ СХЕМА РИЧАРДСОНА

Отметим, что структура разложений невязок сеточных решений относительно шагов сеток на основной и разреженной равномерных сетках подобна. Эти разложения позволяют применить технику Ричардсона и построить сеточное решение, сходящееся со вторым порядком скорости сходимости.

7.1. Рассмотрим линейную комбинацию решения z(x,t) разностной схемы (4.2), (4.1) на основной сетке и решения $z^*(x,t)$ разностной схемы (6.2), (6.1) на разреженной сетке $\overline{G}_{h^*\tau^*}^*$, введенной в (6.1):

$$\hat{z}(x,t) = \hat{z}(x,t;\alpha) = \alpha z(x,t) + (1-\alpha)z^*(x,t), \quad (x,t) \in \overline{G}^*_{h^*\tau^*},$$
(7.1)

где параметр α выбираем из условия, чтобы разложения по *h* и τ для невязки $\hat{z}(x,t)$ не содержали линейных членов разложения.

С учетом разложений невязок (5.6) и (6.8), получаем

$$\alpha = 2. \tag{7.2}$$

В силу соотношений (7.1) и (7.2), функция $\hat{z}(x,t)$, $(x,t) \in \overline{G}^*_{h^*\tau^*}$, при $\alpha = 2$ переходит в функцию $\tilde{z}(x,t)$, определяемую следующим соотношением:

$$\tilde{z}(x,t) = \hat{z}(x,t;\alpha=2) = 2z(x,t) - z^*(x,t), \quad (x,t) \in G^*_{h^*\tau^*}.$$
(7.3)

Заметим, что для функции $\tilde{z}(x,t)$ разложения невязок по h и τ не содержат линейных членов, что влечет следующую оценку:

$$\left|\tilde{z}(x,t) - u(x,t)\right| \le M(N^{-2} + N_0^{-2}), \quad (x,t) \in \overline{G}_{h^*\tau^*}^*.$$
(7.4)

Здесь мы учли, что при t = 0 и $\alpha = 2$ соотношение (7.3) также выполняется.

Таким образом, построенная разностная схема — будем говорить — схема Ричардсона (7.3), (6.1), при $N, N_0 \rightarrow \infty$ сходится в равномерной норме со вторым порядком скорости сходимости; для решения разностной схемы справедлива оценка (7.4).

Справедлива следующая

Теорема 7.1. Пусть для данных задачи Коши для уравнения переноса (2.2), (2.1) выполняется условие $b, c, p, f \in C^{k,k_0}(\overline{G}), k + k_0 \leq K, K = 3$. Тогда решение $\tilde{z}(x,t), (x,t) \in \overline{G}_{h^*\tau^*}, разностной схемы$ Ричардсона (7.3), (6.1) сходится в равномерной норме со вторым порядком скорости сходимости; для $решения <math>\tilde{z}(x,t), (x,t) \in \overline{G}_{h^*\tau^*},$ справедлива оценка (7.4).

8. ВЫВОДЫ

1. Рассмотрена постановка задачи Коши для уравнения переноса и определена цель исследования.

2. Для задачи Коши для уравнения переноса построена монотонная стандартная разностная схема и установлена ее сходимость в равномерной норме с первым порядком скорости сходимости.

3. Построены разложения первых обратных разностных производных по степеням шагов *основных* равномерных пространственной и временной сеток. С использованием этих разложений получены разложения для соответствующих невязок сеточных решений.

4. Построены разложения первых обратных разностных производных по степеням шагов *разреженных* равномерных пространственной и временной сеток. С использованием этих разложений получены разложения для соответствующих невязок сеточных решений.

5. На основе линейной комбинации решений разностных схем на основной и разреженной сетках, с учетом разложений соответствующих невязок на основной и разреженной сетках, построена разностная схема Ричардсона, сходящаяся в равномерной норме со вторым порядком скорости сходимости.

СПИСОК ЛИТЕРАТУРЫ

- 1. Марчук Г.И. Методы вычислительной математики. М.: Наука, 1989. 608 с.
- 2. Марчук Г.И., Шайдуров В.В. Повышение точности решений разностных схем. М.: Наука, 1979. 320 с.
- 3. Самарский А.А. Теория разностных схем. М.: Наука, 1989. 616 с.
- 4. *Shishkin G.I., Shishkina L.P.* Difference Methods for Singular Perturbation Problems. V. 140 of Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics. Boca Raton: CRC Press, 2009. 408 p.
- 5. Калиткин Н.Н. Численные методы. М.: Наука, 1978. 512 с.
- 6. Шишкин Г.И. Разностная схема для начально-краевой задачи для сингулярно возмущенного уравнения переноса // Ж. вычисл. матем. и матем. физ. 2017. Т. 57. № 11. С. 1824–1830.

1278