——— ФОТОНИКА —

УЛК 541.64:537.3:543.422.27

ВЛИЯНИЕ ЧАСТОТЫ ФОТОГЕНЕРАЦИИ НА ТРАНСПОРТ СПИНОВЫХ НОСИТЕЛЕЙ ЗАРЯДА В КОМПОЗИТЕ СОПОЛИМЕР-МЕТАНОФУЛЛЕРЕН: ЭПР ИССЛЕДОВАНИЕ

© 2019 г. Е. И. Юданова^{а, *}, В. И. Криничный^{а, **}, В. Р. Богатыренко^а, Н. Н. Денисов^а, Д. И. Назаров^а

^аФГБУН Институт проблем химической физики РАН
142432, Московская обл., Черноголовка, просп. Академика Семенова, 1, Россия
*E-mail: yudan@icp.ac.ru
**E-mail: kivi@cat.icp.ac.ru
Поступила в редакцию 14.11.2018 г.
После доработки 25.12.2018 г.
Принята к публикации 25.12.2018 г.

В работе методом фото-ЭПР исследовался фотовольтаический композит на основе узкозонного сополимера поли[(9,9-диоктилфлюоренил-2,7-диил)-со-(битиофена)] (ПФОТ) и метанофуллерена [6,6]-фенил- C_{61} -бутановой кислоты (МЭФ C_{61} БК), в широком диапазоне энергий генерирующих фотонов 1.32-3.14 эВ при T=77 К. Было показано, что часть поляронов захватывается спиновыми ловушками, образующимися в матрице сополимера, причем концентрация и глубина таких ловушек определяется энергией фотонов. Кинетика рекомбинации поляронов и анион-радикалов фуллерена после выключения света может быть описана в рамках бимолекулярного процесса второго порядка. Образование в матрице сополимера спиновых ловушек и обменное взаимодействие между различными спиновыми пакетами обуславливают экстремальную чувствительность магнитно-резонансных и электронных параметров носителей заряда к числу и энергии генерирующих фотонов.

Ключевые слова: объемный гетеропереход, фотоиндуцированный ЭПР, спиновая релаксация, рекомбинация зарядов, перенос заряда, полярон, метанофуллерен, диссоциация экситона

DOI: 10.1134/S002311931903015X

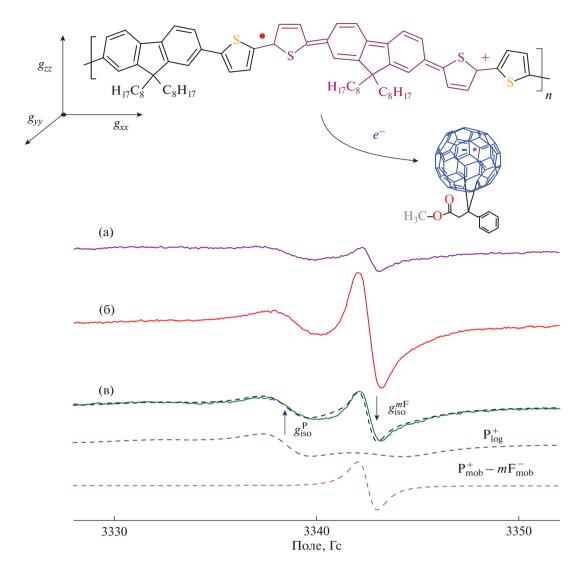
Органические сопряженные полимеры активно исследуются в последнее время в связи с перспективностью их использования в качестве функциональных матриц пластиковых электронных, спинтронных и фотовольтаических молекулярных устройств [1, 2]. Типичные органические фотовольтаические ячейки состоят из полимерной донорной подсистемы, способной отдать электрон под действием внешнего излучения, и фуллереновой акцепторной подсистемы, принимающей этот электрон [1]. Фотоинициация и рекомбинация этих носителей заряда являются противоположно направленными процессами. Разность констант скоростей этих процессов определяет число свободных носителей заряда, достигающих противоположных электродов ячейки, и, следовательно. эффективность преобразования световой энергии в электрическую. Важную роль в протекании указанных процессов играют структура и морфология композитов полимер:фуллерен. Так, использование в композите узкозонного сополимера поли[N-9'-гептадеканил-2,7-карбазол-альт-5,5-(4',7'-ди-2тиенил-2',1',3'-бензотиадиазол)] (ПКДТБТ) вместо поли(3-гексилтиофена) (ПЗГТ), традиционно используемого ранее в качестве наиболее оптимального донора электронов органических солнечных элементов [2], позволило более чем вдвое увеличить эффективность ячейки [3, 4]. Было показано [5, 6], что матрица сополимера ПКДТБТ:МЭФС₇₁БК характеризуется двухслойной "стопочной" упорядоченностью. Более высокая энергетическая эффективность этого композита была объяснена [7] сверхбыстрым разделением зарядов до локализации возбуждения и формирования в нем связанного экситона, в отличие от композитов на основе ПЗГТ, в которых фотоиндуцированное разделение зарядов происходит после диффузии полимерного экситона к подсистеме фуллерена. Такая морфология сополимерной цепи препятствует ее вращению вокруг своей главной оси, что понижает энергию запрещенной зоны композита [8]. Это ускоряет прыжки заряда вдоль и между сополимерными слоями, дополнительно увеличивая эффективность устройства.

Процесс рекомбинации носителей заряда определяется различными факторами, зависящими от структуры и морфологии композита полимер:фуллерен [9]. Простейший механизм первого порядка является мгновенной рекомбинацией исходных квазипар поляронов и свободных электронов. Если связанные носители заряда преодолевают силу кулоновского взаимодействия и расходятся на достаточное расстояние, то они смогут рекомбинировать с противоположно заряженными носителями других квазипар, и такой процесс будет следовать второму порядку. Выяснение процессов разделения, переноса и рекомбинации зарядов в таких материалах на молекулярном уровне имеет решающее значение для улучшения электронных свойств и эффективности соответствующих элементов молекулярной электроники.

Показано [1, 10], что метод $\Phi \ni \Pi P$ является одним из прямых, эффективных и точных методов исследования всех спин-зависимых процессов, протекающих в системах полимер:фуллерен. Он позволяет раздельно обнаружить и исследовать основные этапы формирования, разделения и рекомбинации спиновых носителей заряда. Из анализа спектров ФЭПР, зарегистрированных в отсутствии и при освещении образца можно определить эффективное число фотогенерированных спиновых носителей заряда. Эти носители характеризуются слабо анизотропными магнитно-резонансными параметрами, поэтому в 3-см (9.7 ГГц) диапазоне они проявляют частично перекрываемый дублетный спектр ФЭПР. Ранее нами были исследованы спин-зависимые процессы генерации, рекомбинации, релаксации и динамики спиновых носителей заряда в различных композитах полимер: фуллерен [11], в том числе на основе узкозонных сополимеров ПКДТБТ и поли[2,7-(9',9'диоктилфлюорен)-альт-4',7'-бис(тиофен-2-ил)бензо-2',1',3'-тиадиазола] (ПФО-ДБТ) [12, 13]. Было показано, что при освещении композитов сополимер:фуллерен часть носителей заряда захватывается спиновыми ловушками, образующимися в сополимерной матрице вследствие ее разупорядоченности. В близких по строению нанокомпозитах ПКДТБТ:МЭФС $_{61}$ БК и ПФО-ДБТ:МЭФС $_{61}$ БК были идентифицированы соответственно первый и второй порядок процесса рекомбинации спиновых носителей заряда.

В данной работе приведены результаты исследования методом Φ ЭПР процессов образования, релаксации и динамики спиновых носителей заряда, фотогенерированных при $T=77~{\rm K}$ в полимерном нанокомпозите ПФОТ:МЭФС $_{61}$ БК в широком интервале изменения энергии фотонов $1.32-3.14~{\rm 3B}$. Были выявлены зависимости магнитных, релаксационных и динамических параметров носителей заряда от их локализации, обнаружена чувствительность этих параметров к

энергии фотонов, а также и определен порядок их рекомбинации в этой системе.


ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В качестве донора электронов в работе использовался поли[(9,9-диоктилфлюоренил-2,7-диил)-со-(битиофен)] (ПФОТ), производство American Dye Source, Inc., США. В качестве акцептора электронов использовался метиловый эфир 6,6-фенил- C_{61} -бутановой кислоты (МЭФС $_{61}$ БК), производство Solenne BV, Нидерланды. Химические структуры этих компонентов схематически показаны на рис. 1.

Образцы на керамической подложке готовили следующим образом. Навеску 1.8 мг ПФОТ растворялись в 1.1 мл дихлорбензола, затем обрабатывали в течение 10 мин ультразвуком мощностью 50 Bт в ультразвуковом очистителе DADI DA-968. Далее раствор прогревали при T = 333 Kв течение 30 мин, после чего дополнительно обрабатывали ультразвуком в течение 10 мин до образования прозрачного желтого раствора. Затем в 0.5 мл полученного таким образом раствора добавляли 3.7 мг МЭ Φ С₆₁БК, прогревали в течение 2.5 ч при T = 333 K и затем выдерживали при комнатной температуре в течение 20 ч. Концентрации ПФОТ и МЭФС61БК в растворе составили 3×10^{-3} и 2×10^{-3} М соответственно. Полученные растворы наносили на плоскую керамическую подложку каплями объемом V = 5 мкл постепенно по 1 капле с каждой стороны подложки, по мере высыхания. Всего было нанесено 55 мкл раствора до получения образца в виде двухсторонних пленок размером около 4 × 8 мм² и толщиной около 0.1 мм.

Освещение образцов проводилось непосредственно в резонаторе спектрометра с помощью кварцевого световода источниками ахроматического, белого света Luxeon®, мощностью 5 Вт, с цветовой температурой $T_c = 15000, 5500$ и 3300 K, а также почти монохроматического света с энергией фотонов hv_{ph} /светимостью I_1 : 1.32 эВ/750 лк, 1.46 эВ/870 лк, 1.61 эВ/1160 лк, 1.88 эВ/1950 лк, 1.97 эВ/1110 лк, 2.10 эВ/450 лк, 2.34 эВ/960 лк, $2.48 \ \mathrm{эB}/1500 \ \mathrm{лк}, 2.64 \ \mathrm{эB}/2450 \ \mathrm{лк}, 2.95 \ \mathrm{эB}/1520 \ \mathrm{лк} \ \mathrm{и}$ $3.14 \ \mathrm{эB}/630 \ \mathrm{лк}$. Значения I_1 этих источников были определены при помощи широкополосного болометрического измерителя мощности излучения света ИМО-2Н и цифрового люксметра LX-1010BS и использовались для дальнейшей нормировки числа спинов, фотогенерированных в образце.

ЭПР измерения проводились с использованием спектрометра ПС-100Х 3-см диапазона (9.7 ГГц) с максимальной мощностью СВЧ излучения 150 мВт и частотой ВЧ синхронного/фазового детектирования 100 кГц. Спектры ФЭПР образцов реги-

Рис. 1. Спектры $\Phi \ni \Pi P$ носителей заряда в объемных гетеропереходах $\Pi \Phi O T: M \ni \Phi C_{61}$ БК при непрерывном освещении фотонами с энергией $hv_{ph}=1.46$ (а), 1.88 (б) и 2.38 $\ni B$ (в) при 77 К, нормированными на величину светимости I_1 источников света. Пунктирными линиями на (в) сверху вниз показаны суммарный спектр, спектр $\Phi \ni \Pi P$ локализованных поляронов $P_{loc}^{+\bullet}$ и мобильных радикальных пар $P_{mob}^{+\bullet} \leftrightarrow m F_{mob}^{-\bullet}$, численно моделированных с использованием значений $\Delta B_{pp}^{P}=2.91$ Гс, $\Delta B_{pp}^{mF}=0.94$ Гс и отношением концентраций $[mF_{mob}^{-\bullet}]:[P_{loc}^{+\bullet}]=1.0:9.9$. Сверху схематически показан перенос заряда с сополимерной цепи на молекулу метанофуллерена, сопровождающийся образованием полярона с элементарным положительным зарядом и спином $S=\frac{1}{2}$.

стрировали при 77 К путем погружения в кварцевую ячейку, наполненную жидким азотом. Отношение сигнал/шум спектров ФЭПР увеличивали накоплением сигналов при многократном сканировании. Обработка и моделирование спектров ФЭПР проводились с использованием программ EasySpin и OriginLab. Вклады неспаренных электронов различных носителей заряда в эффективную восприимчивость образца определялись путем разложения его спектров ФЭПР на составляющие, как было описано в [11, 14, 15]. Парамагнитная вос-

приимчивость образца была определена путем двойного интегрирования спектров поглощения индивидуальных спиновых пакетов вдали от условий СВЧ насыщения. В качестве эталона использовали стабильный нитроксильный радикал 2,2,6,6-тетраметилпиперидин-1-оксил, каждая молекула которого содержит один спин S=1/2. G-фактор Ланде спиновых носителей заряда был определен с использованием стандарта N,N-дифенил-N'-пикрилгидразила (ДФПГ) с g=2.0036. Точность оценки интенсивности линии I,g-факто-

ра и ширины линии между положительным и отрицательным пиками $\Delta B_{\rm pp}$ составила 5%, $\pm 2 \times 10^{-4}$ и $\pm 2 \times 10^{-2}$ Гс соответственно. Времена спин-решеточной T_1 и спин-спиновой T_2 релаксации спиновых ансамблей были определены с использованием метода непрерывного СВЧ насыщения [16].

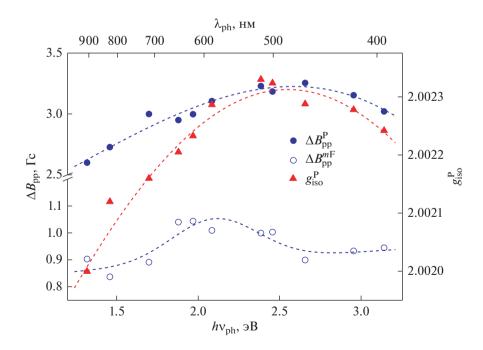
РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

На рис. 1 приведены некоторые ФЭПР спектры композита ПФОТ:МЭФС61БК, полученные при его облучении фотонами с разной энергией $hv_{\rm ph}$ при $T=77\,$ K. Как и в случае других полимер:фуллереновых композитов [11], эти спектры были отнесены к линиям поляронов и анион-радикалов метанофуллеренов (рис. 1), образованных в результате диссоциации экситонов. Результирующий спектр ЭПР разлагался на индивидуальные составляющие линии аналогично предыдущим исследованиям полимер:фуллереновых композитов [11, 14, 15]. Это позволило раздельно определить основные магнитно-резонансные параметры спиновых пакетов, фотогенерированных в композите фотонами света с различной энергией hv_{ph} . На рис. 1 приведен также моделированный суммарный спектр ФЭПР и его вклады, связанные с локализованными поляронами $P_{loc}^{+\bullet}$, захваченными спиновыми ловушками, и мобильными парами поляронов и анион-радикалов метанофуллеренов $P_{\text{mob}}^{+\bullet} \leftrightarrow m F_{\text{mob}}^{-\bullet}$. Отсутствие в спектрах вклада от локализованных анион-радикалов метанофуллерена $mF_{loc}^{-\bullet}$ свидетельствует о меньшем числе энергетически глубоких ловушек способных захватывать такие парамагнитные центры.

Изотропный g-фактор, определенный для анион-радикалов метанофуллеренов, оказался равным $g_{\rm iso}^{\it mF} = 1.99989$ и слабо зависимым от энергии фотонов hv_{ph} . Это значение находится вблизи $g_{iso}^{mF} =$ = 1.99948 [14] и 1.99987 [15], полученных для МЭ Φ С₆₁БК в 2-мм (130 ГГц) диапазоне регистрации $\Phi \ni \Pi P$. Ориентация главных осей их g-тензора показана на рис. 1. Значение g_{xx} лежит в плоскости полимерной π-системы и направлено перпендикулярно главной молекулярной оси сополимера. Эта величина определяется энергией $\Delta E_{n\pi^*}$ необходимой для возбуждения спина $n \to \pi^*$, константой взаимодействия λ спина с гетероатомом и его плотностью на этом гетероатоме $\rho(0)$, т.е. $g_{xx} \propto \lambda \rho(0)/\Delta E_{n\pi^*}$, что обуславливает его более высокую чувствительность к межатомным расстояниям и спин-орбитальному взаимодействию с гетероатомами, входящими в полимерную матрицу [17]. Член g_{yy} определяется разностью энергий перехода $\sigma \to \pi^*$, он пропорционален величине $\lambda
ho(0)/\Delta E_{\sigma\pi^*}$ и проявляет меньшую чувствительность к свойствам микроокружения полярона. Среди всех главных величин g-тензора, g_{zz} наименее чувствителен к свойствам сополимерной матрицы. Величины главных значений g-факторов полярона в композите $\Pi\Phi$ OT:MЭ Φ C $_{61}$ БК оказались равными $g_{xx}=2.006_{04}, g_{yy}=2.002_{17}, g_{zz}=1.998_{66}$ и $g_{iso}^P=2.002_{29}$. Последняя величина находится вблизи $g_{iso}^P=2.002_{47}-2.003_{30}$, определенных для поляронов, фотоинициированных в некоторых других фотовольтаических системах [11, 15], включая узкозонные сополимерные композиты [12, 13]. Величины g_{iso}^P , определенные при освещении композита $\Pi\Phi$ OT:MЭ Φ C $_{61}$ БК ахроматическим белым светом с различной коррелированной цветовой температурой T_c , приведены в табл. 1.

На рис. 2 приведена зависимость $g_{\rm iso}^{\rm P}$ для локализованных и мобильных поляронов в композите ПФОТ:МЭФС₆₁БК от энергии фотонов $hv_{\rm ph}$. Из рисунка видно, что изотропный g-фактор поляронов характеризуется экстремальной зависимостью от энергии фотонов, которая хорошо описывается Гауссовым распределением:

$$g_{\rm iso} = g_0 + \sqrt{\frac{2k_1}{\pi\sigma^2}} \exp\left(-\frac{2(E - E_c)}{\sigma^2}\right),$$
 (1)


где $E_{\rm c}$ — характеристическая энергия, σ — отклонение энергии, g_0 и k_1 — константы. Анализ приведенных на рис. 2 зависимостей свидетельствуют, что полученные экспериментальные данные могут быть хорошо описаны уравнением (1) с $E_{\rm c} = 2.54~{
m 9B}$ и $\sigma = 1.72~{
m 9B}$. Полученные значения $E_{\rm c}$ и о превышают значения, полученные для структурно близких композитов П Φ О-ДБТ:МЭ Φ С $_{61}$ БК $(E_{\rm c} = 2.0067 \text{ и } \sigma = 1.174 \text{ эВ})$ и ПКДТБТ:МЭ Φ С₆₁БК $(E_c = 2.244 \text{ и } \sigma = 1.945 \text{ эВ}) [12, 13], \text{ что, возможно,}$ связано с более упорядоченной морфологией последних. Это дает основание полагать, что разупорядоченность в полимерных композитах приводит к однородному распределению энергетических ловушек в сополимерной цепи, что определяет Гауссову зависимость их эффективного д-фактора от энергии фотогенерации спинов.

На рис. 2 приведены зависимости ширины линии поляронов $\Delta B_{\rm pp}^{\rm P}$ и анион-радикалов метанофуллеренена $\Delta B_{\rm pp}^{\rm mF}$, фотогенерированных в композите ПФОТ:МЭФС₆₁БК при T=77 К, от энергии фотонов $h{\rm V}_{\rm ph}$. Эти параметры, определенные при облучении образца источниками белого света с различные цветовыми температурами, также представлены в табл. 1. Ранее было показано [11], что основные процессы, протекающие в системах полимер:фуллерен, являются спин-зависимыми и поэтому могут быть описаны в рамках обменного взаимодействия спинов поляронов, диффун-

Таблица 1. Изотропный g-фактор поляронов $g_{\rm iso}^{\rm P}$, ширины линии ФЭПР поляронов $\Delta B_{\rm pp}^{\rm P}$ и метанофуллеренов $\Delta B_{\rm pp}^{\rm mF}$, отношение концентрации подвижных анион-радикалов метанофуллеренов к концентрации локализованных поляронов $[mF_{\rm mob}^{-}]/[P_{\rm loc}^{+*}]$, коэффициенты диффузии полярона вдоль, $D_{\rm ID}^{\rm P}$, и между, $D_{\rm 3D}^{\rm P}$, цепями сополимера, а также либрационной диффузии метанофуллерена вокруг своей основной молекулярной оси $D_{\rm rot}^{\rm mF}$, определенные при освещении композита ПФОТ:МЭФС $_{61}$ БК ахроматическим, белым светом с различной коррелированной цветовой температурой $T_{\rm c}$ при T=77 К

$T_{ m c},{ m K}$ Параметр	15000	5500	3300
P g _{iso}	2.002 ₂₂	2.002 ₂₇	2.002 ₃₄
$\Delta B_{\rm pp}^{\rm P},\Gamma { m c}$	2.89	2.97	3.17
$\Delta B_{ m pp}^{m{ m F}},\Gamma{ m c}$	1.03	1.07	1.05
$[mF_{\rm mob}^{-\bullet}]/[P_{\rm loc}^{+\bullet}]$	0.113	0.097	0.077
$D_{ m 1D}^{ m P},$ рад/с	6.20×10^{11}	2.93 × 10 ¹¹	4.99 × 10 ¹¹
$D_{ m 3D}^{ m P},$ рад/с	2.68×10^6	6.75×10^6	2.77×10^{6}
$D_{ m rot}^{m{ m F}}$, рад/с	7.24×10^{10}	1.03×10^{11}	1.23×10^{11}

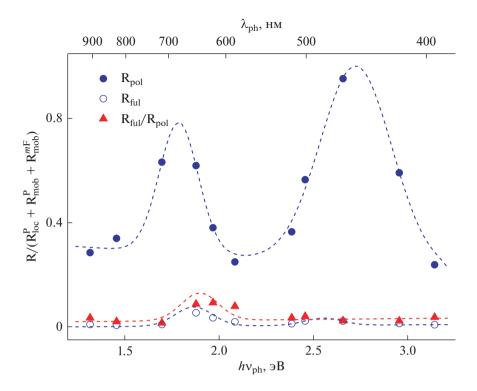
дирующих вдоль полимерных цепей, с другими спиновыми носителями заряда, в том числе захваченными высокоэнергетическими ловушками. Анализ данных, приведенных на рис. 2, позволяет сделать вывод о влиянии энергии фотона на обменное взаимодействие спиновых носителей заряда в исследуемом образце, в том числе локализованных в полимерной матрице. В этом

Рис. 2. Зависимости ширины линии спектров ФЭПР поляронов (●) и анион-радикалов метанофуллеренов (о), а также g-фактор поляронов (▲), фотогенерированных в ПФОТ:МЭФС $_{61}$ БК при T = 77 К от энергии фотонов hv_{ph} . Верхняя и нижняя пунктирные линии проведены произвольно. Средняя пунктирная линия показывает зависимость, рассчитанную из уравнения (1) с E_c = 2.54 и σ = 1.72 эВ.

случае обменное взаимодействие спинов должно уширить их спектральные линии поглощения на величину [18, 19]:

$$\delta(\Delta\omega) = p_{\rm ss}\omega_{\rm hop}n_i,\tag{2}$$

где $p_{\rm ss}$ — вероятность столкновения таких центров со спином S=1/2, зависящая от обменного интеграла; n_i — число сторонних спинов, приходящихся на каждую единицу полимера; $\omega_{\rm hop}$ — частота прыжковой Q1D диффузии спина полярона. Характер зависимости на рис. 2 ширин линий $\Phi \ni \Pi P$ $\Delta B_{\rm pp}^P$ и $\Delta B_{\rm pp}^{mF}$ от энергии фотогенерации и наличие экстремумов для поляронов при $h v_{\rm ph} \approx 2.6$ $\ni B$ и анион-радикалов фуллеренов при $h v_{\rm ph} \approx 2.1$ $\ni B$, свидетельствует о проявлении более сильного обменного взаимодействия спинов поляронов со своим микроокружением по сравнению с анионрадикалами метанофуллерена.


При освещении в композите полимер:метанофуллерен регистрируются парамагнитные центры, остающиеся после быстрой необратимой и медленной обратимой рекомбинаций спиновых носителей заряда. Вероятность последнего процесса в основном определяется многостадийной диффузией поляронов вдоль полимерных цепей сквозь энергетические барьеры и их последующим туннелированием к анионам метанофуллерена. Поскольку рекомбинация зависит от числа и энергетической глубины образующихся в полимерной матрице спиновых ловушек, то можно заключить, что только часть спиновых носителей заряда, равная отношению концентраций мобильных носителей заряда к локализованным, в конечном итоге достигает электродов. На рис. 3 показано относительное изменение концентраций носителей заряда в композите $\Pi \Phi OT: M \ni \Phi C_{61} EK$, вычисленное из индивидуальных парамагнитных восприимчивостей спиновых носителей заряда, в зависимости от энергии генерирующих фотонов hv_{ph} . Концентрация локализованных поляронов характеризуется экстремальной зависимостью с характерными точками, лежащими вблизи 1.8 и 2.7 эВ. Аналогичные зависимости с несколько смещенным правым экстремумом в область более высоких энергий были получены ранее при фотогенерации носителей заряда в структурно близких, но более амбиполярных композитах ПФО-ДБТ:МЭФС₆₁БК и ПКДТБТ:МЭФС₆₁БК [12, 13]. Из анализа приведенных данных можно сделать заключение, что концентрация локализованных поляронов $P_{loc}^{+\bullet}$ превышает концентрацию мобильных поляронов $P_{\text{mob}}^{+\bullet}$ и анион-радикалов фуллерена $mF_{\text{mob}}^{-\bullet}$, и все эти величины зависят от энергии фотонов. Специфическая морфология исследуемого образца приводит к преимущественному образованию в его матрице локализованных поляронов,

число которых оказалось более чувствительным к энергии фотонов. С другой стороны, мобильные анион-радикалы метанофуллерена композита $\Pi\Phi OT: M \ni \Phi C_{61} EK$ демонстрируют более слабую зависимость отношения концентраций $[mF_{mob}^{-}]/[P_{loc}^{+}]$ с максимумом около 1.9 эВ. $\ni \Phi \Phi C_{61} EK$ тивность преобразования энергии такими композитами должна расти с увеличением отношений концентраций $[mF_{mob}^{-}]/[P_{loc}^{+}]$. Указанные параметры, полученные при облучении образца источниками белого света с различной цветовой температурой, приведены в табл. 1.

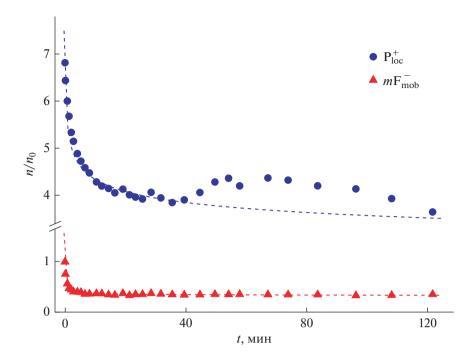
При выключении освещения спиновые носители заряда начинают рекомбинировать, что приводит к уменьшению их концентрации и интенсивности спектра ФЭПР. Численное моделирование суммарного сигнала позволяет разделить процессы спада концентраций всех спиновых носителей заряда, возникающих в полимерной системе. На рис. 4 показан временной спад концентраций обоих носителей заряда в композите ПФОТ:МЭФС $_{61}$ БК с момента выключения источника белого света с цветовой температурой $T_{\rm c}$ = = 5500 К. Простейший механизм первого порядка характерен для рекомбинации пар анион-радикалов фуллеренов и поляронов, образованных из неразделенных соответствующих исходных экситонов. Если положительный заряд полярона покидает такую пару, он сможет рекомбинировать с более удаленным анион-радикалом метанофуллерена, расположенным между слоями сополимера. Такой процесс рекомбинации становится бимолекулярным и следует второму порядку. Если анион-радикал фуллерена не взаимодействует со встреченным им поляроном, то длительность их столкновения должна определяться динамикой последнего. Порядок процесса рекомбинации заряда т в системе со спиновыми ловушками может быть оценен из анализа временного спада концентрации спинов n(t) [9]:

$$\frac{n(t)}{n_0} = \left(1 + k_r(m-1)n_0^{m-1}t\right)^{\frac{1}{1-m}},\tag{3}$$

где n_0 — начальное число спиновых носителей заряда в момент выключения света, при $t=0,\,k_r$ — константа скорости рекомбинации электрона. Так, величина m, определенная для композитов ПФО-ДБТ:МЭФС $_{61}$ БК и ПКДТБТ:МЭФС $_{61}$ БК, оказалась равной 2.25 и 1.23 соответственно [12, 13], что позволило сделать вывод о реализации в этих системах разных механизмов рекомбинации спиновых носителей заряда. Параметры k_r и m, определенные из уравнения (3) для ПФОТ:МЭФС $_{61}$ БК при моделировании экспериментальных кривых спада концентрации n(t), оказались равными $k_r=0.28\,\mathrm{c}^{-1}$, $m=2.34\,\mathrm{для}\,\left[\mathrm{P}_{\mathrm{loc}}^{+*}\right]$ и $k_r=0.0014\,\mathrm{c}^{-1}$, $m=2.23\,\mathrm{для}$

Рис. 3. Относительные концентрации, $[P_{loc}^{+\bullet}]/[P_{loc}^{+\bullet} + P_{mob}^{+\bullet} + mF_{mob}^{-\bullet}], [mF_{mob}^{-\bullet}]/[P_{loc}^{+\bullet} + P_{mob}^{+\bullet} + mF_{mob}^{-\bullet}]$ и отношение $[mF_{mob}^{-\bullet}]/[P_{loc}^{+\bullet}]$ поляронов и анион-радикалов метанофуллеренена, фотогенерированных в композите ПФОТ:МЭФС₆₁БК при T=77 К в зависимости от энергии фотонов hv_{ph} . Полученные значения нормированы на величину светимости световых источников I_1 . Пунктирные линии проведены произвольно.

 $[mF_{\rm mob}^{-}]$. Это свидетельствует о втором порядке рекомбинации и близкой структурной упорядоченности в исследуемом композите и $\Pi\Phi O$ -ДБТ:МЭ ΦC_{61} БК.


Спиновые ловушки в полимерной матрице играют ключевую роль в рекомбинации спиновых носителей заряда. Действительно, захваченный полярон может быть либо перехвачен вакантной ловушкой, либо рекомбинировать с ближайшим противоположно заряженным анион-радикалом. Многократные последовательные захваты и высвобождения полярона уменьшают его энергию, что приводит в конечном итоге к его локализации в наиболее глубоких спиновых ловушках и, следовательно, к повышению концентрации локализованных носителей с течением времени. Рекомбинация спиновых носителей заряда в полимерной системе с энергетически различными спиновыми ловушками должна следовать закону [20, 21]:

$$\frac{n(t)}{n_0} = \frac{\pi \kappa \delta(1 + \kappa) v_d}{\sin(\pi \kappa)} t^{-\kappa},$$
 (4)

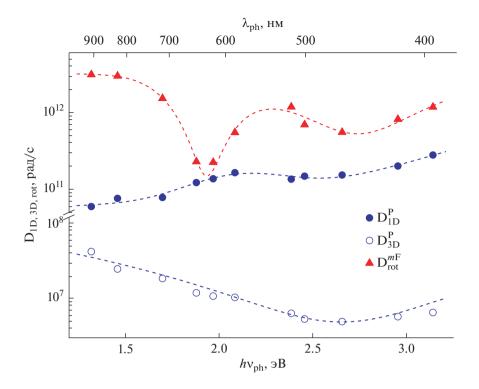
где $\kappa = k_{\rm B}T/E_0$, E_0 — дисперсия энергий ловушек, δ — гамма-функция и ν_d — частота прыжковой диффузии полярона при его высвобождении из ловушки. Сопоставление экспериментальных

данных, представленных на рис. 4, с теоретически рассчитанными показал, что поляроны и анионрадикалы метанофуллерена могут рекомбинировать в рамках указанной теории с дисперсией энергии $E_0 = 0.0486$ и 0.0139 эВ, соответственно, при $t \le t_c \approx 40$ мин. При $t \ge t_c$ зависимость n(t), полученная для поляронов, перестает описываться уравнением (4). Такое расхождение можно объяснить захватом в этой системе дополнительного количества мобильных поляронов спиновыми ловушками начиная с $t \approx t_{\rm c}$. Таким образом, процесс рекомбинация долгоживущих спиновых носителей заряда, образованных в результате диссоциации исходных экситонов, фотоиндуцированных в композите ПФОТ:МЭФС $_{61}$ БК, может действительно быть описан в рамках указанной выше модели, согласно которой скорость рекомбинации при низких температурах существенно зависит от числа и глубины энергии ловушек, различным образом распределенных в сополимере.

Поляроны, захваченные спиновыми ловушками в сополимерной матрице и диффундирующие вдоль и между ее цепями с соответствующими коэффициентами диффузии $D_{\rm ID}^{\rm P}$ и $D_{\rm 3D}^{\rm P}$, индуцируют в месте расположения других спинов дополнительное магнитное поле, ускоряющее электрон-

Рис. 4. Кинетика релаксации концентраций локализованных поляронов $\left[P_{\text{loc}}^{+\bullet}\right]$ и анион-радикалов метанофуллеренов $\left[mF_{\text{mob}}^{-\bullet}\right]$, фотогенерированных в ПФОТ:МЭФС $_{61}$ БК источником белого света с корреляционной цветовой температурой $T_{\text{c}}=5500$ К при T=77 К. Верхняя и нижняя пунктирные линии показывают зависимости, рассчитанные из уравнения (4) с $E_{0}=0.0486$ и 0.0139 эВ соответственно.

ную релаксацию всех спиновых ансамблей. Либрационная динамика молекул метанофуллерена с коэффициентом $D_{\text{rot}}^{\text{mF}}$ также индуцирует локальное магнитное поле и влияет на релаксацию спиновых носителей заряда. Электронная релаксация в органических твердых телах определяется главным образом диполь-дипольным взаимодействием спинов. Это позволяет записать следующие уравнения, связывающие релаксацию спинов с их динамическими параметрами [22]:


$$T_1^{-1}(\omega) = \langle \omega^2 \rangle [2J(\omega_e) + 8J(2\omega_e)], \tag{5}$$

$$T_2^{-1}(\omega) = \langle \omega^2 \rangle [3J(0) + 5J(\omega_e) + 2J(2\omega_e)],$$
 (6)

где $\langle \omega^2 \rangle = 1/10 \gamma_{\rm e}^4 \hbar^2 S(S+1) n \Sigma ij$ — константа диполь-дипольного взаимодействия порошкообразного образца с суммарной концентрацией, $n=n_1+n_2/\sqrt{2}$, локализованных, n_1 , и мобильных, n_2 , спинов, приходящихся на каждый мономер сополимера, Σ_{ij} — решеточная сумма, $J(\omega_{\rm e})=(2D_{\rm ID}^{\rm l}\omega_{\rm e})^{-1/2}$ (при $D_{\rm ID}^{\rm l}\gg\omega_{\rm e}\gg D_{\rm 3D}^{\rm p}$), $J(0)=(2D_{\rm ID}^{\rm l}D_{\rm 3D}^{\rm p})^{-1/2}$ (при $D_{\rm 3D}^{\rm p}\gg\gg\omega_{\rm e}$) — функции спектральной плотности Q1D подвижности поляронов, $D_{\rm ID}^{\rm l}=4D_{\rm ID}^{\rm p}/L^2$, $\omega_{\rm e}$ — резонансная угловая частота прецессии электронного спина и L — степень спиновой делокализации в пре-

делах носителя заряда. При расчете параметров спиновой динамики в ПФОТ:МЭФС $_{61}$ БК была использована величина L=3, определенная ранее для ПКДТБТ [15]. Вращательные либрации анион-радикалов метанофуллерена с временем корреляции τ_{c} рассчитывались с использованием соответствующей функции спектральной плотности $J(\omega_{e}) = 2\tau_{c}/(1 + \tau_{c}^{2}\omega_{e}^{2})$.

На рис. 5 представлены зависимости коэффициентов $D_{\rm ID}^{\rm P}$ и $D_{\rm 3D}^{\rm P}$ трансляционной диффузии поляронов, и коэффициента $D_{\rm rot}^{\rm mF}$ либрационной диффузии анион-радикалов метанофуллерена в композите ПФОТ:МЭФС $_{\rm 61}$ БК, рассчитанных из уравнений (5) и (6), от энергии фотонов $h{\rm V}_{\rm ph}$. Соответствующие параметры носителей заряда, фотогенерированных в композите при освещении источниками белого света с различной коррелированной цветовой температурой $T_{\rm c}$, приведены в табл. 1. Из рис. 5 видно, что значения $D_{\rm 1D}^{\rm P}$ и $D_{\rm 3D}^{\rm P}$, полученные для поляронов, слабо зависят от энергии фотонов, однако анизотропия динамики этих носителей заряда $D_{\rm 1D}^{\rm P}/D_{\rm 3D}^{\rm P}$ возрастает на полтора порядка при увеличении энергии фотонов в диапазоне 1.32-3.14 эВ. Следует отметить, что коэффициенты диффузии $D_{\rm 1D}^{\rm P}$ и $D_{\rm 3D}^{\rm P}$, полученные

Рис. 5. Коэффициенты трансляционной диффузии поляронов $P^{+\bullet}$ вдоль полимерных цепей, D_{1D} (\bullet), и между полимерными цепями, D_{3D} (o), а также коэффициенты либрационной диффузии, D_{rot} (Δ), анион-радикалов метанофуллерена $mF_{mob}^{-\bullet}$, фотогенерированных в $\Pi\Phi$ OT:М $\Theta\Phi$ C $_{61}$ БК в зависимости от энергии инициирующих фотонов hv_{ph} . Ошибки не превышают размеров точек, пунктирные линии проведены произвольно.

для $\Pi\Phi O$ -ДБТ:МЭ ΦC_{61} БК, изменяются аналогичным образом в зависимости от hv_{ph} , в то время как в случае композита Π КДТБТ:МЭ ΦC_{61} БК они увеличиваются примерно на порядок [12, 13]. С другой стороны, динамика глобул метанофуллерена экстремально зависит от энергии фотонов с характерными минимумами, лежащими вблизи 1.9 и 2.7 эВ. Аналогичные зависимости были получены также для близкого по строению композита $\Pi\Phi O$ -ДБТ:МЭ ΦC_{61} БК [12, 13], что должно свидетельствовать о существенном влиянии морфологии таких соединений на динамику поляронов.

выводы

Показано, что процессы образования и релаксации спинов поляронов и анион-радикалов метанофуллеренов, возникающих в композите ПФОТ:МЭФС₆₁БК под действием света, определяются их взаимодействием со своим микроокружением и зависят от частоты генерирующих фотонов. Большая часть поляронов участвует в переносе заряда, однако некоторое их количество захватывается спиновыми ловушками, образующимися в объеме сополимера вследствие его разупорядоченности. Наличие ловушек изменяет энер-

гетические уровни спиновых возбуждений и обуславливает Гауссову зависимость эффективного д-фактора поляронов от энергии фотона. Концентрация локализованных поляронов демонстрирует экстремальную зависимость от энергии фотонов с максимумами, лежащими вблизи 1.8 и 2.7 эВ, тогда как концентрация анион-радикалов метанофуллерена проявляет более слабую зависимостью с максимумом вблизи 1.9 эВ. Процесс рекомбинации спиновых носителей заряда интерпретировался в рамках многоступенчатого захвата и высвобождения поляронов в неоднородной матрице сополимера. Был установлен второй порядок рекомбинации спинов в исследуемом композите. Анизотропия динамики полярона в П Φ ОТ:М Θ ФС₆₁БК монотонно возрастает с ростом энергии фотона, в то время как вращательная подвижность молекул метанофуллерена демонстрирует экстремальную зависимость с двумя минимумами, лежащими вблизи 2.0 и 2.7 эВ, что аналогично результатам исследования композита ПФО-ДБТ:МЭФС61БК. Полученные зависимости свидетельствуют о существенном влиянии частоты генерирующих фотонов на динамические процессы в сополимерных композитах, которое необходимо учитывать при создании новых элементов молекулярной электроники, управляемых внешними световым и магнитным воздействиями.

Работа выполнена по теме Государственного задания, № 0089-2014-0036, при финансовой поддержке РФФИ в рамках научного проекта № 18-29-20011.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Lupton J.M.*, *McCamey D.R.*, *Boehme C.* // ChemPhys-Chem. 2010. V. 11. № 14. P. 3040.
- Fei H, Hin-Lap Y., Yong C. // Eds. Polymer Photovoltaics: Materials, Physics, and Device Engineering / Cambridge, 2015.
- 3. Park S.H., Roy A., Beaupre S., Cho S., Coates N., Moon J.S., Moses D., Leclerc M., Lee K., Heeger A.J. // Nat. Photonics. 2009. V. 3. P. 297.
- 4. Griffin J., Pearson A.J., Scarratt N.W., Wang T., Dunbar A.D.F., Yi H., Iraqi A., Buckley A.R., Lidzey D.G. // Org. Electron. 2015. V. 21. P. 216.
- Lu X.H., Hlaing H., Germack D.S., Peet J., Jo W.H., Andrienko D., Kremer K., Ocko B.M. // Nat. Commun. 2012. V. 3. P. 1290.
- 6. *Moon J.S., Jo J., Heeger A.J.* // Adv. Energy Mater. 2012. V. 2. № 3. P. 304.
- 7. Banerji N., Cowan S., Leclerc M., Vauthey E., Heeger A.J. // J. Am. Chem. Soc. 2010. V. 132. № 49. P. 17459.
- 8. Gutzler R., Perepichka D.F. // J. Am. Chem. Soc. 2013. V. 135. No 44. P. 16585.
- 9. *Lukina E.A., Uvarov M.N., Kulik L.V.* // J. Phys. Chem. C. 2014. V. 118. № 32. P. 18307.
- Liedtke M., Sperlich A., Kraus H., Baumann A., Deibel C., Wirix M.J.M., Loos J., Cardona C.M., Dyakonov V. // J. Am. Chem. Soc. 2011. V. 133. № 23. P. 9088.

- 11. *Krinichnyi V.I.* // EPR spectroscopy of polymer:fullerene nanocomposites / Ed. by *S. Thomas, D. Rouxel, D. Ponnamma*. Amsterdam, 2016. P. 202–275.
- 12. Krinichnyi V.I., Yudanova E.I., Bogatyrenko V.R. // J. Phys. Chem. Solids. 2017. V. 111. № 1. P. 153.
- 13. *Krinichnyi V.I., Yudanova E.I., Bogatyrenko V.R.* // Sol. Energy Mater. Sol. Cells. 2018. V. 174. P. 333.
- 14. *Poluektov O.G., Filippone S., Martín N., Sperlich A., Deibel C., Dyakonov V. //* J. Phys. Chem. B. 2010. V. 114. № 45. P. 14426.
- 15. Niklas J., Mardis K.L., Banks B.P., Grooms G.M., Sperlich A., Dyakonov V., Beauprě S., Leclerc M., Xu T., Yue L., Poluektov O.G. // Phys. Chem. Chem. Phys. 2013. V. 15. № 24. P. 9562.
- 16. *Poole C.P.* // Electron Spin Resonance: A Comprehensive Treatise on Experimental Techniques / New York, 1997. [*Пул Ч.* // Техника ЭПР спектроскопии / М., 1970.]
- 17. Buchachenko A.L., Turton C.N., Turton T.I. // Stable Radicals. / New York, 1995. [Бучаченко А.Л., Вассерман А.М. // Стабильные радикалы. / М.: Химия, 1973.]
- 18. *Molin Y.N., Salikhov K.M., Zamaraev K.I.* // Spin Exchange / Berlin, 1980. [*Замараев К.И., Молин Ю.Н., Салихов К.М.* // Спиновый обмен. Теория и физико-химические приложения / Н.: Наука СО, 1977.]
- Houze E., Nechtschein M. // Phys. Rev. B. 1996. V. 53.
 № 21. P. 14309.
- Krinichnyi V.I., Yudanova E.I., Wessling B. // Synth. Met. 2013. V. 179. P. 67.
- 21. *Tachiya M.*, *Seki K.* // Phys. Rev. B. 2010. V. 82. № 8. P. 085201.
- 22. Carrington F, McLachlan A.D. // Introduction to Magnetic Resonance with Application to Chemistry and Chemical Physics / New York, Evanston, London, 1967. [Кэррингтон А., Мак-Лечлан Э. // Магнитный резонанс и его применение в химии / М.: Мир, 1970.]