——— ПЛАЗМОХИМИЯ ——

УДК 537.528

МИКРОВОЛНОВЫЙ РАЗРЯД В ЖИДКИХ УГЛЕВОДОРОДАХ: ИССЛЕДОВАНИЕ ЖИДКОГО УГЛЕВОДОРОДА ПОСЛЕ СОЗДАНИЯ В НЕМ РАЗРЯДА С БАРБОТИРОВАНИЕМ ВОЗДУХА

© 2020 г. К. А. Аверин^{*a*}, Р. С. Борисов^{*a*}, Ю. А. Лебедев^{*a*}, *

^аИнститут нефтехимического синтеза им. А.В. Топчиева РАН, Москва, 119991 Россия

**E-mail: lebedev@ips.ac.ru* Поступила в редакцию 01.11.2019 г. После доработки 01.11.2019 г. Принята к публикации 27.12.2019 г.

Методом хромато-масс-спектрометрии исследован состав жидких углеводородов (гексан, н-гептан, октан, изооктан, декан, бензол, толуол) после создания в их объеме микроволнового разряда при атмосферном давлении над поверхностью жидкости и барботировании воздуха. В состав углеводородов входит широкий набор продуктов вплоть до С40, причем в разных исходных углеводородах состав продуктов разный. Оптическая эмиссионная спектроскопия показала присутствие полос CN в спектрах излучения разряда.

Ключевые слова: СВЧ разряд в жидкостях, СВЧ плазма, разряд в углеводородах, оптическая эмиссионная спектроскопия плазмы, углеводороды, плазмохимическая обработка, хромато-масс-спектроскопия

DOI: 10.31857/S002311932003002X

введение

Разряды в жидкостях и в контакте с ней привлекают внимание исследователей новыми явлениями, происходящими в таких системах и многочисленными возможностями их применения. Они используются для синтеза наноматериалов, модификации поверхностей, разложения токсичных материалов, очистки воды и др. [1–6]. Для получения таких разрядов используются все известные типы электрических разрядов, но меньше всего данных по СВЧ разрядам [7–9].

Одной из проблем разрядов в жидкостях является установление того, возникает ли разряд при пробое газового пузыря, или пузырь образуется в результате пробоя жидкости [6]. Если говорить о СВЧ разрядах, в которых напряженность электрического поля не велика, предпочтительным является первый путь. Такие разряды обычно создаются с помощью различных антенных систем. При подаче СВЧ энергии конец антенны нагревается, жилкость в его окрестности испаряется и в образовавшемся газовом пузыре происходит пробой. В дальнейшем из-за нагрева газа плазмой объем пузыря увеличивается, он отрывается от антенны, всплывает и разряд в нем исчезает. Поскольку напряженность СВЧ поля падает при удалении от антенны, светящийся разряд наблюдается только у антенны. Газовые пузыри могут

создаваться введением дополнительного газа. Часто для этих целей используется аргон.

В разрядах в жидких углеводородах, продуктами является твердая углеродсодержащая фаза, газофазные продукты с преобладанием водорода, а также жидкая фаза после создания в ней разряда. Настоящая работа продолжает цикл исследований продуктов микроволнового разряда в жидких углеводородах, проводимых ранее авторами [10], в котором были исследованы твердые [11] и газовые продукты [12]. В работе [13] были изучены изменения в жидких углеводородах, после создания микроволнового разряда в объеме жидкости в присутствии аргона. В настоящей работе приводятся результаты сходных исследований, но газовый пузырь в объеме жидкости создавался барботированием воздуха через канал в антенне.

ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКИ И МЕТОДИКИ ИЗМЕРЕНИЙ

Эксперименты проводились на установке, подробно описанной в [12, 14]. Реактор представлял собой кварцевую камеру (диаметр 55 мм), помещенную в защитный экран. Установка построена по схеме, когда микроволновая энергия вводится в реактор с помощью коаксиальной линии и основной частью ее является волноводно-коаксиальный переход. Система канализации СВЧ энергии от генератора (частота 2.45 ГГц, выходная мощность 3 кВт) построена на прямоугольном волноводе. Она включает в себя циркулятор, водяной аттенюатор, направленный ответвитель. Аттенюатор позволяет плавно изменять палаюшую мошность. Параметры СВЧ сигнала исследуются с помощью анализатора спектра GSP-7730 и осциллографа TDS 20112В. Для согласования разрядной секции с СВЧ трактом использовался перемещаемый короткозамыкающий поршень. Центральный электрод коаксиальной линии длиннее наружного проводника. Он изготовлен из медной трубки с внешним диаметром 6 мм. Объем жидкости в кювете порядка 40 мл, что обеспечивает нахождение конца внутреннего электрода коаксиальной линии под поверхностью жидкости. Через внутренний канал в электроде в камеру могут подаваться дополнительные газы. В настоящей работе использовался воздух с расходом 17.3 л/ч. Лавление над поверхностью жилкости равнялось атмосферному давлению. Эксперименты проводились при падающей СВЧ мощности порядка 500 Вт. Одним из важных параметров, определяющих свойства плазмы является поглощенная мощность. Определение ее в микроволновой плазме связано с рядом трудностей. Энергия поглощается не только в разряде, но и в коаксиально волноводном переходе, а также излучается антенной. Определить количественно эти потери представляется затруднительным. Поэтому в качестве энергетической характеристики плазмы используется падающая мощность.

Разряд инициировался на конце центрального проводника коаксиальной линии в различных углеводородах: гексан, н-гептан, октан, изооктан, декан, бензол, толуол. Используемые жидкости перед экспериментами не очищались от окклюдированного воздуха.

Методика экспериментов была следующей. Через канал в электроде поступал воздух. При подаче микроволновой мощности на конце антенны в объеме жидкости инициировался разряд, происходил разогрев углеводорода, испаренный углеводород поступал в плазму и разряд горел в смеси паров углеводорода с воздухом. Обработку образца жидкого углеводорода осуществляли в течение 1-2 мин. За это время весь объем жидкого углеводорода заполнялся взвесью твердого продукта черного цвета, поглощающего СВЧ энергию, и разряд самопроизвольно погасал. По окончании эксперимента полученную взвесь с помощью вакуумной системы удаляли из реактора, центрифугировали со скоростью 3000 об/мин в течение 10 мин и отделяли твердую фазу деканта-

Рис. 1. Спектр излучения микроволнового разряда в жидком гексане с барботированием воздуха.

цией. В предыдущей нашей работе [13] было показано, что состав жидкости после удаления твердых частиц практически не изменялся и поэтому для определения изменения состава требовалось концентрирование пробы. Оно осуществлялось выпариванием. Исследовался состав полученного осадка.

Исследование углеводорода проводилось на хромато-масс-спектрометре Thermo Focus DSQII (капиллярная колонка Varian VF-5 ms, длина 15 м. внутренний диаметр 0.25 мм, толшина фазы 0.25 мкм, газ-носитель – гелий, режим работы: температура инжектора 300°С, начальная температура печи хроматографа 45°С, затем изотерма в течение 3 мин, затем нагрев со скоростью 3°С/мин д 310°С, затем изотерма в течение 20 мин. Режим работы масс-спектрометра: энергия пучка ионизации 70 эВ, температура источника 250°С, сканирование в диапазоне 10-800 Да со скоростью 1.5 скан/с, разрешение единичное по всему диапазону масс. Для идентификации компонентов использовались масс-спектры сравнения, представленные в базе данных NIST/EPA/NIH 14. Расчет содержания компонентов проводился исходя из площадей хроматографических пиков без коррекции по эффективности ионизации.

Кроме этого, исследовались спектры излучения разряда в диапазоне длин волн 300—700 нм с помощью спектрометра AvaSpec-2048.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Исследование спектров излучения разряда в жидких углеводородах показало, что барботирование воздуха приводит к появлению дополнительных полос излучения. На рис. 1 для примера

АВЕРИН и др.

Соединения	Гексан	Гептан	Изооктан	Октан	Бензол	Толуол
Этилацетат, (C ₄ H ₈ O ₂)	0.07					
Тетрадекан (C ₁₄ H ₁₀)	0.15	0.16				
Изопентадекан			0.16			
Изопентадекан			0.28			
$C_{10}H_{8}$						
Нафталин (С ₁₀ Н ₈)				0.07		
Метилнафталин (C ₁₁ H ₈ O ₂)				0.07		
Метилнафталин				0.05		
Бифенил (C ₁₂ H ₁₀)				0.04		
C ₁₂ H ₈				0.1		
$C_{12}H_8$				2.64		
Бифенил (С ₁₂ Н ₁₀)						
$C_{12}H_{10}$						
Аценафтен ($C_{12}H_{10}$)						
Аненафтилен (С ₁₂ Н ₂)						
Пенталекан (C_{12} - γ_{0})	1.58	1.65	94.08	83.92	2.21	
C ₁₂ H ₁₀		1100	9 1100	0.18		
$C_{12}H_{10}$				0.09		
$C_{12}H_{10}$				0.13		
$C_{12}H_{10}$				0.33		
C12H10				0.08		
C ₁₂ H ₁₀				0.15		
C : H : o				0.15		
Изогексалекан	0.54	0.87		0.20		
Изогексалекан	2.58	2.27	0.25			
Изогексадекан	0.83	1.79	0.14			
Гексадекан (С ₁₆ Н ₃₄)	89.37	89.74	1.41	1.47	2.46	26.78
Изогептадекан		0.03				
Изогептадекан		0.1				
Гексадецен (C ₁₆ H ₃₂)	0.03					
C ₁₄ H ₈	0.04			0.04		
C ₁₄ H ₈				0.12		
C ₁₄ H ₈				0.04		
$C_{14}H_{10}$				0.03		
C ₁₄ H ₁₀				0.15		
$C_{14}H_{10}$				0.07		
C ₁₄ H ₁₀				0.1		
C ₁₄ H ₈				0.03		
C ₁₄ H ₁₂				0.05		
Изогептадекан	0.15					
Гептадекан (С ₁₇ Н ₃₆)	0.07	0.02				

Таблица 1. Хромато-масс-спектрометрический анализ выпаренного остатка углеводородов после создания в них микроволнового разряда с барботированием воздуха и удаления твердых частиц

Таблица 1. Продолжение

Соединения	Гексан	Гептан	Изооктан	Октан	Бензол	Толуол
Пластификатор						2.59
Фенантрен (С ₁₄ Н ₁₀)	0.22	0.16	0.42	1.46	8.74	1.7
Антрацен(C ₁₄ H ₁₀)	0.1	0.09		0.33		
Изооктадекан (С ₁₈ Н ₃₈)	0.03					
Гептадекан (С ₁₇ Н ₃₆)		0.02				
Октадекан (С ₁₈ Н ₃₈)	0.32	0.3				
Метиленфенантрен (C ₁₅ H ₁₂)	0.1		0.19			
Фенилнафталин (С ₁₀ Н ₇ -С ₆ Н ₅)	0.02					
Дикотилфталат (C ₆ H ₄ (COOC ₈ H ₁₇) ₂)						
C ₁₄ H ₁₀				C14H10		
C ₁₅ H ₁₂				C15H12		
C ₁₃ H ₈ O						1.88
$C_{15}H_{10}$		0.07		C15H10		0.77
C ₁₅ H ₁₂				0.03		
C ₁₅ H ₁₂				0.06		
C ₁₅ H ₁₂				0.03		
C ₁₆ H ₁₂				0.04		
C ₁₅ H ₁₂				0.03		
C ₁₅ H ₁₂				0.06		
C ₁₅ H ₁₀				0.72		
C ₁₅ H ₁₂				0.12		
C ₁₆ H ₁₂				0.06		
$C_{15}H_{10}$				0.06		
$C_{16}H_{14}$				0.02		
C1 ₆ H ₁₂				0.08		
Пластификатор	0.17	0.14	0.41	0.85	22.45	5.42
C ₁₆ H ₁₀	0.25		0.6	0.88	8.86	4.45
$C_{16}H_{10}$	0.09	0.12	0.2	0.55	4.01	1.07
Эйкозан (С ₂₀ Н ₄₂)		0.05				
C ₁₆ H ₁₀	0.24	0.07	0.67	1.14	5.06	
C ₁₆ H ₁₂				0.03	1.15	
Метиленфенантрен					1.09	
$C_{16}H_{12}$				0.02	2.09	
$C_{17}H_{10}$				0.03		
C ₁₇ H ₁₂				0.04		
C ₁₇ H ₁₂				0.11		
$C_{17}H_{10}$				0.12		
Пластификатор		0.18		0.14		2.67
Пластификатор		0.04		- .		2.11
C ₁₇ H ₁₂	0.05			0.1		
$C_{17}H_{12}$				0.07		

Таблица 1. Продолжение

Соединения	Гексан	Гептан	Изооктан	Октан	Бензол	Толуол
C ₁₇ H ₁₂				0.04		
Дифенилбензол С ₁₈ Н ₁₄)					0.95	
C1 ₈ H ₁₂		0.03			0.87	
Докозан (С ₂₂ Н ₄₆)	0.04					
Пластификатор	0.18	0.14				9.71
Докозан (С ₂₂ Н ₄₆)	0.05					
$C_{18}H_{10}$		0.13	0.22	0.01		2.48
$C_{18}H_{10}$	0.06	0.11	0.36			2.02
C1 ₈ H ₁₂				0.02	0.95	
C1 ₈ H ₁₂				0.01	1.2	
$C_{18}H_{10}$				0.02	4.9	
$C_{18}H_{10}$				0.29	1.68	
$C_{18}H_{10}$				0.11	4.42	
C1 ₈ H ₁₂				0.54	0.5	
C1 ₈ H ₁₂				0.06	1.29	
$C1_8H_{12}$				0.05		
$C1_8H_{12}$				0.09		
$C_{19}H_{14}$				0.02		
$C_{19}H_{12}$				0.01		
$C_{19}H_{12}$				0.01		
$C_{19}H_{12}$				0.02		
$C_{19}H_{12}$				0.04		
$C_{19}H_{12}$				0.02		
$C_{19}H_{12}$				0.03		
$C_{19}H_{12}$				0.04		
Пластификатор				0.15		
$C_{19}H_{12}$				0.01		
$C_{19}H_{12}$				0.01		
Трикозан (С ₂₃ Н ₄₈)	0.16					
Тетракозан (С ₂₄ Н ₅₀)	0.12	0.1			1.72	1.38
Пентакозан (С ₂₅ Н ₅₂)	0.16	0.14			1.93	2.2
$C_{20}H_{12}$				0.02	2.26	
Пластификатор	0.13	0.1	0.31	0.03	2.17	2.86
Гексакозан (С ₂₆ Н ₅₄)	0.31	0.22			2.35	3.88
Гептакозан (С ₂₇ Н ₅₆)	0.21	0.17			1.89	2.35
$C_{20}H_{14}$				0.01		
$C_{20}H_{12}$	0.06		0.08	0.12		
$C_{20}H_{12}$				0.08	0.41	
$C_{20}H_{12}$				0.03	1.14	
$C_{20}H_{12}$				0.11		

ХИМИЯ ВЫСОКИХ ЭНЕРГИЙ том 54 № 3 2020

МИКРОВОЛНОВЫЙ РАЗРЯД В ЖИДКИХ УГЛЕВОДОРОДАХ

Таблица 1. Окончание

Соединения	Гексан	Гептан	Изооктан	Октан	Бензол	Толуол
$\overline{C_{20}H_{12}}$				0.01		
$C_{20}H_{14}$				0.02		
Сквален (С ₃₀ Н ₅₀)				0.05		
C ₂₁ H ₁₄				0.04		
C ₂₁ H ₁₄				0.01		
C ₂₁ H ₁₄				0.02		
Предположительно произодное нафтоила (C ₁₀ H ₇ CO)						2.64
Предположительно произодное нафтоила (C ₁₀ H ₇ CO)						1.23
Октакозан (С ₂₈ Н ₅₈)	0.22	0.17			1.03	1.87
Силоксан						0.94
Нонакозан (С ₂₉ Н ₆₀)	0.19	0.12			1.29	1.47
Триаконтан (С ₃₀ Н ₆₂)	0.15	0.11			0.99	1.55
$C_{22}H_{12}$					1.14	1.38
$C_{22}H_{12}$					1.08	0.25
Гентриаконтан (С ₃₁ Н ₆₄)	0.18	0.09			0.65	1.36
силоксан						1.15
$C_{22}H_{12}$	0.07			0.02		
$C_{22}H_{12}$				0.03		
$C_{22}H_{12}$				0.06		
$C_{22}H_{12}$				0.09		
C ₂₂ H ₁₂				0.03		
$C_{23}H_{14}$				0.02		
C ₂₃ H ₁₂				0.02		
C ₂₃ H ₁₂				0.01		
$C_{24}H_{12}$				0.05		
Дотриаконтан (С ₃₂ Н ₆₆)	0.36	0.29			0.87	0.99
Тритриаконтан (С ₃₃ Н ₆₈)	0.16	0.08			0.92	1.63
Тетраконтан (С ₄₀ Н ₈₂)		0.04				
Тетратриаконтан (С ₃₄ Н ₇₀)	0.05					
Пластификатор	0.13	0.04	0.2	0.03	1.98	4.04
Силоксан						0.87
Пластификатор		0.06			1.32	2.29

Таблица содержит зарегистрированные, но не идентифицированные соединения, имеющие одинаковую массу, и разные времена выхода.

показан спектр излучения микроволнового разряда в жидком гексане с барботированием воздуха. Спектр излучения СВЧ разряда представлен полосами Свана (переход $C_2(d^3\Pi_g - a^3\Pi_u)$) секвенций = 0 (максимум при 516.5 нм), $\Delta \upsilon = 1$ (максимум при 563.5 нм), $\Delta \upsilon = -1$ (максимум при 473.7.5 нм), $\Delta \upsilon = -2$, причем полоса при 436.5 нм ($\Delta \upsilon = -2$) переналожена с полосой 0–0 излучения СН при 431.2 нм (переход СН($A^2\Delta - X^2\Pi$)). Полосы Свана наблюдаются во микроволновой плазме

при атмосферном давлении во всех жидких углеводородах [12, 14, 15]. Кроме этого, как и в углеводородах без барботирования, наблюдается широкополосный спектр излучения твердых углеродсодержащих частиц. Барботирование воздуха приводит к появлению в спектре излучения полос CN (358.4, 388.3, 421.6 нм). Излучения водородных линий и полос, как и в разряде без барботирования, не наблюдается.

В таблице показаны результаты исследования состава выпаренного остатка углеводородов после создания в их объеме микроволнового разряда с барботированием воздуха. В [16] приведена информация о продуктах микроволнового разряда в дегазированных жидких гексане и гептане. Обогащение в этой работе достигалось тем, что испаренные продукты конденсировались и возвращались в жидкость. Показано, что в случае гексана в продуктах обнаружены C_8H_6 , C_8H_8 , $C_{10}H_8$, $C_{10}H_{22}$, а в гептане обнаружены C_8H6 , C_8H6 , C_8H_8 , $C_{10}H_8$, $C_{12}H_8$.

Из табл. 1 видно, что в жидких углеводородах в наших экспериментах содержатся алканы вплоть до C₄₀. Удивительным является то, что несмотря на то, что плазма создается в присутствии воздуха, в жидких углеводородах практически не наблюдает-ся кислород и азотсодержащих продуктов.

Основной вывод, который можно сделать на основе проведенных экспериментов с добавлением воздуха, и инертного газа [13]: микроволновый разряд в жидких углеводородах практически не влияет на жидкий углеводород.

ИСТОЧНИК ФИНАНСИРОВАНИЯ

Работа выполнена в рамках Государственного задания ИНХС РАН.

СПИСОК ЛИТЕРАТУРЫ

- Bruggeman P., Leys C. // J. Phys. D: Appl. Phys. 2009. V. 42. 053001.
- Samukawa S., Hori M., Rauf S., et al. // J. Phys. D. Appl. Phys. 2012. V. 45. 253001.
- 3. Bruggeman P.J., Kushner M.J., Locke B.R., et al. // Plasma Sources Sci. and Technol. 2016. V. 25. 053002.
- 4. *Yang Y., Cho Y.I., Fridman A.* Plasma Discharge in Liquid: Water Treatment and Application, Boca Raton: CRC, 2012. CRC Press, NY.
- 5. Foster J. // Phys. Plasmas. 2017. V. 24. 055501.
- Vanraes P., Bogaerts A. // Appl. Phys. Rev. 2018. V. 5. 031103.
- 7. Лебедев Ю.А. // Физика плазмы. 2017. Т. 43. Р. 577.
- 8. Horikoshi S., Serpone N. // RSC Adv. 2017. V. 7. 47196.
- 9. Lebedev Yu.A. // High Temperature. 2018. V. 56. P. 811.
- Lebedev Yu.A., Averin K.A., Tatarinov A.V., Epstein I.L. // EPJ Web of Conferences. 2017. V. 149. 02002.
- Averin K.A., Lebedev Yu.A., Shchegolikhin A.N., Yablokov M.Yu. // Plasma Process Polym. 2017. V. 14. Is. 9. e201600227.
- Averin K.A., Bilera I.V., Lebedev Yu.A., Shakhatov V.A., Epstein I.L. // Plasma Process Polym. 2019. V. 16. e1800198.
- Лебедев Ю.А., Аверин К.А., Борисов Р.С. и др. // Химия высоких энергий. 2018. Т. 52. С. 306.
- 14. Averin K.A., Lebedev Yu.A., Shakhatov V.A. // Plasma Phys. Reports. 2018. V. 44. P. 110.
- 15. Lebedev Yu.A., Epstein I.L., Shakhatov V.A. et al. // High Temperature. 2014. V. 52. P. 319.
- Скоробогатов Г.А., Крылов А.А., Москвин А.Л. и др. // Химия высоких энергий. 2016. Т. 50. С. 429.