———— ПЛАЗМОХИМИЯ ——

УДК 544.552;544.558

СРАВНЕНИЕ ХИМИЧЕСКОГО СОСТАВА И ГИДРОФИЛЬНЫХ СВОЙСТВ ПОВЕРХНОСТИ ОРГАНИЧЕСКИХ ПОЛИМЕРОВ, ОБРАБОТАННЫХ В РАЗЛИЧНЫХ ВИДАХ НИЗКОТЕМПЕРАТУРНОЙ ПЛАЗМЫ

© 2021 г. Хтет Ко Ко Зау^{а,} *, Т. М. Васильева^а, Йе Хлаинг Тун^а, Аунг Чжо У^а, Т. Г. Шикова^b

^а Московский физико-технический институт, Институтский пер., 9, Московская обл., Долгопрудный, 141700 Россия ^b Ивановский государственный химико-технологический университет, просп. Шереметевский, 7, Иваново, 153000 Россия *E-mail: htetkokozaw536@gmail.com Поступила в редакцию 03.02.2021 г. После доработки 11.03.2021 г. Принята к публикации 12.03.2021 г.

Проведено сравнение химического состава и свойств полиметилметакрилата и полиэтилентерефталата после их обработки в различных видах низкотемпературной плазмы кислорода. Установлено, что в результате обработки на поверхности полимеров формируются кислородсодержащие функциональные группы, содержание которых зависит от типа плазмы, а также определяет увеличение гидрофильности полимерной поверхности. Обсуждаются преимущества гибридной плазмы, генерируемой при одновременном воздействии на плазмообразующий газ ВЧ-разряда и пучка высокоэнергетических электронов при обработке полимеров.

Ключевые слова: ВЧ-разряд, электронно-пучковая плазма, гибридная плазма, гидрофильность, полиметилметакрилат, полиэтилентерефталат

DOI: 10.31857/S0023119321040136

В настоящее время органические полимеры и материалы на их основе широко используются в промышленности, автомобиле-, авиа-, суло- и ракетостроении и различных сферах жизни человека, таких как медицина и фармакология [1-3]. Обладая ценными для применения объемными физико-химическими характеристиками (низкая плотность, высокие эластичность и удельная прочность, устойчивость к коррозии и др. [4]), полимеры чане имеют желательных поверхностных сто свойств. Из-за, как правило, низких значений поверхностной энергии полимеры плохо смачиваются водой и другими растворителями, имеют низкую адгезию к напыленным слоям металлов, различным подложкам и покрытиям, биологически активным молекулам, эукариотическим клеткам и тканям организма человека. По этой причине при использовании полимеров и пластмасс часто необходима их предварительная модификация и функционализация, при этом разработка новых процессов и аппаратов для эффективных технологий инженерии полимерных поверхностей приобретает большое научное и коммерческое значение [5-7].

Одним из наиболее перспективных способов модификации поверхности полимеров является воздействие на них низкотемпературной плазмы (НТП). По экологическим характеристикам плазменная обработка полимеров значительно выигрывает в сравнении с традиционными химическими методами, основывающимися на применении кислот, гидроксидов, щелочноземельных металлов и их соединений [8-11]. При этом возможны также нежелательные изменения объемных свойств и структуры полимерных материалов. Последнее определяет и еще одно важное преимущество НТП: плазмохимическое воздействие, затрагивает только тонкие поверхностные слои на глубину порядка 10 нм, что, однако, вполне достаточно для последующих технологических операций [11-13].

Наиболее изучено влияние на полимеры низкочастотных, ВЧ- СВЧ-разрядов, а также разрядов постоянного тока низкого давления. Весьма перспективной альтернативой газоразрядным реакторам являются пучково-плазменные системы [14–16]. Показано, что плазмохимические реакторы, реакционная зона которых представляет

Параметр	Величина			
Ускоряющее напряжение (U)	30 кВ			
Ток пучка (I _b)	1-10 мА			
Режим сканирования ЭП	Концентрические окружности с диаметром 10 см			
Состав и давление (<i>P_m</i>) плазмообразующей среды	O ₂ , 1.5 Topp			
Мощность ВЧ-разряда (N _{RF})	25 Вт			
Расстояние между выводным окном и образцом	250 мм			
Время обработки (τ)	5 мин			
Температура материала (<i>T_s</i>)	40°C			

Таблица 1. Параметры генерации различных типов НТП, использованных для модификации полимеров

собой электронно-пучковую плазму (ЭПП) могут успешно применяться для обработки сложных высокомолекулярных природных соединений, используемых в качестве сырья или полупродуктов для последующего получения из них сорбентов, фитостимуляторов и других продуктов [15, 16].

При одновременном воздействии на плазмообразующую среду двух (или более) ионизаторов генерируется так называемая гибридная плазма ($\Gamma\Pi$). В настоящем исследовании для формирования достаточно больших плазменных объемов в качестве ионизаторов были использованы электронный пучок ($\Im\Pi$) в комбинации с ВЧ-разрядом емкостного типа с частотой 13.56 МГц (ВЧЕ-разряд).

В работе [17] показано, что ЭП способен эффективно управлять размерами реакционного объема газоразрядной плазмы и его локализацией в пространстве, потоками активных частиц плазмы, падающими на поверхность обрабатываемого материала, температурой материала и плазмы, а также важными для организации процесса обработки параметрами. При этом сохраняется, а в ряде случае усиливается, реакционная способность газоразрядной плазмы, обусловленная присущими ей высокими концентрациями возбужденных частиц. Наличие в ГП интенсивных потоков быстрых электронов пучка, лишь частично деградировавшего при прохождении через достаточно плотный плазмообразующий газ, может привести к нежелательным изменениям в структуре и химическом составе поверхностных слоев материала, в частности стимулировать сшивку полимерных молекул [18].

Задачей настоящего исследования было сравнение химического состава и гидрофильных свойств поверхности полиметилметакрилата (**ПММА**) и полиэтилентерефталата (**ПЭТ**), прошедших обработку в ВЧ-разряде, ЭПП и ГП. При этом планировалось экспериментально подтвердить гипотезу о том, что в пучково-плазменных реакторах можно реализовать условия, когда потоки высокоэнергичных электронов не приводят к нежелательным изменениям в структуре и химическом составе обрабатываемых полимеров.

МЕТОДИКА ЭКСПЕРИМЕНТА

Образцы промышленно выпускаемых ПММА и ПЭТ обрабатывали в плазмохимическом реакторе, конструкция и принцип работы которого подробно описаны в работе [17]. В этом реакторе возможно получать достаточно большие устойчивые объемы плазмы ВЧ-разряда, а также электронно-пучковой и гибридной плазмы. Все эксперименты выполняли в плазмообразующей среде кислорода спектроскопического класса при давлении $P_m = 1.5$ Торр; остальные параметры, важные для описания режимов обработки, приведены в табл. 1.

Нагрев образца контролировали во время обработки бесконтактным ИК-пирометром Optris LS (Optris GmbH, Германия). Требуемая температура процесса поддерживалась за счет регулировок тока электронного пучка I_b .

Состав поверхности полимеров исследовали методом Фурье-ИК спектроскопии МНПВО с помощью спектрометра Avatar Nicolet 360. В качестве элемента МНПВО использовался кристалл селенида цинка с 12-кратным отражением, угол отражения 45°. Экспериментально был подобран режим накопления сигнала по результатам 32 сканирований. Разрешение составляло 2 см⁻¹. Интерпретацию спектров выполняли в соответствии с [19–21].

Химический состав поверхностей ПЭТ и ПММА исследовался методом рентгеновской фотоэлектронной спектроскопии (РФЭС) с использованием спектрометра Theta Probe (Thermo Scientific, США) с монохроматическим AlK α -излучением (1486.6 эВ). Калибровка энергетической шкалы спектрометра проводилась по линии Au4 $f_{7/2}$ с энергией связи 84.0 эВ. Интерпретацию РФЭС-спектров выполняли в соответствии с [22–25].

Пик		Контроль		ВЧ		ЭПП		ГП			
		BE, эB	Содержание элемента, %	BE, эВ	Содержание, %	BE, эВ	Содержание элемента, %	BE, эB	Содержание элемента, %		
ПЭТ											
C1s	А	283.57	59.19	283.55	23.19	283.49	25.72	283.51	24.81		
	В	285.13	8.43	285.17	13.08	284.69	7.71	284.89	7.44		
	С	—	_	285.94	6.80	285.57	13.18	285.63	12.40		
	D	287.54	8.37	287.60	16.30	287.56	15.20	287.60	15.09		
O1 <i>s</i>	А	530.71	13.92	530.88	18.96	530.87	19.23	530.84	19.89		
	В	532.32	7.44	532.18	21.67	532.18	18.97	532.18	20.38		
ΠΜΜΑ											
C1s	А	283.44	43.80	283.54	29.54	283.29	35.55	283.42	31.43		
	С	284.99	18.01	285.03	17.81	284.94	17.72	285.00	18.14		
	D	287.31	12.26	287.43	16.17	287.21	14.71	287.20	16.37		
O 1 <i>s</i>	А	530.63	13.31	530.87	19.86	530.68	19.22	530.80	19.35		
	В	532.20	12.63	532.21	16.62	532.07	12.80	532.10	14.71		

Таблица 2. Энергии связи C1s и O1s и состав поверхности ПЭТ и ПММА до и после обработки в различных типах низкотемпературной плазмы

Гидрофильность полимеров была охарактеризована путем измерения статического краевого угла смачивания для дистиллированной воды (θ_W) методом падающей капли и с помощью вычисления свободной поверхностной энергии (SFE) γ_{tot} по методу Owens и Wendt [26]. Использовали оптический прибор CAM101 фирмы KSV Instruments LTD (Финляндия), полярной компонентой являлась вода (θ_W , γ_{pol}), а неполярной – дийодометан (θ_{DM} , γ_{disp}). Во избежание деградации свойств плазменно-модифицированной поверхности все упомянутые измерения проводили сразу после обработки.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Наиболее существенные изменения в ИКспектрах ПЭТ и ПММА после плазменной обработки были обнаружены в диапазоне волновых чисел v = 3500-3100 см⁻¹, в котором появилась широкая полоса поглощения, характеризующая валентные колебания связей О—Н, что предполагает увеличение кислородсодержащих групп на поверхности полимеров. Также отмечалось снижение интенсивности полосы поглощения v == 1712 см⁻¹ (валентные колебания С=О в сложноэфирных группах) и нарастание интенсивности пика v = 1686 см⁻¹ (валентные колебания С=О в карбоксильных группировках).

В табл. 2 представлен элементный состав и относительные атомные концентрации С и О на поверхностях полимеров до и после их обработки в различных типах кислородной НТП. Данные таблицы показывают, что в результате плазмохимической обработки ПЭТ и ПММА заметно изменялось соотношение атомов С/О по сравнению с исходными образцами. При этом содержание атомов углерода в поверхностном слое обоих полимеров снижалось, в то время как количество атомов кислорода возрастало. Так, в случае ПЭТ после плазменной обработки соотношение С/О уменьшалось с 3.56 (контрольный образец) до 1.61, 1.47 и 1.46 после модификации в ВЧ-разряде, ЭПП и гибридной плазме соответственно. Для контрольного образца ПЭТ пик C1sA (углеродные атомы ароматического кольца) составлял примерно 59% общего количества углерода, тогда как на пики C1sB и C1sD (атомы углерода в метиленовых и сложноэфирных группах) приходится 8.43 и 8.37% соответственно. После плазменной обработки площадь пика C1sA уменьшается, а пиков C1sB и C1sD, наоборот возрастает. На поверхности ПММА после плазмохимической модификации также увеличивалось содержание кислорода: соотношение С/О составило 2.85 (исходный образец), 1.74, 2.12 и 1.93 (образцы, обработанные в ВЧ-разряде, ЭПП и гибридной плазме соответственно).

Полученные данные свидетельствуют о формировании на полимерных поверхностях новых кислородсодержащих функциональных групп. Причем, как видно из табл. 2, интенсивность окислительных процессов зависит от типа НТП, в котором проводилась обработка: максимальный эффект наблюдался при обработке ПЭТ и ПММА в ВЧ-разряде. Модификация в гибридной плазме не при-

Рис. 1. С1*s* спектры образцов ПЭТ до и после плазмохимической обработки: (а) необработанный ПЭТ; (б) ПЭТ, обработанный в плазме ВЧ-разряда; (в) ПЭТ, обработанный в ЭПП; (г) ПЭТ, обработанный в гибридной плазме.

водила к дополнительному окислению полимерной поверхности.

Для более детального анализа изменений функциональных боковых групп в результате НТП-обработки C1s спектры образцов ПЭТ были преобразованы с помощью программного обеспечения XPSPEAK (рис. 1). В контрольном образце ПЭТ были выделены три характерных пика с энергиями связи (BE) 283.57, 285.13 и 287.54 эВ, которые могут быть соотнесены со связями С–С ароматического кольца, С–О и О=С–О соответственно (рис. 1а). Эти пики сохранялись и на РФЭС-спектрах всех трех плазменно-модифицированных образцов, однако их интенсивность снижалась приблизительно в 2 раза по сравнению с необработанным ПЭТ.

Кроме того, при анализе спектров НТП-обработанных ПЭТ обнаружен дополнительный пик (пик ClsC на рис. 16-г), который может принадлежать углероду функциональной группы C=O [27]. После плазмохимического воздействия у образцов ПЭТ также значительно возрастала интенсивность пиков, соответствующих связям C=O (OlsA) и C-O (OlsB) на Ols спектрах.

C1s и O1s спектры ПММА приведены на рис. 2 и 3. Сравнение данных C1s спектров до и после плазменной обработки выявило увеличение площади пика C1sD (O-C=O), которое достигало 35 и 47% при модификации ПММА в ГП и ВЧ-разряде и может быть следствием образования групп карбоновых кислот [23, 24, 28]. Площадь пика C1sA, связанного с углеродом, входящим в состав метиловых и метиленовых групп после НТП-воздействия, напротив, снижалась на 15-25%. В то же время площадь пиков, соответствующих группам C–O (O1sA) и C=O (O1sB), увеличивалась у всех образцов после модификации. У исходного ПММА площадь каждого из этих пиков составляла ~50% от площади общего пика O1s. Однако после обработки в НТП относительные площади и интенсивности пиков C1sA и O1sB различались в 1.2-1.5 раза, причем доля пика, соответствующего группе С=О, была выше, чем у пика С-О группы.

Полученные результаты позволяют сделать вывод, что при обработке С-С связи на поверхности полимера разрушаются и затем вступают в реакции с активными формами кислорода, нарабатываемыми в НТП, формируя свободные карбонильные группы, а также группы –СООН. Содер-

Рис. 2. С1*s* спектры образцов ПММА до и после плазмохимической обработки: (a) необработанный ПММА; (б) ПММА, обработанный в плазме ВЧ-разряда; (в) ПММА, обработанный в ЭПП; (г) ПММА, обработанный в гибридной плазме.

жание кислородсодержащих группировок зависит от типа НТП, используемого для модификации.

В табл. З приведены значения краевых углов смачивания (θ_W и θ_{DM}) и SFE для исходных и плазмохимически модифицированных образцов. Во всех случаях обработка в НТП кислорода повышала гидрофильность ПЭТ и ПММА. Улучшение гидрофильных свойств главным образом происходило за счет увеличения полярной компоненты γ_{pol} . Степень повышения гидрофильности полимера коррелировала с содержанием полярных групп на его поверхности, а наиболее заметные изменения наблюдались в результате воздействия ВЧ-разряда и гибридной плазме оказалась одинаково эффективной.

Таким образом, в исследованном диапазоне условий генерации плазмы использование ЭП в комбинации с газоразрядной плазмой не приводит к дополнительному изменению химического состава и смачиваемости ПЭТ и ПММА по сравнению с обработкой ВЧЕ-разрядом. Это позволяет сохранить, а в некоторых случаях и несколько усилить, эффект воздействия плазмы ВЧ-разряда. Инжекция ЭП в реакционный объем создает целый ряд технологических возможностей и преимуществ гибридной плазмы, которая:

1. Обладает более высокой устойчивостью реакционного объема к контракции при повышении давления плазмообразующего газа (что целесообразно с точки зрения улучшения технико-экономических и эксплуатационных характеристик плазмохимических реакторов) вплоть до значений, при которых ВЧ-разряд филаментируется или вообще не горит;

2. Создает возможность практически безынерционно управлять свойствами и геометрией реакционного объема и, в частности, контролируемым образом локализовать зоны горения ВЧ-разряда на поверхности обрабатываемого полимера. Это позволяет получить на полимерных поверхностях области, физико-химические и/или функциональные свойства, которых скачкообразно (структурированные паттерны) или плавно (градиентные материалы) изменяются в пределах одного образца.

Экспериментальные результаты, подтверждающие такие возможности, можно найти в наших работах [14, 17].

Рис. 3. O1s спектры образцов ПММА до и после плазмохимической обработки: (a) необработанный ПММА; (б) ПММА, обработанный в плазме ВЧ-разряда; (в) ПММА, обработанный в ЭПП; (г) ПММА, обработанный в гибридной плазме.

Образец	θ _{<i>w</i>} , град.	θ _{<i>DM</i>} , град.	γ _{pol} , мДж/м ²	γ _{disp} , мДж/м ²	γ _{tot} , мДж/м ²						
ПЭТ											
Контроль	$80.6\pm0,\!2$	40.2 ± 1.5	3.3	38.4	42.7						
ВЧ	27.3 ± 0.6	36.3 ± 1.8	30.1	40.2	70.4						
ЭПП	44.9 ± 0.1	$42,8\pm0.3$	19.1	45.8	64.9						
ГП	26.8 ± 0.4	36.8 ± 0.2	30.3	41.3	71.6						
ПММА											
Контроль	94.9 ± 0.2	67.2 ± 0.5	3.1	14.2	17.3						
ВЧ	40.1 ± 0.2	62.3 ± 0.9	45.8	18.9	64.7						
ЭПП	54.3 ± 0.1	68.8 ± 0.3	34.9	12.5	47.4						
ГП	44.8 ± 0.4	61.5 ± 0.2	43.2	17.5	60.7						

Таблица 3. Изменения гидрофильных свойств поверхности ПЭТ и ПММА до и после обработки в различных типах низкотемпературной плазмы

Данные представлены в виде среднее значение \pm стандартное отклонение. Все результаты достоверные по сравнению с контролем (необработанный полимер) (p < 0.05).

ИСТОЧНИК ФИНАНСИРОВАНИЯ

Работа поддержана Российским фондом фундаментальных исследований, грант РФФИ_Аспирант, проект 19-38-90009.

СПИСОК ЛИТЕРАТУРЫ

- 1. Maitz M.F. // Biosurf. Biotribol. 2015. V. 1. № 3. P. 161.
- Ibanez J.G., Rincón M.E., Gutierrez-Granados S. et al. // Chem. Rev. 2018. V. 118. № 9. P. 4731.
- Sun H-S., Chiu Y-C., Chen W-C. // Polym. J. 2017. V. 49. P. 61.
- Xu X., He L., Zhu B. et al. // Polym. Chem. 2017. V. 8. P. 807.
- 5. Kusano Y. // J. Adhes. 2014. V. 90. № 9. P. 755.
- Bhattacharya A., Misra B.N. // Prog. Polym. Sci. 2004.
 V. 29. № 8. P. 767.
- Sazali N., Ibrahim H., Jamaludin A.S. et al. // IOP Conf. Ser., Mater. Sci. Eng. 2020. V. 788. P. 012047.
- Wen C.-M., Lin, C.-H. // IEEE Trans. Plasma Sci. 2021. V. 49. № 1. P. 162.
- 9. *Homola T., Wu L.Y., Černák M.* // J. Adhes. 2014. V. 90. № 4. P. 296.
- 10. Väänänen R., Heikkilä P., Tuominen M., et al. // AUTEX Res. J. 2010. V. 10. № 1. P. 8.
- 11. Park C.-S., Jung E.Y., Kim D.H. et al. // Materials. 2017. V. 10. № 11. P. 1272.
- 12. *Černák M., Kováčik D., Sťahel P. et al.* // Plasma Phys. Control. Fusion. 2011. V. 53. № 12. P. 124031.
- Weltmann K.-D., Kolb J.F., Holub M. et al. // Plasma Process Polym. 2019. V. 16. P. e1800118.

- Vasiliev M., Vasilieva T. Beam plasmas: materials production. In: Encyclopedia of Plasma Technology / Ed. Shohet J.L.: Taylor & Francis Inc., USA, 2016. P. 152.
- 15. Vasilieva T.M., Naumova I.K., Galkina O.V. et al. // IEEE Trans. Plasma Sci. 2020. V. 48. № 4. P. 1035.
- Vasilieva T., Goñi O., Quille P. et al. // Processes. 2021. V. 9. P. 103.
- 17. Vasiliev M., Vasilieva T., Hein Aung Miat // J. Phys. D: Appl. Phys. 2019. V. 52. № 33. P. 335202.
- Chapiro A. // Nucl. Instrum. Methods Phys. Res. B. 1995. V. 105. № 1–4. P. 5.
- 19. Накониси К. Инфракрасные спектры и строение органических соединений. М.: Мир, 1965. 216 с.
- 20. *Riau A.K., Mondal D., Yam G.H.F. et al.* // ACS Appl. Mater. Interfaces. 2015. V. 7. № 39. P. 21690.
- 21. *Drobota M., Trandabat A., Pislaru M.* // Acta Chemica IASI, 2019. V. 27. № 1. P. 128.
- 22. Vandencasteele N., Reniers F. // J. Electron. Spectros. Relat. Phenomena. 2010. V. 178–179. P. 394.
- 23. Gonzalez E. II, Barankin M.D., Guschl P.C., Hicks R.F. // Plasma Process. Polym. 2010. V. 7. № 6. P. 482.
- 24. Gonzalez E. II, Barankin M.D., Guschl P.C., Hicks R.F. // Langmuir. 2008. V. 24. № 21. P. 12636.
- 25. *Nisol B., Reniers F.* // J. Electron. Spectros. Relat. Phenomena. 2015. V. 200. P. 311.
- Owens D.K., Wendt R.C. // J. Appl. Polym. Sci. 1969.
 V. 13. № 8. P. 1741.
- 27. *Shen M., Wang L., Chen F. et al.* // J. Clean. Prod. 2015. V. 92. P. 318.
- 28. *Gonzalez E. II, Barankin M.D., Guschl P.C., Hicks R.F.* // IEEE Trans. Plasma Sci. 2009. V. 37. № 6. P. 823.