———— РАДИАЦИОННАЯ ХИМИЯ ———

УДК 544.54

ВЛИЯНИЕ КИПЕНИЯ НА РАДИОЛИЗ 1-ПРОПАНОЛА

© 2019 г. А. В. Пономарев^{*a*, *, С. И. Власов^{*a*}, Е. М. Холодкова^{*a*}}

^аФГБУН Институт физической химии и электрохимии им. А.Н.Фрумкина Российской Академии наук 119071, Москва, Ленинский просп., 31, корп. 4, Россия

> **E-mail: ponomarev@ipc.rssi.ru* Поступила в редакцию 21.01.2019 г. После доработки 21.01.2019 г. Принята к публикации 18.02.2019 г.

Исследован радиолиз 1-пропанола без нагрева и в кипящем состоянии под действием ускоренных электронов (8 МэВ). При комнатной температуре среди молекулярных продуктов доминируют альдегиды. В отличие от γ -радиолиза, второй по значимости фракцией являются одноатомные спирты. В кипящем 1-пропаноле выходы образования альдегидов, одноатомных спиртов и диолов примерно одинаковы. Кипение увеличивает массовую долю продуктов, которые тяжелее 1-пропанола, до 74%, тогда как при комнатной температуре эта доля была 57%. Как следует из анализа продуктов, кипение ускоряет диссоциацию радикалов и катион-радикалов, облегчает радикальные процессы обмена и комбинации. Выход убыли 1-пропанола составляет 10.1 ± 0.9 при комнатной температуре и 13.3 ± 0.9 молек/100 эВ в кипящем состоянии.

Ключевые слова: ускоренные электроны, н-пропанол, кипение, радикал-молекулярные реакции, бирадикальные реакции, выход разложения

DOI: 10.1134/S0023119319040119

введение

1-Пропанол — типичный представитель алифатических одноатомных спиртов, широко применяемых в органическом синтезе и в радиационнохимических исследованиях [1–5]. По сравнению с другими C_1 – C_3 спиртами, 1-пропанол обладает более низкой точкой плавления (–127°С), большей плотностью (0.8 г/см³), более высокой температурой кипения (97.4°С) и весьма высоким октановым числом (118), что нередко предопределяет выбор 1-пропанола в качестве растворителя и синтетической среды.

Выход ионизации 1-пропанола составляет около 4.4 1/100 эВ [6]. Соответственно, ионные процессы играют ключевую роль в превращениях 1-пропанола на начальных стадиях радиолиза (рис. 1). Они вносят основной вклад в разрывы С-Н связей, порождая пропаналь, пропокси-радикалы и значительную фракцию гидроксипропильных радикалов. Гомолитические разрывы С-С и С-О связей в 1-пропаноле вызваны преимущественно распадом возбужденных состояний, возникающих либо посредством прямой передачи энергии от налетающего электрона, либо в результате геминальной нейтрализации ионов [7, 8]. Ионные процессы завершаются намного быстрее, чем радикальные реакции и, соответственно, меньше зависят от условий облучения. В свою очередь, именно реакции обмена, диспропорционирования и комбинации радикалов определяют разнообразие конечных молекулярных продуктов радиолиза. В процессе облучения в 1-пропаноле образуются 11 типов первичных радикалов, которые относятся к числу наиболее реакционно-способных интермедиатов, контролирующих радиолиз множества органических соединений.

Сведения о конечных продуктах радиолиза 1-пропанола весьма малочисленны и противоречивы. Выход радиолитической убыли 1-пропанола – 8.6 молек/100 эВ – и выходы разрыва связей оценивались из результатов γ-радиолиза [7, 9], где единственным продуктом комбинации спиртовых радикалов считался 3,4-гександиол. Очевидно, заниженное значение выхода разложения спирта обусловлено, прежде всего, недостаточной информацией о продуктах комбинации радикалов [7].

Настоящая работа посвящена определению полного состава конечных продуктов радиолиза 1-пропанола и выявлению изменений радикальных процессов в условиях кипения, когда обеспечивается эффективное перемешивание облучаемой системы, ослабляется межмолекулярное притяжение, и разрушаются водородные связи. Радиолиз кипящего вещества может служить моделью ядерно-химических, астрохимических и геохимиче-

Рис. 1. Главные ионные процессы в облучаемом 1-пропаноле (в реакциях псевдо-первого порядка обозначен как М).

ских процессов, а также информационной основой для совершенствования безопасности радиохимических и радиационно-химических производств, для оптимизации органического синтеза, где реализуются аналогичные радикальные и ионные процессы, а кипячение служит обычным приемом.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

1-Пропанол (от РЕАХИМ) очищали посредством осушки с $CaSO_4$, кипячением с 2,4-динитрофенилгидразином и последующей трехкратной перегонкой в атмосфере аргона с отбором средней фракции. По данным ИК спектроскопии и хроматографии содержание остаточных примесей в очищенном спирте не превышало 0.05 мас. %. Непосредственно перед облучением образцы продували очищенным аргоном в течение 40–45 мин. Одноатомные спирты, диолы, эфиры и карбонильные соединения (от Sigma-Aldrich и Reachem, 5–8 соединений из каждой гомологической группы) использовались как образцы сравнения для количественного хроматографического анализа облученного 1-пропанола.

Источником излучения служил линейный ускоритель УЭЛВ10-10Т (энергия электронов 8 МэВ; длительность импульса 6 мкс; частота повторения импульсов 300 Гц; средний ток пучка 600 мкА; ширина развертки 245 мм; частота сканирования 1 Гц). Образцы облучались при $16 \pm 2^{\circ}$ С (режим XO) и в состоянии кипения при 97-98°C (режим РК). Облучение проводилось с использованием лабораторной установки [10] в аргоне при атмосферном давлении. Объем образца составлял 35−40 мл (степень заполнения реактора $\approx 60\%$). Непосредственно перед облучением в режиме РК спирт нагревали до устойчивого пузырькового кипения. Мощность поглощенной дозы составляла 5-7 кГр/мин. Для дозиметрии использовали пленочный дозиметр СО ПД(Ф)Р-5/50 (ГСО 7865-2000).

Анализ состава образцов выполнялся сразу после завершения облучения с помощью хроматомасс-спектрометра (Agilent 5977EMSD/7820AGC; носитель – гелий, колонка – стеклянная капиллярная, длиной 60 м с внутренним диаметром 0.25 мкм) и хроматографа Биохром-1 (определение Н₂ и других газов; катарометр в качестве детектора; аргон как газ-носитель; 3-м колонка из нержавеющей стали, наполненная молекулярным ситом 13Х, 80-110 меш; внутренний диаметр 2 мм). Идентификация молекулярных продуктов осуществлялась с помощью библиотеки массспектров NIST. Ионный ток, соответствующий каждому хроматографическому пику, анализировался посредством программы AMDIS software (Automated Mass Spectral Deconvolution and Identification System) для выявления и идентификации перекрывающихся пиков.

Радиационно-химические выходы G, приводимые в тексте, выражены в единицах молекула/100 эВ, что соответствует 0.1036 мкмоль/Дж. Выходы определялись для продуктов первого поколения на начальном участке кривых их накопления путем экстраполяции к нулевой дозе. Экспериментальные данные усреднялись по результатам 5–7 независимых облучений при каждой дозе в каждом режиме.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

К рассматриваемым молекулярным продуктам первого поколения относятся соединения, кривые накопления которых не имеют индукционного периода и которые, соответственно, образуются в элементарных реакциях непосредственно из первичных ионных и радикальных интермедиатов (в том числе, интермедиатов, претерпевших термализацию, сольватацию и трансформацию при мгновенном обмене радикалов). Радиолиз 1-пропанола в обоих режимах генерирует около 40 таких первичных молекулярных продуктов. С

Рис. 2. Распределение продуктов радиолиза в зависимости от их молекулярной массы в режимах ХО и РК.

наибольшими радиационно-химическими выходами образуются продукты фрагментации, чья молекулярная масса меньше, чем у 1-пропанола (74 и 64 мол. % в режимах ХО и РК соответственно). Однако совокупная масса более тяжелых продуктов оказывается выше, чем у продуктов фрагментации – 57 и 74 мас. % соответственно. Распределение продуктов, показанное на рис. 2, выявляет доминирование фракций с молекулярными массами (*M*) 58, 88 и 118, которые относятся к пропаналю, одноатомным спиртам и диолам соответственно. В режиме ХО наиболее весома фракция пропаналя (M = 58), тогда как в режиме КР эта фракция сравнительно невелика, а наибольшую массовую долю приобретают продукты комбинации с *М* 88 и 118.

В процессе радиолиза, при распаде возбужденных молекул, возможен гомолитический разрыв любой из связей в 1-пропаноле с образованием 11 радикалов. Вероятно образование пяти гидроксиалкильных радикалов: при разрыве С–Н связей, наряду с H, образуются α -, β - и γ -гидроксипропильные радикалы, а при разрыве С-С связей – α-гидроксиметильный и β-гидроксиэтильный радикалы. Разрывы С-С связей также порождают два алкильных радикала, метильный и этильный, а при разрыве С-О связи возникают пропил-радикал и ОН. В свою очередь разрыв О-Н связи может образовывать пропокси-радикал. Для радикалов H, OH и CH₃ наиболее характерно взаимодействие с растворителем – отрыв Н с образованием H_2 , H_2O и CH_4 соответственно [7]. Алкокси-радикал также способен абстрагировать водород от 1-пропанола, быстро превращаясь в гидроксиалкильный радикал [8]

$$\sim 0^{\circ} + C_3H_7OH \rightarrow C_3H_7OH + \sim OH_{\circ}(1)$$

Остальные радикалы, по-видимому, гибнут преимущественно в процессах комбинации и

Рис. 3. Начальные радиационно-химические выходы фракций в режимах ХО и РК.

диспропорционирования. Конечные молекулярные продукты первого поколения можно подразделить на пять групп: диолы, одноатомные спирты, альдегиды, углеводороды и пропокси-производные (рис. 3, табл. 1).

Диолы являются продуктами комбинации гидроксиалкильных радикалов. Формально можно предсказать образование 14 различных диолов. Вместе с тем, только у пяти диолов $G \ge 0.1$ (табл. 1). Следует отметить, что вклад β -гидроксипропильного радикала в образование диолов, включая 2-метил-1,3-пентандиол и димер 2,3-диметил-1,4-бутандиол, в XO режиме довольно мал – 0.16, но в режиме РК он возрастает до 0.53. При этом выход димера остается невысоким – около 0.01 и 0.06 соответственно. Вероятно, комбинация с участием β -гидроксипропильного радикала в XO режиме затруднена из-за стерических ограничений, тогда как кипящее состояние ослабляет эти ограничения.

С другой стороны, комбинация β-гидроксипропильных радикалов с алкильными радикалами в обоих режимах происходит легче, чем с гидроксиалкильными радикалами. Например, в XO режиме образуются 2-метил-1-бутанол и 2-ме-

Продукт	ХО	РК	Продукт	XO	РК
Диолы			Углеводороды		
3,4-Гександиол	1.17	1.91	Метан	0.87	0.84
1,2-Этандиол	0.16	0.08	Этан	0.54	0.33
1,2-Бутандиол	0.09	0.23	Бутан	0.17	0.08
2-Метил-1,3-пентандиол	0.05	0.34	Пентан	0.07	0.08
1,4-Бутандиол	0.03	0.10	Пропан	0.06	0.01
Одноатомные спирты			Альдегиды		
3-Пентанол	1.01	1.61	Пропаналь	2.96	2.22
Этанол	0.54	0.10	Метаналь	0.85	1.04
2-Метил-1-бутанол	0.44	0.80	Этаналь	0.43	0.02
3-Гексанол	0.22	0.26	Пропокси-производные		
Метанол	0.22	0.25			
2-Метил-1-пентанол	0.09	0.26	Этоксипропан	0.14	0.15
1-Пентанол	0.05	0.10	1-Пропокси-1-метанол	0.12	0.14
Другие					
Водород	4.90	6.07	Вода	0.45	0.91

Таблица 1. Начальные радиационно-химические выходы основных продуктов радиолиза 1-пропанола при комнатной температуре (режим XO) и в кипящем состоянии (режим PK), молекул/100 эВ (±7%)

тил-1-пентанол с общим выходом около 0.5, что в 3 раза выше выхода соответствующих диолов. В свою очередь, в РК режиме выход спиртов, производных от β -гидроксипропильного радикала, составляет около 1.1. Суммарный выход одноатомных спиртов в ХО и РК режимах составляет 2.6 \pm 0.3 и 3.4 \pm 0.3 соответственно. Причем большая часть этих выходов относятся к спиртам, более тяжелым, чем 1-пропанол – 1.9 \pm 0.2 и 3.1 \pm 0.3 соответственно. Тяжелые спирты образуются преимущественно с участием этильного и пропильного радикалов.

Гидроксиметильный и β-гидроксиэтильный радикалы, по-видимому, являются предшественниками легких спиртов, метанола и этанола соответственно. Этанол образуется преимущественно в результате диспропорционирования, тогда как существенная часть метанола может возникать в процессе радикального обмена

$$2 OH + C_3 H_7 OH \longrightarrow OH + OH.$$
 (2)

В частности, снижение выхода легких спиртов и увеличение выхода тяжелых спиртов может указывать на снижение относительной роли реакций диспропорционирования в режиме PK.

Данные табл. 1 свидетельствуют, что связи C(1)—Н и C(1)—C(2) в 1-пропаноле наиболее подвержены радиолитическому расщеплению. Кипящее состояние увеличивает общий выход диолов в

ХИМИЯ ВЫСОКИХ ЭНЕРГИЙ том 53 № 4 2019

1.7 раза, прежде всего, за счет повышения выхода гександиолов. Такой эффект может свидетельствовать о повышении выхода разрыва С–Н связей и, с другой стороны, о более благоприятных условиях для комбинации гидроксипропильных радикалов. В свою очередь, интенсификация разрыва С(1)-С(2) и С(2)-С(3) связей в режиме РК подтверждается увеличением выхода 1.2-бутандиола и 1,4-бутандиола. В отличие от других диолов, режим РК уменьшает выход 1,2-этандиола (табл. 1), который, в случае радиолиза метанола образуется при димеризации гидроксиметильных радикалов [7, 8]. Очевидно, такая димеризация в 1-пропаноле ослаблена из-за относительно низкого выхода гидроксиметильных радикалов и их участия в нескольких конкурентных реакциях.

Среди продуктов радиолиза имеются пропоксипроизводные, чьи суммарные выходы в режимах ХО и РК составляет 0.45 и 0.50 соответственно. Алкильные радикалы участвуют в образовании пропоксиметана, пропоксиэтана и пропоксипропана. Одновременно возникают пропокси-спирты — 1-пропокси-1-метанол, 2-пропокси-1-этанол и 3-пропокси-1-пропанол. Начальный выход пропокси-радикалов в 1-пропаноле составляет около 1.1 [11], но большинство из них гибнут еще на стадии негомогенных реакций в шпорах (треках) [8] — в том числе, в реакции (1) и при взаимодействии с сольватированным электроном. В 1-пропаноле почти 2/3 сольватированных электронов исчезают внутри шпор [6]. Вероятно, наблюдаемые пропокси-производные также образуются в шпорах. Радиолиз спиртов порождает преимущественно мульти-парные шпоры, т.е. шпоры, содержащие продукты двух и более ионизаций или возбуждений [12—14]. Соответственно, одновременное пребывание пропокси-радикала и какоголибо другого радикала в шпоре является весьма вероятным, обеспечивая возможность их комбинации. Общие выходы пропокси-производных в 1-пропаноле не зависят от режима облучения, что также может указывать на их быстрое образование во внутритрековых процессах.

Метаналь, этаналь и пропаналь являются единственными представителями альдегидов в облученном 1-пропаноле. Выход пропаналя при комнатной температуре выше, чем других продуктов радиолиза, за исключением водорода. Источниками метаналя могут являться распад возбужденных молекул и диспропорционирование гидроксиметильного радикала при взаимодействии с другими радикалами. В случае радиолиза метанола, гидроксиметильные радикалы представляют собой единственный продукт расщепления С–Н связей. Будучи наиболее долгоживушими интермедиатами, они, главным образом, димеризуются, тогда как метаналь формируется преимущественно в результате диссоциации возбужденных молекул и ионов [7, 15]. В свою очередь в 1-пропаноле в режиме РК, выход образования метаналя возрастает по сравнению с режимом ХО. Но выход 1,2-этандиола уменьшается, а выход метанола остается почти неизменным. Такой эффект может быть связан с термостимулируемой диссоциацией гидроксиметильного радикала [10, 16]

$$OH \longrightarrow O + \dot{H},$$
 (3)

которая ведет к росту выхода гидроксипропильных радикалов вследствие реакции атомарного водорода с 1-пропанолом (Н-отрыв). Вместе с тем, гидроксиметильные радикалы частично избегают диссоциации и, потому, участвуют в образовании 1,2-этандиола, 1,2-бутандиола и метанола.

Кипящее состояние 1-пропанола препятствует образованию этаналя (табл. 1), тогда как в режиме XO выход этаналя составляет около 0.43. Скорее всего, кипящее состояние способствует ускорению реакции β-гидроксиэтильного радикала с 1-пропанолом (Н-отрыв), также как ускорению его комбинации с другими радикалами.

Наиболее вероятными источниками пропаналя являются нейтрализация ионов (рис. 1), диспропорционирование гидроксипропильных радикалов, а также распад возбужденных молекул. Более низкий выход пропаналя в режиме РК может указывать на снижение роли диспропорционирования. В кипящем 1-пропаноле, когда водородные связи отсутствуют и процессы конформационной

Рис. 4. Начальные выходы разрыва химических связей при радиолизе 1-пропанола в ХО и РК режимах.

релаксации ускоряются, переходный комплекс, образуемый рекомбинирующими радикалами, вероятно, легче стабилизируется в форме димера. Соответственно, димеризация в режиме РК становится выгоднее, чем диспропорционирование. В частности, такое явление подтверждается общим увеличением выхода продуктов комбинации по сравнению с продуктами диспропорционирования в кипящем 1-пропаноле (рис. 2 и 3).

Оцененные выходы расщепления связей в режимах ХО и РК показаны на рис. 4. Химическое строение продуктов радикальной комбинации и длина молекулярного скелета легких продуктов дают ясное представление о предшествующих им радикалах и, соответственно, о разрыве связей. Выход разрыва О—Н связи, приведенный на рис. 4, учитывает наблюдаемый выход формирования пропокси-производных, а также выход пропаналя, поскольку структура последнего формально соответствует разрыву двух связей, С(1)—Н и О–Н. Рис. 4 показывает, что связи С(1)–С(2) и С(1)–Н являются наиболее подверженными радиолитическому разрыву в 1-пропаноле. Оба режима облучения приводят к расщеплению С–Н связей вдвое чаще, чем С–С связей.

Увеличение наблюдаемого выхода H₂ (табл. 1) в режиме РК указывает на возможность дополнительного образования Н в результате термической диссоциации радикалов, подобно реакции (3). Следствием такой диссоциации является увеличение выхода гидроксипропильных радикалов и, тем самым, увеличение выходов продуктов их комбинации, таких как одноатомные и двухатомные спирты. Вероятно, кипение способствует ускорению обмена радикалов. Более того, некоторые более крупные радикалы, например этильные и гидроксиметильные, могут вовлекаться в радикальный обмен в кипящем 1-пропаноле, как это наблюдалось в кипящем диглиме [10]. Также вероятно, что следствием высокой температуры и состояния кипения может являться дополнительная диссоциация первичных ионов 1-пропанола и, тем самым, увеличение выхода фрагментарных радикалов, таких как H, OH, CH₃ и C_2H_5 .

Несомненно, из-за реакций обмена радикалов, выход деградации спирта G(-PrOH) может быть выше суммы выходов первичного разрыва связей, обусловленного ионизацией и возбуждением. Эффективный выход радиолитической деградации 1-пропанола G(-PrOH) может быть оценен на основе выходов конечных молекулярных продуктов. Формула [7], предложенная на основе анализа механизма γ -радиолиза, включает четыре слагаемых, но с разными коэффициентами:

$$G(-\text{PrOH}) = \frac{1}{3}(6G_1 + 3G_2 + 2G_3 + G_4), \quad (4)$$

где G_1 – выход 3,4-гександиола; G_2 – сумма выходов пропана, пропилена и пропаналя; G₃ – сумма выходов этана, этилена и этаналя; G_4 – сумма выходов метана и метаналя. Рассчитанная таким образом G(-PrOH) величина в случае у-радиолиза при комнатной температуре составляет 8.6. Из-за нехватки информации о продуктах радикальной комбинации, формула учитывает выход лишь одного тяжелого первичного продукта, 3,4-гександииола (G_2). Соответственно, отмечено [7], что формула (4) может давать заниженное значение *G*(–PrOH). Выходы легких (без учета водорода) и тяжелых продуктов у-радиолиза при комнатной температуре [7, 9], составляют 8.2 и 1.5 соответственно. В настоящей работе обнаружено, что общий выход продуктов фрагментации и диспропорционирования в режиме XO составляет 6.5 ± 0.7 , а выход продуктов синтеза 4.4 ± 0.4 молек/100 эВ. Более того, выход 3,4-гександиола почти в 4 раза ниже общего выхода продуктов радикальной комбинации. В свою очередь, в режиме РК выходы легких и тяжелых продуктов составляют 5.7 ± 0.6 и 6.8 ± 0.6 , соответственно, а выход 3,4-гександиола составляет лишь около 28% от суммы выходов тяжелых продуктов. Таким образом, несомненно,

что все продукты комбинации должны учитываться при оценке выхода разложения 1-пропанола. Соответственно, анализ выходов продуктов в режиме ХО показывает, что G(-PrOH) составляет 10.1 ± 0.9 молек/100 эВ, тогда как в режиме РК общий выход деградации спирта составляет 13.3 ± 0.9 молек/100 эВ.

При дозах \approx 50 кГр и выше в кипящем 1-пропаноле обнаруживаются измеримые количества вторичных высокомолекулярных продуктов, которые, очевидно, возникают вследствие присоединения радикалов к альдегидам. В результате такого присоединения образуются укрупненные алкокси-радикалы, способные отрывать Н от молекул спирта. Кипящее состояние ускоряет образование алкокси-радикалов и, тем самым, облегчает синтез высокомолекулярных соединений и обеспечивает цепное разложение 1-пропанола. При дозах выше 100 кГр выход деградации 1-пропанола *G*(-PrOH) становится выше 20.

ЗАКЛЮЧЕНИЕ

При радиолизе 1-пропанола реализуются разрывы любой из его связей. Как и в случае у-радиолиза, связи С(1)-С(2) и С(1)-Н являются наиболее подверженными радиолитическому разрыву. В отличие от γ-радиолиза, электронный пучок генерирует более высокую мощность дозы и, как следствие, порождает более высокую скорость радикальной рекомбинации. Следствием этого являются высокие выходы образования одноатомных и двухатомных спиртов и пониженные выходы альдегидов и углеводородов. Небольшая фракция продуктов (до $G \approx 0.5$) представлена простыми эфирами, которые, вероятно, образуются в результате внутритрековой негомогенной комбинации пропокси-радикалов с другими первичными радикалами.

По сравнению с радиолизом при комнатной температуре, состояние кипения существенно увеличивает выходы водорода и продуктов радикальной комбинации. Общий выход продуктов синтеза, которые тяжелее, чем 1-пропанол, возрастает в 1.6 раза. В свою очередь, выход продуктов фрагментации и диспропорционирования уменьшается примерно в 1.2 раза.

Повышение выхода продуктов радикальной комбинации в кипящем 1-пропаноле проистекает из нескольких процессов. Увеличенные выходы молекулярного водорода и продуктов комбинации гидроксипропильных радикалов указывает на появление дополнительного атомарного водорода вследствие термической диссоциации радикалов и катион-радикалов. Однако прирост выхода продуктов комбинации гидроксипропильных радикалов в кипящем 1-пропаноле выше, чем прирост выхода молекулярного водорода. Этот эффект может иметь место вследствие ускорения реакций обмена радикалов, поскольку большее число радикалов приобретает способность отрывать Н от молекул 1-пропанола. Существенное увеличение общего выхода тяжелых продуктов и уменьшение выхода легких продуктов свидетельствует о благоприятном влиянии кипения на радикальную комбинацию. Чем тяжелее синтезируемый спирт или диол, тем больше приращение его выхода в условиях кипения. Вероятно, кипящее состояние ослабляет стерические ограничения и ускоряет структурную релаксацию переходных комплексов, образуемых комбинирующими радикалами.

Настоящая работа выполнено в рамках государственной темы AAAA-A16-116121410087-6 с помощью оборудования, предоставленного Центром коллективного пользования физическими методами исследования ИФХЭ РАН.

СПИСОК ЛИТЕРАТУРЫ

- Singh A., Rath M.C. // Radiat. Phys. Chem. 2018. V. 152. P. 49–55.
- 2. *Rath M.C., Keny S.J., Naik D.B.* // Radiat. Phys. Chem. 2016. V. 126. P. 85–89.
- Alam M., Rao B.S., Janata E. // Radiat. Phys. Chem. 2003. V. 67. P. 723–728.

- Han Z., Katsumura Y., Lin M., He H., Muroya Y., Kudo H. // Radiat. Phys. Chem. 2008. V. 77. P. 409–415.
- Hilczer M., Steblecka M. // Radiat. Phys. Chem. 2003. V. 67. P. 263–268.
- 6. Пономарев А.В., Пикаев А.К. // Химия высоких энергий. 1986. Т. 20. № 3. С. 215–220.
- Freeman G. The radiolysis of alcohols, in: Haissinsky M. (Ed.), Actions Chimiques et Biologiques Des Radiations. Masson et Cie, Paris. 1970. P. 73–134.
- 8. *Woods R., Pikaev A.* Applied Radiation Chemistry. Radiation Processing. Wiley, N.Y. 1994.
- 9. Basson R.A., van der Linde H.J. // J. Chem. Soc. A Inorganic, Phys. Theor. 1969. P. 1618.
- 10. Власов С. И., Холодкова Е. М., Пономарев А. В. // Химия высоких энергий. 2018. Т. 52. № 4. С. 293– 300.
- Белевский В.Н. // Химия высоких энергий. 1981. Т. 15. С. 3–25.
- Бугаенко В.Л., Бяков В.М., Гришкин В.Л., Пикаев А.К., Пономарев А.В. // Докл. АН СССР. 1987. Т. 295. № 5. С. 1148–1152.
- 13. Пономарев А.В., Макаров И.Е., Пикаев А.К. // Химия высоких энергий. 1991. Т. 25. № 4. С. 311–317.
- 14. *Pimblott S.M., LaVerne J.A.* // Radiat. Phys. Chem. 2007. V. 76. P. 1244–1247.
- 15. Baxendale J.H., Wardman P. // NSRDS-NBS. 1975. V. 54. P. 1–26.
- 16. *Feldman V., Sukhov F., Orlov A., Tyulpina I. //* Phys. Chem. Chem. Phys. 2003. V. 5. P. 1769–1774.