——— ФОТОНИКА ——

УДК 541.141

ФОТОЭФФЕКТ В ОРГАНИЧЕСКИХ СОЛНЕЧНЫХ ЭЛЕМЕНТАХ НА ОСНОВЕ ФТАЛОЦИАНИНОВ. І. ТЕРМИЧЕСКАЯ ИОНИЗАЦИЯ МОЛЕКУЛЯРНЫХ ЭКСИТОНОВ

© 2020 г. В. А. Бендерский^{а, *}, И. П. Ким^а

^аИнститут проблем химической физики РАН, просп. Академика Семенова, 1, Черноголовка, Московская обл., 142432 Россия *E-mail: bender@icp.ac.ru Поступила в редакцию 06.04.2020 г. После доработки 06.04.2020 г. Принята к публикации 20.04.2020 г.

На основании полученных ранее данных [1, 2], согласно которым квантовый выход фотоэффекта (*Y*) в кристаллах b – формы фталоцианинов без металла(I) и меди(II) одинаков для электронов и дырок и обладает аррениусовской зависимостью от температуры с энергией активации E_Y , равной разности ширины запрещенной зоны и энергии молекулярных экситонов (МЭ), предложена трехмерная стохастическая модель термической ионизации МЭ, рассматриваемой как последовательность обратимых переходов из МЭ в низшее состояния с переносом заряда (СПЗ) и затем в СПЗ с растущей длиной переноса. Найдено соотношение между E_Y и радиальной плотностью СПЗ, при которой вероятность разделения зарядов больше, чем гибели СПЗ.

Ключевые слова: фталоцианины, молекулярные экситоны, состояния с переносом заряда, квантовый выход носителей тока

DOI: 10.31857/S0023119320050034

І. ВВЕДЕНИЕ

Многолетние исследования фотоэффекта в органических материалах недавно ознаменовались созданием лабораторных образцов органических солнечных элементов (ОСЭ) с высоким (до 17%) коэффициентом преобразования солнечного излучения в электрическую энергию [3–14]. Основное отличие ОСЭ от устройств на основе неорганических полупроводников состоит в том, что поглощение света обусловлено внутримолекулярными оптическими переходами, при которых образуются не носители тока, а молекулярные экситоны (МЭ), способные переносить энергию, но не создающие фототок.

Прогресс в создании эффективных ОСЭ достигнут для большого числа веществ с различным составом и строением молекул, обладающих, тем не менее, рядом общих свойств, определяющих их эффективность в составе ОСЭ. Установить эти свойства и определить их количественные характеристики – очевидная, но еще не решенная задача. Один из возможных путей ее решения – выбрать одно из достаточно хорошо изученных веществ, применяемых в ОСЭ, и на его примере проследить предполагаемые механизмы образования и переноса МЭ и носителей тока. Одними

различных металлов - искусственные красители, близкие по строению к порфирину, основному компоненту собирающих свет природных агрегатов [15]. Рс обладают высокой термической устойчивостью (в молекуле отсутствуют химические связи с энергиями разрыва, меньшими 70 Ккал/моль), легко очищаются до содержания примесей ~ 1 ррт и доступны как в виде кристаллов, так и микронных и субмикронных слоев. применяемых ОСЭ. Перечислим основные свойства фталоцианинов, оправдывающие их выбор в качестве эталона: 1) кристаллографическая упаковка плоских молекул в стопки с параллельным расположением их плоскостей на расстоянии Ван-дер-Ваальсова контакта (~0.4 нм), и расстоянием между стопками, определяемым размерами молекулы в плоскости (~1.3 нм); 2) интенсивные полосы экситонного поглощения с 00-переходом в области энергии МЭ ($E_S = 1.71 - 1.74$ эВ для фталоцианина без металла H_2Pc); 3) ширина запрещенной зоны $\Delta = 1.94 - 1.97$ эВ и отсутствие межзонных переходов [16, 17]; 4) узкие (шириной, меньше 0.1 эВ) зоны разрешенной энергии как МЭ, так и носителей тока; 5) образование состояний с переносом заряда и смешанных кристаллов

из таких веществ являются фталоцианины (Рс)

с молекулами акцепторов, обладающими более высоким сродством к электрону, чем молекулы Pc. Все перечисленные характеристики присущи большинству материалов для ОСЭ [18].

В этой серии статей мы представим сравнительный обзор основных оптических и фотоэлектрических свойств кристаллов и поликристаллических слоев Рс вместе с теоретическим описанием этих свойств в моделях, большинство из которых появилось намного позднее результатов измерений. Ранее систематическое сопоставление экспериментальных данных с этими теоретическими представлениями не проводилось.

В первом разделе статьи рассмотрена термическая ионизация МЭ, обусловленная тем, что разность $\Delta - E_S$ лишь в ~10 раз превышает тепловую энергию (в H₂Pc ($\Delta - E_S$)/ $k_BT = 8-10$ при 300 K), что позволяет детектировать образование и перенос носителей тока, пользуясь результатами импульсных фотоэлектрических измерений, обладающих высокой чувствительностью и позволяющих детектировать малые изменения заряда (>10⁻⁹ Кл). Процесс ионизации рассматривается как последовательность обратимых переходов между состояниями с переносом заряда (СПЗ), которым принадлежит ключевая роль в фотоэффекте в органических материалах. Кинетическая модель таких переходов позволяет представить квантовый выход фотоэффекта в виде отношения вероятностей прямых и обратных переходов между СПЗ и выявить условия, при которых МЭ и СПЗ превращаются в носители тока быстрее, чем гибнут. Экспериментальные данные собраны во втором разделе. Трехмерная кинетическая модель превращения МЭ в носители тока с промежуточным обратимым образованием СПЗ с растущей длиной переноса заряда рассмотрена в третьем разделе, где показано, что отношение скоростей прямых и обратных переходов зависит от разности энергий и радиальной плотности СПЗ, которая в четвертом разделе представлена в виде огрубленного разложения по стохастическим шаровым слоям, образующимся в результате перемешивания состояний с близкой длиной переноса в процессе ее роста. В пятом и шестом разделах найдены квантовый выход фотоэффекта и распределение концентраций СПЗ.

II. КВАНТОВЫЙ ВЫХОД ФОТОЭФФЕКТА

В спектре отражения света, поляризованного по кристаллографическим осям *a* и $b(a \perp b)$, в кристаллах H₂Pc и CuPc при 4.2 и 77 К наблюдаются длинноволновые полосы с максимумами 1.71(1.77) и 1.71(1.74) эВ соответственно. Полуширина полос ~400 см⁻¹, давыдовское расщепление 320–350 см⁻¹, поляризационное отношение 3.0– 3.6. Высокая поляризация и наличие расщепления показывают, что в результате оптического перехода образуются МЭ, отличающиеся от локализованных возбужденных состояний молекул тем, что их время жизни больше, чем перехода между соседними узлами. Ширина полос свидетельствует о сильном электронно-колебательном взаимодействии, типичном для молекулярных кристаллов, например, кристаллов антрацена, тетрацена и пентацена [19].

Квантовый выход фотоэффекта измерен методом кристаллического счетчика под действием импульсов света с длиной волны 580, 625, и 670 нм длительностью 20 нс [1]. Число фотонов измерялось независимо, так что отношение образующегося числа электронов к числу фотонов позволяло найти абсолютные значения квантового выхода. Квантовый выход электронов и дырок определяется величиной заряда в условиях насыщения, когда на коллекторе собираются все образовавшиеся носители тока. Поглощение света в слое $\sim 1/k \approx 0.3$ мкм создает зону генерации носителей тока с квазистационарной концентрацией МЭ (длительность импульса накачки много больше $\tau_s \approx$ ≈ (2–4) × 10⁻¹¹с [20, 21]), из которой внешнее электрическое поле $V_0 = 10^2 - 10^3$ В полностью извлекает образующиеся носители тока с подвижностью μ ($\mu_n \approx \mu_p \approx 0.5 \text{ см}^2/\text{Bc}$, время пролета зоны ~ $(k^2 \mu V_0)^{-1}$ больше времени жизни МЭ и короче времени рекомбинации в ней носителей тока). Измерения выполнены при направлении освещения и приложенного электрического поля вдоль нормали к плоскости кристалла аb. Проводимость кристаллов H₂Pc и CuPc близка к собственной ((1-2) × 10⁻¹⁵ и (7-8) × 10⁻¹⁵ ом⁻¹ см⁻¹ соответственно) в интервале температур 250-350 К.

Результаты сводятся к следующим. Квантовый выход фотоэффекта электронов и дырок одинаков во всем температурном интервале, не зависит от длины волны света и описывается аррениусовской зависимостью

$$Y = Y_n = Y_p = Y_0 \exp(-E_Y/k_B T).$$
 (1)

При 290 К значения квантового выхода равны $(3-7) \times 10^{-5}$ и $(1-3) \times 10^{-5}$, энергии активации – 0.19 и 0.25 эВ для кристаллов H₂Pc и CuPc соответственно.

Зависимость (1) выполняется, если фотоэффект обусловлен либо межзонным переходом с участием колебательно возбужденных молекул в основном электронном состоянии, либо термической ионизацией образующихся МЭ. В первом механизме зависимость (1) должна исчезать, когда энергия фотонов $\hbar\Omega$ становится больше ширины запрещенной зоны Δ , что не наблюдалось. Подобная зависимость $Y(\Omega)$ имела бы место и при ионизации колебательно возбужденных МЭ с энергией, большей Δ . Отсутствие зависимости квантового выхода от энергии фотонов говорит также о том, что поглощение света сопровождается быстрой колебательной релаксацией МЭ, которая предшествует последующей ионизации МЭ в основном колебательном состоянии. Из условия ионизационного равновесия скорость ионизации равна

$$W_{S} = \gamma_{np} \frac{N_{c} N_{v}}{N_{s}} \exp(-(\Delta - E_{S})/k_{B}T), \qquad (2)$$

где N_c , N_v , N_S — плотности состояний в зоне проводимости, валентной и экситонной зонах соответственно, γ_{np} — константа скорости электронно-дырочной рекомбинации с образованием МЭ. Квантовый выход определяется отношением скоростей ионизации и гибели МЭ по всем излучательным и безызлучательным каналам, равной обратному времени жизни $1/\tau_S$

$$Y = (1 + 1/W_S \tau_S)^{-1}.$$
 (3)

Поскольку для узких зон плотности состояний одного порядка с плотностью молекул (в кристаллах Рс $N_0 = 2 \times 10^{21}$ см⁻³) и $Y \ll 1$, из (1)–(3) следует, что скорости бимолекулярной рекомбинации и гибели МЭ одного порядка

$$\gamma_{np} N_0 \approx 1/\tau_S \,. \tag{4}$$

При указанном выше значении $\tau_S \gamma_{np} = 10^{-10} - 10^{-10}$ 10^{-9} см³ с⁻¹, что более чем на два порядка меньше ожидаемой константы скорости кулоновского захвата (~10⁻⁷ см³ с⁻¹) частицы с массой свободного электрона m_0 и тепловой скоростью $(2k_BT/m_0)^{1/2}$. Причинами различия могут быть узкие зоны носителей тока, в которых эффективная масса на порядки больше *m*₀, и образование промежуточных состояний с сечениями захвата большими, чем образования МЭ. Хотя МЭ является ближайшим по энергии детектируемым состоянием к электронно-дырочной паре, между ними расположена последовательность состояний с переносом заряда (СПЗ), которые являются промежуточными в процессе рекомбинации. Эти состояния характерны для 1:1 комплексов, состоящих из молекул донора и акцептора [22-24]. Хотя в спектрах однокомпонентных молекулярных кристаллов СПЗ не удается детектировать на фоне интенсивных полос МЭ, спектр СПЗ детально изучен теоретически на примере одномерной модели молекулярного кристалла [25-28]. Одномерная модель не только допускает точное аналитическое решение задачи на собственные значения, но и позволяет найти условия, при которых возрастает квантовый выход фотоэффекта, в частности, при увеличении матричных элементов переноса. В [29, 30] предсказано, что в одномерной модели ионизация СПЗ в сильных электрических

ХИМИЯ ВЫСОКИХ ЭНЕРГИЙ том 54 № 6 2020

полях, возникающих в тонких pn-переходах, способна обеспечить квантовый выход, близкий к 1. Однако участие СПЗ в кинетике ионизации МЭ в трехмерных кристаллах ранее не рассматривалась. Основная цель этой статьи — показать, что в трехмерной среде вероятность ионизации МЭ и СПЗ на порядки выше предсказываемых одномерной моделью.

III. ИОНИЗАЦИЯ ЭКСИТОНОВ – ПОСЛЕДОВАТЕЛЬНОСТЬ ПЕРЕХОДОВ МЕЖДУ СПЗ

В условиях теплового равновесия ионизация МЭ связана с образованием низшего СПЗ С1 (НСПЗ), в котором электрон и дырка локализованы на соседних узлах решетки, расположенных по оси стопки \vec{b} на расстоянии постоянной решетки b, в котором кулоновская связь между ними максимальна, но меньше, чем в МЭ. В следующем по энергии СПЗ С2 дырка остается на том же узле, а электрон занимает один из узлов второй координационной сферы, принадлежащих либо той же стопке на расстоянии 2b, либо одной из соседних стопок, на расстоянии, определяемом постоянными решетки a, c > b. По такой же схеме образуются высшие СПЗ $n \ge 3$, спектр которых сходится ко дну зоны проводимости, если локализована дырка, так что энергия СПЗ в трехмерной решетке определяется совокупностью трех целых чисел

$$n = n(n_a, n_b, n_c) \tag{5}$$

определяющих число периодов решетки по ее осям. В противоположном случае локализации электрона, следом за НСПЗ образуются состояния, в которых дырка последовательно занимает узлы в других стопках, удаляясь от электрона. В одномерной модели смещение обоих зарядов вдоль цепочки узлов учитывается переходом к новым разделяющимся переменным - смещению центра тяжести СПЗ как целого и расстоянию между зарядами. Движение центра тяжести определяет ширину зон СПЗ, а изменение расстояния - изменение собственных значений кулоновской энергии зарядов при переходах $\Delta n = \pm 1$. При экспоненциально малом перекрывании молекулярных орбиталей соседних узлов, типичном для молекулярных кристаллов, матричные элементы переноса электрона и дырки по отдельности много больше, чем их переноса вместе, так что СПЗ с $n \ge 2$ быстрее распадаются, чем перемещаются как целое, т.е. являются не экситонами, а локализованными возбужденными состояниями [19, 30].

Отметим различие МЭ и СПЗ. Матричные элементы экситонного переноса определяют сильное дальнодействующее диполь-дипольное взаимолействие. присушее интенсивным излучательным переходам. В противоположность МЭ, дипольные моменты вертикальных оптических переходов из основного состояния в СПЗ малы из-за малых факторов Франка-Кондона, так что матричные элементы диполь-дипольного переноса и ширина зоны СПЗ даже по оси *h* малы, по сравнению с экситонной. и становится еще меньше по осям с большей длиной переноса. Если пренебречь матричными элементами переноса СПЗ, собственные значения их энергии определяются диагональными элементами кулоновского взаимодействия электрона и дырки, локализованных на узлах решетки 0 и *n*, которые можно представить эмпирическим соотношением

$$U_n = -U_1 / R(n), \tag{6}$$

где коэффициент U_1 определяется поляризацией кристалла и распределением электронной плотности в ионах, образующих СПЗ, и лежит в интервале $(\Delta - E_S)/2 < U_1/b < (\Delta - E_S)$. При $n \ge 1$ в трехмерной решетке, в отличие от одномерной, совокупности значений (6) все более плотно, но неравномерно заполняют интервалы $[-U_1/R(n), -U_1/R(n+1)]$, в которые попадают значения с различными сочетаниями (5). Для подобных систем с плотным нерегулярным спектром лиагональных элементов эффективен метод случайных матриц гамильтониана, предложенный для описания сложных ядер [31, 32] и колебательных спектров больших молекул [33, 34]. В этом методе распределение собственных значений заменяется огрубленным, в котором вместо отдельных состояний $\{C_n\}$ вводятся их совокупности $\{C_s\}$, число которых $s \ll n$, с эффективными значениями радиуса, локальной ширины распределения и числа состояний. Из приведенного качественного описания следует: 1) нет необходимости в расчете малых матричных элементов переноса СПЗ в трехмерной решетке; 2) собственные значения энергии СПЗ можно заменить диагональными элементами для огрубленного распределения, найти для них вероятности переходов между C_s и $C_{s\pm 1}$; и 3) решить для них кинетическую задачу. Последовательность обратимых переходов

$$S_{0} \xrightarrow{I}{\underset{l/\tau_{s}}{\overset{l}{\longrightarrow}}} S_{1} \xrightarrow{W_{01}} C_{1} \xrightarrow{W_{12}} C_{2} \dots C_{s-1} \xrightarrow{W_{s-1,s}} C_{s} \dots$$
(7)

известна как кинетический процесс Беккера—Деринга, изучаемый в теории неразветвленных цепных реакций [35]. Кинетические уравнения для концентраций МЭ и огрубленных СПЗ в схеме (7) имеют вид

$$\dot{S}_{1} = I - (\tau_{S}^{-1} - W_{01})S_{1} + W_{10}C_{1},$$

$$\dot{C}_{1} = W_{01}S_{1} - (W_{10} + W_{12})C_{1} + W_{21}C_{2},...$$

$$\dot{C}_{s} = W_{s-1,s}C_{s-1} - (W_{s,s-1} + W_{s,s+1})C_{s} + W_{s+1,s}C_{s+1}, s \ge 2.$$
(8)

Первое уравнение учитывает оптическую накачку перехода $S_0 \rightarrow S_1$, гибель МЭ и его превращение в НСПЗ. Второе уравнение для концентрации НСПЗ включает их образование из МЭ, гибель $C_1 \rightarrow S_1$, S_0 (обратный переход в МЭ и переход в основное состояние) и превращение в C_2 . Вероятности переходов $W_{s,s'}$ удовлетворяют условиям детального равновесия, постулирующим равенство скоростей прямых и обратных переходов при тепловом равновесии

$$W_{s,S+1}\bar{C}_{s} = W_{s+1,s}\bar{C}_{s+1}, \ \bar{C}_{s+1}/\bar{C}_{s} = = (N_{s+1}/N_{s})\exp((E_{s} - E_{s+1})/k_{B}T),$$
(9)

где N_s — плотность огрубленных состояний C_s с собственным значением энергии E_s , которые необходимо предварительно найти с помощью (6) для кристаллов Рс. Решение (8) требуется найти в квазистационарных условиях, когда концентрации всех СПЗ удовлетворяют не условиям равновесия, при которых отсутствует ток, а при постоянстве парциальных токов для всех C_s , когда парциальные токи одинаковы и равны сквозному току J

$$J_s = W_{s,s+1}C_s - W_{s+1,s}C_{s+1} = J$$
(10)

(8) и (10) определяют совокупность концентраций, зависящих от одного параметра — квантового выхода, равного отношению сквозного тока к току оптической накачки

$$Y = J/I = (1 + q_1 + q_1q_2 + q_1q_2q_3 + ... + q_1q_2q_3...q_s + ...)^{-1},$$
(11)

где

$$q_s = W_{s,s-1} / W_{s,s+1}. \tag{12}$$

Следует отметить, что в схеме Беккера–Деринга квантовый выход зависит не от абсолютных значений вероятностей переходов, а только их от-

ХИМИЯ ВЫСОКИХ ЭНЕРГИЙ том 54 № 6 2020

ношений, что упрощает кинетическую задачу в случае огрубленных распределений, удовлетворяющих условиям детального равновесия (9). Энергии активации прямых и обратных электронных переходов $s \leftrightarrow s'$ связаны с разностью свободных энергий начального и конечного состояний факторами симметрии $\alpha_{nn'}$.

$$G_{nn'}^{*} = G_{R} + \alpha_{nn'}(G_{n} - G_{n'}),$$

$$G_{n'n}^{*} = G_{R} + (1 - \alpha_{nn'})(G_{n'} - G_{n})$$
(13)

$$0 \le \alpha_{nn'} \le 1,$$

где G_R — барьер, обусловленный изменением колебательного резервуара (см. например [36, 37]), и при $G_R \gg |G_n - G_n|$

$$\alpha_{nn'} \approx 1/2. \tag{14}$$

Выражения (13) и (14) позволяют переписать (11)

$$Y = \left(1 + (W_{01}\tau_S)^{-1} \left(1 + \sum_{n} \exp(-(G_n - G_S)/2k_BT)\right) \times \exp(-(\Delta - E_S)/k_BT)\right)^{-1}.$$
(15)

Выражение (15) имеет тот же вид, что и феноменологическое соотношение (2), отличаясь от него префактором, в котором сумма учитывает уменьшение квантового выхода за счет обратных переходов в СПЗ. Этот префактор позволяет сделать важный вывод, не прибегая к численным расчетам. Если плотности состояний N_n не увеличиваются с ростом *n*, а энергия кулоновской связи монотонно уменьшается, так что при больших *n* значения

$$q_{n} = \exp\left((G_{n-1} - G_{n+1})/2k_{B}T\right) = \left(\frac{N_{n-1}}{N_{n+1}}\right)\exp\left((G_{n-1} - G_{n+1})/2k_{B}T\right) \ge 1$$
(16)

ряд в (15) расходится и квантовый выход равен нулю. Скорости обратных переходов больше, чем прямых и концентрации C_n экспоненциально уменьшаются. Эта ситуация соответствует одномерной цепочке, в которой плотность состояний постоянна и конечные значения Y возникают только за счет внешнего электрического поля, компенсирующего кулоновское притяжение [29]. Когда длина переноса *n* (число постоянных решетки, разделяющих узлы, на которых локализованы электрон и дырка) превышает значение *n**, при котором электроннодырочный потенциал максимален, скорость обратных переходов становится меньше, чем прямых [29].

В трехмерном кристалле появляется еще одна причина разделения зарядов, обусловленная ростом плотности состояний с ростом *n*. Поэтому расчет квантового выхода ионизации МЭ нельзя ограничить решением одномерной задачи, а необходимо предварительно найти плотность СПЗ в трехмерном кристалле.

IV. РАДИАЛЬНАЯ ПЛОТНОСТЬ СПЗ В МОНОКЛИННОЙ РЕШЕТКЕ

Плотность СПЗ, образующихся при переносе электрона от молекулы в узле (0, 0, 0) на молекулу в узле, определяемом тремя целыми числами (n_a, n_b, n_c) , определяется расстоянием между этими узлами

$$P(R) = \sum_{n} \delta(R - R_{n}), \ R_{n} = R(n_{a}, n_{b}, n_{c}).$$
(17)

Результаты расчета R(n) для моноклинной решетки Pc (a = 1.96, b = 0.47, c = 1.48 нм, $\beta = 122^{\circ}$), с направлением стопок по оси *b* с наименьшей постоянной решетки, представлен на рис. 1. При R < 1 нм, $n_a = 0$, $n_b = 1, 2$, $n_c = 0$, перенос происходит только в стопке по оси b. В узком интервале $3 \le N = \mod(n) \le 4$ в сумму входят ближайшие узлы соседних стопок, расположенные в плоскостях (ab) и (bc), а при N > 4 плотность определяют комбинации узлов с тремя ненулевыми индексами. Резкий рост P(R) в интервале $3 \le N \le 4$. соответствует переходу от одномерного переноса в стопке к трехмерному, в котором доминируют переходы между стопками. Особенность этого перехода состоит в том, что оси a, b, c не ортогональны ($\beta \neq \pi/2$) и при различных значениях трех постоянных решетки $b \ll a \approx c$, одинаковые значения *R*, возникают при различных комбинациях n (рис. 1). Возникающее перемешивание означает, что при достаточно больших N значения R_n плотно заполняют заданный интервал $[R_1, R_2], P(R)$ соответствует не регулярной, а стохастической системе [31-33] и переход от одномерной стопки к трехмерной решетке с ростом длины переноса связан с переходом от СПЗ, как состояний с фиксированной длиной переноса, к случайным состояниям. В результате, детерминированное описание следует заменить стохастическим. Переход от регулярной к стохастической модели зависит от заданной точности измерения расстояний R_n: дискретное распределение (17) превращается в непрерывное, и СПЗ при $n \ge 1$ можно заменить огрубленным радиальным распределением, введенным в предыдущем разделе,

$$\tilde{P}(R) = \sum_{s=1}^{N_m} N_s \left(\xi_s / \pi\right)^{1/2} \exp(-\xi_s \left(R - R_s\right)^2), \quad (18)$$

где выбор значений параметров гауссианов (масштабов огрубления $\xi_s^{-1/2}$) следует из описанного выше перехода от одномерной к трехмерной решетке. Переход от (17) к (18) в интервале $b \le R \le 10$ нм при изменении ξ^{-1} иллюстрирует рис. 2. В однород-

Рис. 1. Расстояние переноса заряда между узлами (0, 0, 0) и узлами (n_a, n_b, n_c) и $(n_a + 1/2, n_b + 1/2, n_c + 1/2)$ в моноклинной решетке кристалла H₂Pc (панели слева и справа соответственно). $n_b = 5$. Кривые на обеих панелях соответствуют целым значениям n_a от 0 до 15 (снизу вверх).

ной среде с постоянной объемной плотностью узлов радиальная плотность равна числу узлов в шаровом слое, так что значения R_s , N_s и ξ_s связаны условием

$$N_s = V^{-1} R_s^2 \xi_s^{-1/2}, \quad V = 2abc \sin\beta, \tag{19}$$

где *V* – объем элементарной ячейки. Выражение (19) показывает, что предел однородной среды связан с увеличением толщины s-слоя с ростом $R_{\rm s}$. Для дискретной решетки предел сплошной среды достигается при $R \gg \max(a, b, c)$. В одномерной решетке радиальная плотность постоянна, а в трехмерной $P(R) \sim R^2$. Если $a \approx b \approx c$, заполнение решетки происходит послойно, и слои с приблизительно постоянной объемной плотностью образуются один за другим, а при $b \ll a \approx c$ сразу заполняются несколько слоев: при последовательных переходах Δn_a , $\Delta n_c = 1$ образуется трехмерная сеть узлов с большими периодами $a \approx c$, а в ней переходы $\Delta n_b = 1$ создают мелкомасштабную сеть с периодом b. Это различие приводит к различной структуре *s*-слоев. Первый сценарий соответствует эргодическому заполнению, а второй – заполнению с перемешиванием [38, 39]. Эргодическое заполнение образует слои с почти постоянной плотностью, а перемешивание – приводит к неоднородным слоям большего объема с внутренними пустотами. Эти пустоты видны на рис. 2 при $\xi_s = 10^4$ нм⁻². При огрублении перемешанных слоев их локальный объем неравномерно возрастает: пустоты в слоях малого радиуса за-

полняются, а в СПЗ большого радиуса, напротив, возрастают. Увеличение радиуса СПЗ в процессе ионизации напоминает динамическую задачу об эргодическом движении пробной частицы и движении с перемешиванием, когда элемент фазового объема, соответственно, сохраняется и увеличивается, вследствие доминирующего роста чисразбегающихся траекторий с большими ла изменениями Δn_a , Δn_c . Масштаб огрубления в кристаллах Рс определяется наименьшим периодом решетки так, чтобы отделить мелко масштабные смещения узлов $\leq b/2$ ($\xi \geq (2/b)^2$) от смещений ~ a, c. Найденные при таком огрублении параметры радиальных слоев представлены на рис. 3, где предел постоянной объемной плотности (19) показан пунктиром. Локальные плотности состояний постоянны при s = 1 и 2 ($0.5 \le R \le 1$ нм), что соответствует одномерному переносу по оси b, при $3 \le s \le 6 \ (1.5 \le R \le 6.5 \text{ нм}), \ \tilde{P}(R)$ растет ~ R^2 и состоит из плотных слоев с менее плотными прослойками между ними, а при $7 \le s \le 9$ (6.5 $\le R \le 9$ нм) рост радиальной плотности медленнее, чем ~ R^2 , чему соответствует образование более рыхлых слоев. Эти изменения согласуются с представленным выше качественным описанием стохастических слоев в предыдущем разделе.

V. РАДИАЛЬНАЯ ФУНКЦИЯ СТОХАСТИЧЕСКИХ СПЗ

Огрубление вводит дискретный набор параметров *s*-слоев. Чтобы учесть неоднородность

Рис. 2. Изменение радиальной плотности СПЗ в решетке H₂Pc при постоянном масштабе огрубления $\xi^{-1/2}$ в произвольно выбранном интервале расстояний переноса $R \ge a, b, c$ (нм). Внизу: $\xi = 10^4$ нм², где пики с единичной амплитудой соответствуют отдельным узлам, а с удвоенной и большей амплитудой – значениям R, разность которых $\le 2(\xi/\pi)^{-1/2}$ нм. Сверху: $\xi = 10^2$ нм², кривая суммирует амплитуды пиков в том же интервале.

Рис. 3. Огрубленная радиальная плотность СПЗ в моноклинной решетке H_2Pc (жирная линия), как сумма гауссианов, описывающих распределение СПЗ в стохастических слоях s = 1, 2, ..., 11 (тонкие линии). Пунктиром показана радиальная плотность в однородной среде (20).

ХИМИЯ ВЫСОКИХ ЭНЕРГИЙ том 54 № 6 2020

(1)

слоев, этот набор необходимо дополнить непрерывными функциями координат, характеризующими неоднородность распределения состояний внутри слоев. Введение таких функций основано на гипотезе об универсальности распределения состояний в системах с перемешиванием [38–40]. Обычно предполагается, что распределение является гауссианом, хотя рассматриваются и другие ансамбли [31–33], выбор которых обосновывается дополнительными свойствами рассматриваемой системы. В частности, для сложных ядер считается универсальным энергетическое распределение Вигнера

$$P(x) = \frac{\pi x}{2} \exp(-\pi x^2/4), \quad x = |E_j - E_{j'}|, \quad (20)$$

которое описывает также распределение интервалов между частотами нормальных колебаний больших молекул [33, 34] и рассматривает скорее не радиальное, а угловое распределение. Введение подходящего ансамбля позволяет обобщить процедуру огрубления на случай некристаллических и поликристаллических структур, в частности полимерных, для которых нельзя рассчитать решеточную сумму, как это сделано выше в кристаллах Рс. Следуя этой гипотезе, введем непрерывную радиальную функцию

$$\langle R \rangle = \sum_{s} \left(\frac{\xi_{s}}{\pi} \right)^{1/2} \exp\left(-\xi_{s} (R - R_{s})^{2} \right),$$
 (21)

показанную на рис. 4. Осцилляции $\langle R \rangle$ как функции непрерывной переменной *R* характеризуют неоднородность радиального распределения расстояний переноса внутри слоев, отмеченного на рис. 2. Перемешивание создает локальные максимумы радиальной плотности при значениях R_n , равных в масштабе огрубления. Функция (21) воспроизводит наличие трех указанных выше областей с различной структурой слоев. Осцилляции $\langle R \rangle$ наблюдаются при $s \leq 5$ ($R_n \leq 5$ нм) и постепенно исчезают при s > 5, поскольку распределение стремится к пределу, соответствующему непрерывной среде и определяемому объемом элементарной ячейки (19). Подчеркнем, что в (21), в отличие от (18) не входят плотности состояний N_c. Если распределение узлов в слое предполагается нормальным, вместо совокупности СПЗ как состояний, образующихся при переносе на фиксированный узел, описываемых распределением (18), можно ввести огрубленные состояния, с нормированным распределением по N_s узлам стохастического слоя. Этому распределению соответствует радиальная функция (21) в виде суперпозиции амплитуд узлов, расположенных в шаровом слое. Этот аналог волновой функции характеризует плотность вероятности распределения заряда по узлам шаровых слоев. Таким образом, замена распределения (18) на (21) означает переход к новому вероятностному базису для разложения собственных функций.

VI. ПОТЕНЦИАЛ И СВОБОДНАЯ ЭНЕРГИЯ СТОХАСТИЧЕСКИХ СПЗ

Заменяя R(n) в (6) функцией $\langle R \rangle / R$ при том же значении V_1 , находим потенциал кулоновского взаимодействия (кривая *1* на рис. 5). Начальный участок с сильной связью соответствует s = 1 и 2 ($0.5 \le R \le 1$ нм). Для СПЗ $3 \le s \le 6$ ($1.5 \le R \le 6.5$ нм), кулоновская связь приближается к тепловой энергии и составляет (1 - 2) k_BT при 300 К. При дальнейшем росте R потенциальная энергия монотонно растет до нуля. Поскольку разность энергий начальных состояний МЭ и НСПЗ и конечного состояния свободных зарядов не изменяется, энергия активации ионизации равна $\Delta - E_s$, как и в (2).

Свободная энергия СПЗ С_s (кривая 2 на рис. 5)

$$G(\langle R \rangle) = U(\langle R \rangle) - k_B T \ln(N_s(R)), \qquad (22)$$

при $s \le 2$ близка к U(R) и более медленно растает при s = 3-4 ($2 \le R \le 2.5$ нм) из-за роста радиальной плотности состояний, которая стремится к пределу (19), равному свободной энергии электронно-дырочной пары в однородной среде. Согласно (22), изменение свободной энергии ионизации МЭ в кристаллах Рс не превышает (4 - 6) k_BT . Рост плотности конечных состояний компенсирует кулоновскую связь в МЭ, и члены ряда в (15) экспоненциально уменьшаются. В силу сходимости ряда, (15) сводится к (3) с эффективной константой γ_{np} , определяемой переходами между СПЗ. Уменьшение свободной энергии согласуется с качественным рассмотрением разделения зарядов в [41].

В динамической теории перекрывание стохастических слоев создает глобальный хаос [38, 40]. В отличие от одномерного кристалла с постоянной плотностью состояний, рост N_s в трехмерном кристалле увеличивает вероятность ионизации МЭ на несколько порядков.

VII. ВЫВОДЫ

1. Вместо рассмотренной ранее феноменологической модели, предполагающей детальное равновесие скоростей ионизации МЭ и рекомбинации ЭДП, предложена кинетическая модель, учитывающая переход МЭ в НСПЗ и последующее обратимое образование СПЗ с растущим расстоянием переноса, много большим всех трех периодов решетки.

2. Модель включает расчет радиальной плотности СПЗ в моноклинной решетке кристаллов Pc.

Рис. 4. Радиальная функция распределения СПЗ (22) в шаровых слоях кристалла H_2 Pc. Тонкими линиями показаны гауссианы для слоев *s* = 1, 2, ..., 11 (слева направо).

Рис. 5. Модельный потенциал (7) и свободная энергия СПЗ (22) (кривые *1* и *2* соответственно) в кристалле H₂Pc. Пунктиром указаны те же зависимости в пределе однородной среды.

ХИМИЯ ВЫСОКИХ ЭНЕРГИЙ том 54 № 6 2020

(1)

3. Показано, что вследствие различного масштаба постоянных решетки по ее главным осям, разделение зарядов в процессе перехода МЭ в ЭДП является не эргодическим движением, а движением с перемешиванием, для описания которого необходимо перейти от детерминированного к стохастическому описанию радиальной плотности.

4. Найдена огрубленная радиальная плотность СПЗ в виде суммы гауссианов, относящихся к последовательности радиальных слоев, определяемых их радиусом, толщиной и числом состояний, которая воспроизводит дискретное распределение расстояний переноса в кристаллах Рс в масштабе, большем наименьшего периода решетки. Показано, что разделение зарядов является пространственно неоднородным процессом.

5. Найден огрубленный потенциал кулоновского взаимодействия, свободная энергия и квазистационарные концентрации СПЗ в условиях постоянной оптической накачки.

6. Показано, что ионизация МЭ в кристаллах Рс не описывается в одномерной модели, а должна учитывать уменьшение свободной энергии электронно-дырочной пары вследствие роста числа ее состояний в трехмерной решетке.

7. Предложенная модель огрубленной радиальной плотности СПЗ может быть обобщена для анализа различных механизмов фотоэффекта в неоднородных (в том числе полимерных) материалах, применяемых в органических солнечных элементах.

ИСТОЧНИК ФИНАНСИРОВАНИЯ

Работа выполнена по теме Государственного задания № 0089-2019-0003.

СПИСОК ЛИТЕРАТУРЫ

- 1. Usov N.N., Benderskii V.A. // Phys. Stat. Solidi. 1970. V. 37. P. 535.
- 2. Бендерский В.А., Белкинд А.И., Федоров М.И., Александров С.Б. // ФТТ. 1972. Т. 14. С. 790.
- 3. Liaou H.-C., Chen P.-H., Chang R.P.H., Su W.-F. // Polymer. 2014. V. 6. P. 2784.
- 4. Lee C.-H., Lee G.-H., vander Zande A.M., Chen W., li Y., Han M., Cui X., Arefe G., Nuckolis C., Heinz T.F., Guo J., Hone J., Kim P. // Nature Nanotechnol. 2014. V. 9. P. 676.
- 5. Elumalai N.K., Uddin A. // Energy Environ. Sci. 2016. V. 9. P. 391.
- 6. Ganesamoorthy R., Sathiyan G., Sakthivel P. // Solar energy mater. Solar cells. 2017. V. 161. P. 102.
- 7. Trindade A.J., Pereira L. // Int. J. Photoenergy. 2017. N.1D 1364152.
- 8. Gaspar H., Figueira F., Pereira L., Mendes A., Viana J.C., Bernardo G. // Materials. 2018. V. 11. P. 2560.
- 9. Coropceanu V., Chen X.-K., Wang T., Zheng Z., Bredas J.-L.// Nature Rev. Mater. 2019. V. 4. P. 689.

- 10. Fan B., Zhong W., Ying L., Zhang D., Li M., Lin Y., Xia R., Liu F., Yip H.-L., Li H., Ma Y., Brabec C.J., Huang F., Cao Y. // Nature Commun. 2019. V. 10. P. 1038.
- 11. Sun H., Chen F., Chen Z.-K. // Materials Today. 2019. V. 24. P. 94.
- 12. Suman, Singh S.P. // J. Mater. Chem. A. 2019. V. 7. P. 22701.
- 13. Ferron T., Waldrip M., Pope M., Collins B.A. // J. Mater. Chem. A. 2019. V. 7. P. 536.
- 14. Li M., Chen J.-S., Cotlet M. // ACS Energy Lett. 2019. V. 4. P. 2323.
- 15. *McKeown N.B.* // Phthalocyanine Materials. 1998. Cambridge. Univ. Press. Cambridge.
- 16. Walter M.G., Rudine A.B., Wamser C.C. // J. Porphyrins Phthalocyanines. 2010. V. 14. P. 759. 17. *Wipps K.W., Mazur U. //* J. Porphyrins Phthalocya-
- nines. 2012. V. 16. P. 273.
- 18. Zou T., Wang X., Ju H., Zhao L., Guo T., Wu W., Wang H. // Crystals. 2018. V. 8. P. 1.
- 19. Agranovich V.M. // Excitations in Organic Solids. 2008. AIP Press. N.Y.
- 20. Bondarev I.V., Popescu A., Younts R.A., Hoffman B., McAfee T., Dougherty D.B., Gundogdu K., Ade H.W. // Appl. Phys. Lett. 2016. V. 109. P. 213302.
- 21. Hiramoto M., Kubo M., Shinmura Y., IShiyama N., Kaji T., Sakai K., Ohno T., Izaki M. // Electonics. 2014. V. 3. P 351
- 22. Lalov I.J., Warns C., Reineker P. // New J. Phys. 2008. V. 10. № 085006.
- 23. Guan Y.-S., Zhang Z., Pan J., Jan Q., Ren S. // J. Mater. Chem. C. 2017. P. 12338.
- 24. Usman R., Khan A., Wang M., Luo Y., Sun W., Sun H., Du C., He N. // Crystal Growth Design. 2018. V. 18. P. 6001.
- 25. Merrifield R.E. // J. Chem. Phys. 1961. V. 34. P. 1835.
- 26. Бендерский В.А., Блюменфельд Л.А., Попов Д.А. // Журн. Структурн. Химии. 1966. Т. 7. С. 370.
- 27. Zoos Z.G. // Annu. Rev. Phys. Chem. 1974. V. 25. P. 121.
- 28. *Hill I.G., Kahn A., Soos Z.G., Pascal R.A.* // Chem. Phys. Lett. 2000. V. 327. P. 181.
- 29. Бендерский В.А., Кац Е.И. // Письма в ЖЭТФ. 2015. T. 101. C. 17.
- 30. Бендерский В.А., Кац Е.И. // ЖЭТФ. 2018. Т. 127. C. 566.
- 31. Mehta M.L. Random Matrices. 1968. Academic N.Y. Press
- 32. Papenbrock T., Weidenmuller H.A. // Rev. Mod. Phys. 2007. V. 79. P. 997.
- 33. Rodrigues K.R., Shah S., Williams S.M., Teters-Kennedy S., Coe J.V. // J. Chem. Phys. 2004. V. 121. P. 8671.
- 34. Бендерский В.А., Гак Л.Н., Кац Е.И. // ЖЭТФ. 2009. T. 135. C. 176.
- 35. Wattis J.A.D. // Physica D. 2006. V. 222. P. 1.
- 36. Ovchinnikov A.A., Ovchinnikova M.Y. // Adv. Quant. Chem. 1982. V. 16. P. 161.
- 37. Benderskii V.A., Benderskii A.V. Laser Electrochemistry of Intermediates. 1995. CRCPress. N.Y.
- 38. Заславский Г.М. Стохастичность динамических систем. М.: Наука, 1984.
- 39. Вишик А.М., Корнфельд И.П., Синай Я.Г. Общая эргодическая теория динамических систем. Современные проблемы математики. 1985. Т. 1. ВИНИ-ТИ. Москва.
- 40. Chirikov B.V. // Phys. Rep. 1979. V. 52. P. 527.
- 41. Бендерский В.А., Кац Е.И. // Химия высоких энергий. 2020. Т. 54. № 3. С. 192.