——— ПЛАЗМОХИМИЯ ——

УДК 537.528

ОСНОВНЫЕ ГАЗОФАЗНЫЕ ПРОДУКТЫ СВЧ РАЗРЯДА В ЖИДКИХ УГЛЕВОДОРОДАХ ШИРОКОГО КЛАССА

© 2019 г. К. А. Аверин^{*a*}, Ю. А. Лебедев^{*a*}, *, А. В. Татаринов^{*a*}

^аИнститут нефтехимического синтеза им. А.В. Топчиева РАН (ИНХС РАН) 119991, ГСП-1, Москва, Ленинский проспект, 29, Россия *E-mail: lebedev@ips.ac.ru

> Поступила в редакцию 12.12.2018 г. После доработки 21.12.2018 г. Принята к публикации 25.12.2018 г.

Проведено газохроматографическое исследование основных газофазных продуктов (H₂, C₂H₂, C₂H₄, CH₄) в CBЧ разряде в ряде жидких алканов, циклических и ароматических углеводородов. Показано, что в продуктах разряда в исследованных циклоалканах и ароматических соединениях без радикальных групп, в отличии от алканов, практически не содержится метан или этилен.

Ключевые слова: СВЧ разряд, плазма, СВЧ разряд в жидкости, углеводороды, хроматография **DOI:** 10.1134/S0023119319030033

введение

Разряды в жидкостях привлекают внимание исследователей и являются одним из приоритетов в изучении физики газоразрядной и низкотемпературной плазмы [1–5]. Это объясняется, прежде всего, перспективным применением таких разрядов при решении экологических проблем. Кроме того, они могут быть использованы для получения различных газовых и твердых продуктов.

В настоящее время различные типы разрядов используются для создания плазмы в жидкостях, но СВЧ разряды являются наименее исследованным объектом. Публикации по этому вопросу появились в начале 2000-х годов и насчитывают несколько десятков работ (в жидких органических соединениях количество статей еще меньше) в отличие от сотен публикаций по другим типам разрядов. Введение в современное состояние исследований в этой области представлено в последних обзорных статьях [6, 7].

В настоящей работе приведены результаты исследования основных газовых продуктов в СВЧ разрядах в различных углеводородах (алканах, циклических и ароматических): *н*-гептан, октан, изооктан, декан, пентадекан, гексадекан, циклогексан, бензол, толуол, ортоксилол, нефрас С2 80/120.

Некоторые результаты по исследованию основных газофазных продуктов в СВЧ разряде в жидком *н*-додекане приведены в [8], в растворах спиртов в [9, 10], а также минорных продуктов в жидком *н*-гексане, *н*-гептане, хлороформе и их смесях в [11].

ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА

Эксперименты проводились на установке, подробно описанной в [12, 13] и схематически изображенной на рис. 1. Она включает в себя СВЧ генератор, циркулятор, водяной аттенюатор, направленный ответвитель, анализатор спектра и осциллограф. Аттенюатор позволяет получать плавно изменяюшуюся палаюшую мошность в диапазоне от 100 Вт до 2.5 кВт. Разрядная секция представляет собой волноводно-коаксиальный переход, центральный проводник которой служит антенной для ввода СВЧ энергии в разрядную секцию. Для согласования использовался перемещаемый короткозамыкающий поршень. Центральный электрод коаксиальной линии изготовлен из медной трубки с внешним диаметром 1.5 мм. Уменьшение диаметра антенны позволило организовывать разряд при падающих мощностях порядка 100 Вт. Разряд создавался в области конца антенны в кварцевой кювете (диаметр 55 мм), помещенной в защитный экран.

Кварцевая цилиндрическая кювета частично заполнена углеводородом, и над поверхностью жидкости продувалась аргоном в течение 2 мин. При подаче СВЧ энергии происходит разогрев конца антенны, испарение углеводорода и в его парах в объеме жидкости зажигается разряд. Дополнительного источника энергии для поджига не требовалось.

Рис. 1. Схема экспериментальной установки. *1* – коаксиально-волноводный переход, *2* – короткозамыкающий поршень, *3* – диэлектрик, *4* – антенна, *5* – жидкость, *6* – область разряда, *7* – кварцевый реактор, *8* – экран из металлической сетки, *9* – кран, *10* – отбор пробы, *11* – газовый хроматограф, *12* – аналого-цифровой преобразователь.

Разряд инициировался в области максимального СВЧ поля на конце центрального проводника коаксиальной линии (рис. 2) в различных углеводородах различающихся по структуре и температуре кипения (см. табл. 1): *н*-гептан, октан, изооктан, декан, пентадекан, гексадекан, циклогексан, бензол, толуол, ортоксилол, нефрас С2 80/120. Используемые жидкости перед экспериментами не очищались от окклюдированного воздуха.

Объем жидкости в кювете порядка 40 мл, что обеспечивает нахождение конца внутреннего электрода коаксиальной линии (антенна) под поверхностью жидкости. Дополнительные газы через канал в центральном электроде не подавались. Давление над поверхностью жидкости равнялось атмосферному давлению.

Исследование состава основных газофазных продуктов (H₂, C₂H₂, CH₄, C₂H₄) разряда в жидких углеводородах осуществлялось с помощью хроматографа ЛХМ-8 с детектором по теплопроводности и хроматографической колонкой с фазой HaySep S. Прибор оснащен системой регистрации и обработки результатов в цифровой форме (АЦП и программный комплекс "Феникс"). В качестве газа-носителя использовался азот. Абсолютная калибровка прибора производилась по индивидуальным компонентам и по готовым калибровочным газовым смесям.

Отбор проб в обоих случаях осуществлялся шприцом Agilent.

Рис. 2. Фотография разряда в жидком *н*-гептане (диаметр камеры 55 мм, диаметр антенны 6 мм).

РЕЗУЛЬТАТЫ

Одной из задач при проведении экспериментов с жидкими углеводородами является уменьшение доли испаренной за время эксперимента жидкости. Испарение приводит к появлению в газовой пробе паров исходного углеводорода (детальное хроматографическое исследование пробы показало, что объемное содержание паров может быть соизмеримо с содержанием основных продуктов). Избежать этого до конца невозможно, поскольку в объеме жидкости создается высокотемпературный плазменный объект (температура в области антенны около 2000 К) и тепло выводится через жидкость, ведя к ее испарению. Этот же процесс является основным поставщиком молекул углеводорода в разрядную область. Но можно уменьшить непосредственный нагрев жидкости СВЧ излучением. Для создания плазмы требуется достаточная напряженность микроволнового поля у антенны, чтобы обеспечить большую скорость ионизации. Это, в свою очередь, требует повышения мощности, подводимой к реактору. Несмотря на то, что тангенс потерь у жидких неполярных углеводородов мал (порядка 10⁻⁴), при большой падающей мощности часть ее идет на нагрев.

Достичь уменьшения требуемой мощности при обеспечении необходимой напряженности СВЧ

ОСНОВНЫЕ ГАЗОФАЗНЫЕ ПРОДУКТ

ОДУКТЫ СВЧ РАЗРЯДА			327			
разных жидких углеводородах						
H ₂ , об. %	СН ₄ , об. %	С ₂ Н ₄ , об. %	С₂Н₂, об. %			
71.2	3	7.8	18			
72	2.2	7.5	18.3			
71.7	1.7	6.3	20.3			
67.6	1.3	6.1	25			

Таблица 1. Основные газофазные продукты СВЧ разряда в разных

Вещество, температура кипения и структура

	_	-		
<i>н</i> -гептан $C_7 H_{16} (T_{boil} = 98.42^{\circ} C)$	71.2	3	7.8	18
<i>н</i> -октан $C_8 H_{18} (T_{boil} = 125.52^{\circ}C)$	72	2.2	7.5	18.3
Декан $C_{10}H_{22}$ (($T_{boil} = 174.1^{\circ}C$)	71.7	1.7	6.3	20.3
Пентадекан $C_{15}H_{32}$ ($T_{boil} = 270.6^{\circ}C$)	67.6	1.3	6.1	25
Гексадекан $C_{16}H_{34}$ ($T_{boil} = 286.79^{\circ}C$)	65.6	0.4	5.5	28.5
Изооктан $C_8 H_{18} (T_{boil} = 99.3^{\circ}C)$	71	6.2	4.1	18.7
Циклогексан C_6H_{12} ($T_{boil} = 80.74^{\circ}C$)	73.4	0	9.1	17.5
Бензол $C_6 H_6 (T_{boil} = 80.1^{\circ}C)$	88.8	0	0	11.2
Толуол C_6H_5 -CH ₃ ($T_{boil} = 110.6$ °C) СH ₃	86.1	1.8	0	12.1
Ортоксилол $C_6H_5-(CH_3)_2$ ($T_{boil} = 144^{\circ}C$) CH_3 CH_3 CH_3	74.6	3.6	5.6	14.4
Нефтяной растворитель "Нефрас С2 80/120" (смесь легких углеводородов с температурой кипения от +33 до 205°С)	66.5	6	8.6	19.9

поля можно двумя путями. Это уменьшение диаметра антенны (продолжение внутреннего проводника коаксиальной линии), а также подбор длины антенны. Для оптимизации антенного узла было проведено моделирование электродинами-КИ реактора с помощью пакета программ Comsol 3.5. Расчетная область соответствовала реальной геометрии реактора с цилиндрической симметрией (рис. 3). Реактор заполнен жидким углеводородом. У большинства неполярных углеводородов диэлектрическая постоянная ≈2 и результаты расчетов справедливы для широкого класса углеводородов. Результаты расчетов показаны на рис. 4. В расчетах варьировалась длина выступающей части центрального проводника коаксиальной линии (L). Скачек напряженности на расстоянии 40 мм происходит на границе раздела жидкости и воздуха из-за различия диэлектрических проницаемостей.

Рис. 3. Геометрия расчетной области.

Из рис. 4 следует, что оптимальной длиной выступающей части антенны является 2.2 мм. Именно эта длина использовалась в экспериментах и это позволило снизить необходимую для зажигания разряда мощность до 100 Вт при диаметре внутреннего проводника коаксиальной линии у его конца 2 мм. В правом нижнем углу рис. 3 показана геометрия выступающей части антенны. Нужно заметить, что проведенное выше рассмотрение справедливо для чистого углеводорода и соответствует начальному моменту. При горении разряда в нем образуются углеродсодержащие частицы, которые переносятся в жидкость и конвективными потоками распределяются по ее объему. Эти частицы хорошо поглощают СВЧ излучение, и это ведет к резкому увеличению тангенса потерь и поглощению энергии в жидкости. В конечном счете, этот процесс ведет к уменьшению напряженности поля на конце антенны и приводит к погасанию разряда. Таким образом, подбор электродинамических характеристик антенны сушественен на начальной стадии разряда и облегчает процесс его зажигания.

Рис. 4. Распределение напряженности СВЧ поля по оси разрядной камеры при разных длинах выступающей части антенны (расчет при падающей мощности 100 Вт).

Проведенное ранее детальное исследование состава газофазных продуктов микроволнового разряда в жидких углеводородах показало, что основными продуктами являются водород, ацетилен, этилен и метан. Зависимость содержания именно этих газов от исходного углеводорода исследовалась в настоящей работе. Результаты содержатся в табл. 1.

Распределение продуктов в исследованных алканах согласуется с приведенным в [8] для СВЧ разряда в жидком *н*-додекане.

ЗАКЛЮЧЕНИЕ

Методом газовой хроматографии исследован состав основных газофазных продуктов СВЧ разряда в жидких углеводородах (*н*-гептан, октан, изооктан, декан, пентадекан, гексадекан, циклогексан, бензол, толуол, ортоксилол, нефрас С2 80/120). Показано, что:

в ряду увеличения молекулярной массы алкана происходит увеличение выхода ацетилена и уменьшение выхода водорода (в ряду C7–C16, включая циклоалканы);

в ароматических соединениях преимущественно образуется водород и ацетилен;

в продуктах разряда исследованных циклоалканов и ароматических соединениях без радикальных групп практически не содержится метан или этилен. По мере увеличения числа радикальных групп состав приближается к составу продуктов разряда в алканах.

Работа выполнена в рамках Государственного задания ИНХС РАН.

СПИСОК ЛИТЕРАТУРЫ

- Bruggeman P., Leys C. // J. Phys. D: Appl. Phys. 2009. 42. 053001.
- Samukawa S., Hori M., Rauf S., Tachibana K. et al. // J. Phys. D: Appl. Phys. 2012. 45. 253001.
- 3. Bruggeman P.J., Kushner M.J., Locke B.R. et al. // Plasma Sources Science and Technology. 2016. 25. 053002.
- Yang Y., Cho Y.I., Fridman A. // Plasma discharge in liquid: Water Treatment and Application. CRC Press. 2012. ISBN 9781439866238.
- 5. Foster J. // Phys. Plasmas. 2017. 24. 055501.
- 6. Lebedev Yu.A. // Plasma Phys Reports. 2017. 43. C. 676.
- 7. Lebedev Yu.A. // High Temperature. 2018. 56. C. 811.

- Nomura S., Toyota H., Mukasa S., Yamashita H., Maehara T., Kawashima A. // J. Appl. Phys. 2009. 106. 073306.
- 9. Wang B., Sun B., Zhu X., Yan Z., Lui Y., Lui H., Lui Q. // Hydrogen Energy. 2016. 41. C. 7280.
- 10. *Sun B., Zhao X., Xin Y., Zhu X.* // Int. J. of Hydrogen Energy. 2017. 42. 24047.
- 11. Скоробогатов Г.А., Крылов А.А., Москвин А.Л. и др. // Химия высоких энергий. 2016. Т. 50. С. 429.
- 12. Averin K.A., Lebedev Yu.A., Shakhatov V.A. // Plasma Phys. Reports. 2018. 44. C. 110.
- Lebedev Yu.A., Averin K.A. // J. Phys. D: Appl. Phys. 2018. 51. 214005.