_____ РАДИАЦИОННАЯ ____ ХИМИЯ ____

УДК 539.12.04+621.314.2+621.315.61+541.14

ИЗМЕНЕНИЯ ЭКСПЛУАТАЦИОННЫХ ХАРАКТЕРИСТИК ТРАНСФОРМАТОРНОГО МАСЛА ПОД ДЕЙСТВИЕМ ИОНИЗИРУЮЩЕГО ИЗЛУЧЕНИЯ

© 2019 г. З. И. Искендерова^{а, *}, М. А. Курбанов^а

^аИнститут Радиационных Проблем Национальной АН Азербайджан, г. Баку, AZ1143 Азербайджан

**E-mail: zenfira_iskenderova@mail.ru* Поступила в редакцию 19.02.2019 г. После доработки 10.06.2019 г. Принята к публикации 20.06.2019 г.

В данной работе исследованы изменения физико-химических параметров, как удельное сопротивление, вязкость, плотность и образование газообразных продуктов H₂, CH₄, C₂H₄, C₂H₆, C₃H₈, C₄H₁₀, C₅H₁₂, C₆H₁₄ в зависимости от поглощенной дозы в интервале (29.7–237.6) кГр. Установлено, что при воздействии γ - излучения на трансформаторное масло происходит изменение химического состава, что сопровождается изменением удельного сопротивления, вязкости и плотности масла. Степень превращения зависит от поглощенной дозы и растет с ее ростом. В ИК спектрах наблюдаются валентные колебания =C–H, плоскостные деформационные колебания –C=C и внеплоскостные деформационные колебания –C-H и деформационные колебания –C-CH₃ (антисимметричных и симметричных) в алканах. Установлено, что ИК спектры поглощения наблюдаются в диапазоне $\Delta\lambda_1 = 2800-3300 \text{ см}^{-1}$, $\Delta\lambda_2 = 2000 \text{ см}^{-1}$, $\Delta\lambda_3 = 1350-1450 \text{ см}^{-1}$ и $\Delta\lambda_4 = 600-1200 \text{ см}^{-1}$. Полоса поглощения $\Delta\lambda_4 = 600-1200 \text{ см}^{-1}$ представляет собой размытую часть спектра, включающую ряд слабых полос поглощения.

Ключевые слова: радиационная стойкость, трансформаторное масло, γ-излучения, радиационно-химические выходы, плотность, вязкость, удельное сопротивление, ИК-спектроскопия **DOI:** 10.1134/S0023119319060081

введение

Силовые трансформаторы широко используются в энергетическом секторе, в частности в атомной энергетике. В последнем случае возникает необходимость изучения радиационной стойкости трансформаторного масла.

Проблемы, связанные с радиационной стойкостью материалов электрического оборудования, возникающие в результате различных аварийных ситуациях, исследуются во многих работах, посвященных определению работоспособности различных узлов и агрегатов атомных электростанций [1]. Изучение этих проблем особенно актуально после аварии на Чернобыльской АЭС в 1986 г., после которой был идентифицирован ряд аварий с уровнем больше INES 4 (International Nuclear Events Scale) [2].

Находящаяся в Кавказском регионе Армянская АЭС периодически ремонтируется с целью устранения результатов аварийных ситуаций.

В работах [3-5] исследованы наиболее функционально значимые комплектующие материалы и электрооборудование – трансформаторное масло и электроизоляционный картон, с целью определения возможного снижения надежности, в частности трансформаторов, в результате аварийного облучения. Эксперименты проводились на гамма-установке ГУ-200 при мощности дозы 0.25-9.4 Р/с и дозы от 10^4 до 2 × 10^5 Р. Использовалось масло марки ГК, содержащее ~90% парафино-нафтеновых и ~10% ароматических углеводородов. Исследованы ИК спектры необлученного и облученного масел дозами 10⁶ и 10⁷ Р. Кроме того, изучено изменение напряжения зажигания и электрической прочности масла от напряжения полных грозовых импульсов положительной и отрицательной полярности при разных дозах облучения. Результаты показывают протекание разрушающих процессов, которые при дозах 10⁶ и 107 Р приводят к изменению характеристик этих материалов.

Рис. 1. Кинетические кривые образования газообразных продуктов радиолиза трансформаторного масла в зависимости от поглощенной дозы. $I - H_2 \cdot 10^{18}, 2 - CH_4 \cdot 10^{17}, 3 - C_2H_4 \cdot 10^{17}, 4 - C_2H_6 \cdot 10^{17}, 5 - C_3H_7 \cdot 10^{14}, 6 - C_4H_8 \cdot 10^{14}$.

Целью данной работы является изучение радиационной стойкости трансформаторного масла при воздействии γ -изучения. Исследованы изменения физико-химических параметров, как образование газообразных продуктов H₂, CH₄, C₂H₄, C₂H₆, C₃H₈, C₄H₁₀, C₅H₁₂, C₆H₁₄, плотности, вязкости и удельного сопротивления в зависимости от поглощенной дозы в интервале 29.7–237.6 кГр. Исследованы также ИК спектры поглощения образцов.

МЕТОДИКА ЭКСПЕРИМЕНТОВ

Облучение образцов масла проводилось под действием γ -излучения от изотопа ⁶⁰Со в статических условиях в стеклянных ампулах объемом 15 мл, содержащих 5 мл масла. Облучение проводилось при комнатной температуре. Мощность дозы определяли методом ферросульфатной дозиметрии, которая составляла 0.21 Гр/с.

Плотность трансформаторного масла определяли пикнометрическим методом по стандартной методике по ГОСТ 3900-85. Определение кинематической вязкости трансформаторского масла проводили по методике ГОСТ Р 53708-2009 при 50°С. Удельное сопротивление образцов трансформаторного масла измеряли согласно ГОСТ 6581-75. Анализ газообразных продуктов радиолиза трансформаторного масла проводили на газовом хроматографе марки Agilent Technologies-7890A с детекторами FID – углеводороды, TCD – окисли углерода (CO, CO₂).

ИК спектры регистрировались на Фурье-спектрометре марки Varion 640 IR в области волновых чисел $v = 3600 - 400 \text{ см}^{-1}$. Спектры образцов, облученных при разных дозах, получены при одина-

Рис. 2. Кинетические кривые образования продуктов радиолиза трансформаторного масла в зависимости от поглощенной дозы. *1* – H₂O₂, *2* – CO₂.

ковых условиях в виде тонких пленок между двумя пластинками из KRS-5. Рассчитаны относительные интенсивности $(J_{\text{макс}}/J_0)$ полос поглощения и получены их дозовые зависимости, где J_0 и J интенсивности полос поглощения необлученных и γ -облученных образцов соответственно.

РЕЗУЛЬТАТЫ

На рис. 1 приведены кинетические кривые образования H_2 , CH_4 , C_2H_4 и C_2H_6 в зависимости от поглощенной дозы.

Как видно, все кинетические кривые характеризуются индукционным периодом до поглощенной дозы 60 кГр. После 60 кГр повышение дозы приводит к резкому увеличению скорости образования этих продуктов. Наиболее высокая скорость наблюдается для образования H₂. Последовательность значений скоростей наблюдается как $w(H_2) > w(CH_4) > w(C_2H_4) > w(C_2H_6)$. Индукционный период наблюдается также для образования углеводородов ΣC_3 , ΣC_4 . Более тяжелые продукты C_5 , C_6 образуются при больших дозах и идентифицируются только при дозах ≥ 70 кГр, причем скорость образования углеводородов C_6 больше, чем скорость образования C_5 .

Кроме углеводородов наблюдается также образование окислительных продуктов, таких как перекись водорода и двуокись углерода.

На рис. 2 приведены кинетические кривые образования H_2O_2 и CO_2 в зависимости от поглощенной дозы.

Как видно, в обоих кривых наблюдаются максимумы концентраций при дозах 20–30 кГр. Дальнейший рост дозы приводит к уменьшению их концентрации. Скорость образования и максимальные концентрации намного больше для перекиси водорода (~5–6 раза). Радиационно-химические выходы образования H_2O_2 и CO₂, равны соответственно 3.6 и 0.18 молек/100 эВ.

Полученные результаты показывают на деструкции трансформаторного масла в изученном интервале поглощенной дозы.

Естественно предположить, что эти изменения будут приводить к изменению других физико-химических величин. В табл. 1 приведены значения плотности и вязкости отработанного трансформаторного масла, облученного при дозах 29.7—237.6 кГр.

Как видно из табл. 1, плотность масла уменьшается с повышением дозы от 0.86 до 0.6 г/см³ при 60 кГр, а затем остается постоянной в интервале 60-237 кГр.

Зависимость вязкости от поглощенной дозы носит легко экстремальный характер — с повышением дозы вязкость увеличивается, но при дозах больше 30 кГр наблюдается падение значения от 6.2 до 5.7 мм²/с.

С повышением дозы наблюдается также уменьшение удельного сопротивления и увеличение электропроводности, что может быть связано с протеканием процессов деструкции и образования окислительных продуктов и продуктов с относительно высокой подвижностью (рис. 3).

Как видно, с повышением температуры удельное сопротивление масла уменьшается. На рис. 4 приведены ИК спектры поглощения трансформаторного масла. Из рис. 4 (*I*) видно, что ИК спектры поглощения наблюдаются в диапазоне $\Delta\lambda_1 = 2800-3300 \text{ см}^{-1}, \Delta\lambda_2 = 2000 \text{ см}^{-1}, \Delta\lambda_3 = 1350-1450 \text{ см}^{-1}$ и $\Delta\lambda_4 = 600-1200 \text{ см}^{-1}$. Полосы поглощения в области $\Delta\lambda_1, \Delta\lambda_2, \Delta\lambda_3$, довольно четко отсчитываются. На рис. 4 (*2*–5) показаны спектры поглощения образцов, облученных при дозах 4–136.8 кГр. Как видно, во всех областях поглощения наблюдается изменение интенсивности полос с ростом дозы, причем характер изменения зависит от типа компонентов.

Полоса поглощения $\Delta\lambda_4 = 600 - 1200 \text{ см}^{-1}$ представляет собой размытую часть спектра, включающую ряд слабых полос поглощения [6]. Идентифицированные полосы поглощения приведены в табл. 2. Как видно, в спектрах наблюдаются валентные колебания =C-H, плоскостные деформационные колебания -C=C и внеплоскостные деформационные колебания -CH ароматических соединений. Кроме того, наблюдаются валентные колебания - C-H и деформационные колебания - C-H и деформационные колебания и симетричных и симетричных) в алканах.

ХИМИЯ ВЫСОКИХ ЭНЕРГИЙ том 53 № 6 2019

Таблица 1. Зависимость плотности (ρ) и вязкости (ν) трансформаторного масла от поглощенной дозы в интервале 29.7–237.6 кГр

Доза	кГр						
	0	29.7	59.4	95	178.2	237.6	
ρ, г/см ³	0.86	0.66	0.59	0.6	0.6	0.6	
ν, мм ² /с	5.42	6.52	6.24	5.69	5.96	5.73	

На рис. 5 приведено изменение интенсивности полос $J_{\text{макс}}/J_0$ зависимости от поглощенной дозы. Как видно, значение $J_{\text{макс}}/J_0$ для полос с $\lambda_{\text{макс}} = 3143 \text{ см}^{-1}$, 2068 см⁻¹ и 774 см⁻¹ уменьшается при начальных дозах (до 4 кГр), затем увеличивается с повышением дозы до 68.4 кГр. Дальнейший рост дозы приводит к уменьшению величины $J_{\text{макс}}/J_0$. Как указано выше, эти полосы поглощения характерны для ароматических углеводородов.

В отличие от ароматических углеводородов, интенсивности полос, характерных для алканов увеличиваются до дозы 68.4 кГр, затем уменьшаются с ростом дозы.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Трансформаторное масло имеет сложный углеводородный состав и содержит следующие основные компоненты: парафины 10-15%, нафтены или циклопарафины 60-70%, ароматические углеводороды 15-20%, асфальто-смолистые вещества 1-2%, сернистые соединения <1%, азотистые соединения <0.8%, нафтеновые кислоты <0.02%, антиокислительная присадка (ионол) <0.2-0.5% [7].

Рис. 3. Зависимость удельного сопротивления облученных образцов трансформаторного масла от температуры при дозе 240 кГр.

Рис. 4. ИК спектры поглощения трансформаторного масла облученных при разных дозах: 1 – исходное, 2 – 4.18, 3 – 27.48, 4 – 68.48, 5 – 136.8 кГр.

При облучении трансформаторного масла, энергия ионизирующего излучения поглощается пропорционально электронной доли каждого компонента. Поскольку основными компонентами масла являются алканы, циклоалканы и ароматические углеводороды, энергия непосредственно поглощается молекулами этих соединений.

При радиолизе такой сложной системы, из-за возможности передачи энергии электронного возбуждения и заряда изменяются спектры и вы-

N⁰	$\lambda_{{}_{\mathrm{Makc}}}$, см $^{-1}$, экспериментальные	$\lambda_{{}_{\mathrm{MAKC}}},$ см $^{-1}$ [8]	Колебания
1	3143	3030-3080	Валентные колебания =С–Н в ароматических соединениях
2	2956 2923 2853	2962 2926 2872 2853	Валентные колебания С–Н в алканах
3	2068 2048 2040 1984	2000-1600	Замещенные ароматические соединения в интервале 2000—1650 см ⁻¹
4	1605 Широкий размытый спектр	1600-1500	Плоскостные деформационные колебаний аромати- ческих соединений C=C
5	1462 1376	1450 1380—1370	Деформационные колебания в алканах С–СН ₃ (антисимметрические) и С–СН ₃ (симметрические)
6	774; 735; 774 и др. Широкий размытый спектр	770–730 760–690 810–750 770–715	Внеплоскостное деформационное колебание СН ароматических соединений

Таблица 2. Идентифицированные полосы поглощения

Рис. 5. Относительная интенсивность соответствующих полос поглощения при разных поглощенных дозах (4–136.8 кГр).

ходы продуктов радиолиза. Молекулы гексана (алканы), циклогексана, (циклоалканы) и бензола (ароматические углеводороды) имеют потенциал ионизации, соответственно 10.4, 9.9 и 9.2 эВ [8]. Сравнение потенциала ионизации показывает возможность передачи заряда от "материнских" ионов гексана и циклогексана к молекулам бензола. Молекулы бензола эффективно захватывают атомы водорода и углеводородных радикалов. Кроме того возможна передача электронного возбуждения от молекул алканов и циклоалканов к молекулам бензола, поскольку они имеют более высокоэнергетические электронные состояния, например, энергия синглетного состояния молекул гексана составляет 9.13 и 9.84 эВ. Протекающие химические процессы приводят к образованию газов и продуктов окисления. Образование перекиси водорода связано с наличием растворенного кислорода в масле. Согласно [9] при растворении воздуха в масле соотношение между входящими в состав воздуха газами изменяется. Так, воздух содержит по объему азота и кислорода, соответственно, 78% и 21%, а если он растворен в масле, то содержит по объему азота 69.8% и кислорода 30.2%.

ЗАКЛЮЧЕНИЕ

Проведенные исследования показали эффективное образование газообразных продуктов и продуктов окисления (H₂O₂) при воздействии радиации на трансформаторное масло. Кроме того, влияние облучения приводит к уменьшению плотности масла. В условиях экспериментов обнаружено слабое уменьшение удельного сопротивления, увеличение электропроводности.

СПИСОК ЛИТЕРАТУРЫ

- 1. www.theguardien.com/news/datablog/2011/mar/14/nuclear-power-plant-accidents-list-rank
- https://ru.wikipedia.org/wiki/ Список_радиационных_аварий#cite_note-1
- Tromnes A.П., Боев С.Г., Садовничий Д.Н., Голуб Е.А. // www.iaea.org/inis/collection/MCLcollection store/-publik/28/0761280776653.pdf
- Лизинов С.Д., Куцин Л.Г., Тютнев А.П., Случанко Л.К., Морозова Т.И. // www.iaea.org/inis/collection/MCL collection store/-publik/28/0761280776653.pdf
- 5. Курбанов М.А., Курбанов А.Г., Нуриев М.А., Алиева С.Н., Шафиева Ш.М. // Химические проблемы. 2009. № 4. С. 701.
- 6. *Беллами Л.Б.* // Инфракрасные спектры сложных молекул. М.: 1963. С. 590.
- Трансформаторное масло, основные характеристики. Применяемое оборудование и методы очистки масла. https://www.pro64.ru/ transformatornoe-maslo/
- 8. *Пщежецкий С.Я.* // Механизм и кинетика радиационно-химических реакций, М.: 1968. С. 368.
- 9. http://leg.co.ua/transformatori/teoriya/rastvorimostgazov-v-transformatornom-masle.html