_____ РАДИАЦИОННАЯ ____ ХИМИЯ

УДК 541.15:541.515:543.422.27

ВЛИЯНИЕ ОБЛУЧЕНИЯ ИОНАМИ ГЕЛИЯ НА ПОВЕРХНОСТНЫЕ СВОЙСТВА ПОЛИВИНИЛИДЕНФТОРИДА "KYNAR"

© 2021 г. И. Ф. Шаймухаметова^{*a*, *b*}, С. А. Богданова^{*b*}, С. Р. Аллаяров^{*a*, *}, Д. А. Диксон^{*c*}

^аИнститут проблем химической физики Российской академии наук, Черноголовка, Московская обл., 142432 Россия ^bКазанский национальный исследовательский технологический университет, Казань, 420015 Россия ^cАлабамский университет Химический факультет, Таскалууса, Алабама, AL 35487-0336 США

> **E-mail: sadush@icp.ac.ru* Поступила в редакцию 04.06.2021 г. После доработки 01.07.2021 г. Принята к публикации 06.07.2021 г.

Исследованы поверхностные энергетические характеристики облученного ускоренными ионами гелия поливинилиденфторида. Бомбардировка полимера ионами гелия приводит к возрастанию кислотно-основной составляющей свободной поверхностной энергии и полярности поверхности, что связано с появлением функциональных полярных групп в поверхностном слое. Определение параметров кислотности поверхности облученного полимера свидетельствует о преобладании на поверхностном слое функциональных групп кислотного характера в результате облучения. Уменьшение дисперсионной составляющей свободной поверхностной энергий с увеличением энергий ионов и дозы облучения, по-видимому, связано с карбонизацией поверхности облученного полимера.

Ключевые слова: поливинилиденфторид, МэВ ионы гелия, свободная поверхностная энергия **DOI:** 10.31857/S0023119321060127

Поверхностные свойства полимеров имеют существенное значение в коллоидно-химических процессах, протекающих на межфазных границах. К ним относятся смачивание, адгезия, способность к адсорбции низкомолекулярных веществ и полимеров из растворов, функционализация поверхности, изменение ее полярности.

Величина свободной поверхностной энергии (СПЭ) является важной информативной характеристикой при изучении поверхностных свойств полимеров. Базируясь на фундаментальных исследованиях Зисмана, Фоукса, Оуэнса, Вендта и многих других [1-3], начиная с последних десятилетий прошлого века значительно расширились и продолжаются исследования поверхностных свойств полимерных материалов, в том числе, при помощи экспериментального определения СПЭ и ее компонентов, кислотно-основных параметров поверхности. Однако наиболее информативным, простым в лабораторном исполнении на сегодняшний день остается метод смачивания [4, 5]. Он основан на использовании большого разнообразия жидкостей, имеющих различную структуру, природу и функциональность (тестовых жидкостей), которые дифференцированно контактируют с исследуемой поверхностью. На этом базисе существует и продолжает совершенствоваться много-

мерная надстройка, представляющая собой комплекс расчетов, подходов, концепций по использованию и интерпретации данных измерения краевых (контактных) углов смачивания полимеров. Преимущественно эта информация касается адгезии полимеров [6-8], но она может быть полезна и в вопросах адсорбции, смачивающей способности амфифильных соединений, модификации поверхностных свойств, изучения состояния поверхности. Поверхностный слой полимеров формируется в зависимости от множества факторов, к которым относится разнообразие технологий получения, обработки, рецептур, морфологии, температурных режимов. Поэтому трудно ожидать высокой тождественности результатов, полученных в различных исследованиях для одних и тех же полимеров. Однако эти вариации, тенденции их изменения в конкретных системах и являются предметом научного поиска, в том числе и в наших работах [9-11].

Существенный научный и практический интерес в этом плане представляет исследование влияния различных физических воздействий на поверхностный слой полимеров, в том числе, ионизирующего излучения. Объекты исследования многочисленны и разнообразны, и среди них особое место занимают фторсодержащие полимеры в связи с уникальным комплексом свойств и, вместе с тем, с ограниченной способностью к межфазным взаимодействиям.

Поливинилиденфторид (ПВДФ) – частично фторированный полимер, обладающий высокой химической, коррозионной и термической стойкостью, высокой прочностью, повышенной упругостью, стойкостью к абразивному износу. Он, в отличие от других фторпластов, сравнительно легко растворяется в апротонных растворителях, а также легко перерабатывается из расплава при относительно невысоких температурах (около 135°C) [12, 13]. Все это позволило повысить технологичность процессов синтеза и переработки ПВДФ, определяющие широкий марочный ассортимент, его низкую себестоимость, уступающую только политетрафторэтилену (ПТФЭ) и первое место по объемам производства среди термопластичных фторопластов. Наряду с этим, наличие в макромолекулах ПВДФ равного количества атомов фтора и водорода позволяет произвести наиболее полную реакцию дегидрофторирования с полным сохранением углеродного скелета и формированием карбиноидных структур [14]. В результате на поверхности изделий из ПВДФ можно получить обогашённый углеродом слой, состоящий из атомов углерода, связанных либо двойными, либо чередованием одинарных и тройных связей. Благодаря этому поверхность приобретает полупроводниковый полимера тип проводимости, что делает его интересным для использования в области микро- и наноэлектроники.

ПВДФ демонстрирует самый сильный пьезоэлектрический отклик и пироэлектрические свойства из всех коммерчески доступных полимеров. Они позволяют ПВДФ и его сополимерам эффективно преобразовывать механическое воздействие или нагревание в электрический заряд, что сделало их весьма полезными для изготовления датчиков, преобразователей акустического сигнала и т.д. [15–17].

В мембранных технологиях, электронике, медицине и других областях применения ПВДФ большое значение имеет установление его поверхностно – энергетических характеристик, их эволюция под влиянием внешнего воздействия, обусловленного условиями эксплуатации. Это касается также и использования ПВДФ в присутствии ионизирующего излучения высокой энергии и света, поскольку ПВДФ, благодаря своей повышенной устойчивости к радиации и свету [12, 18], считается одним из самых перспективных фторопластов для применения в атомной энергетике и новых технологиях. Безопасное и эффективное применение ПВДФ в таких ключевых отраслях требует тщательного изучения изменений в поверхностных свойствах полимера под воздействием ионизирующего излучения. В настоящей работе этот вопрос рассматривается на примере облучения ПВДФ ускоренными ионами гелия.

Наши прелылушие исслелования были посвящены молекулярно-топологическому строению пластинки ПВДФ после его гамма-облучения [19] и бомбардировки ускоренными (1-2) МэВ протонами [20, 21]. Элементный состав поверхности полимера, определенный по спектрам РФЭС показал, что на протонно-облученной поверхности ПВДФ уменьшается содержание фтора и увеличивается содержание углерода. Это свидетельствует о том, что при протонной бомбардировке происходит процесс отщепления фтора протоном с образованием HF. Результаты РФЭС анализа поверхности ПВДФ, облученной ионами гелия, свидетельствуют о протекании, нарялу с карбонизацией полимера, также и процесса образования кислородсодержащих функциональных групп [21]. Эффективность последнего возрастает с увеличением энергий бомбардирующих поверхность полимера частиц. При облучении поверхности ПВДФ ионами He⁺² с энергией 5 МэВ содержание кислорода в продуктах радиолиза увеличивается более чем на 4%. Аналогичная картина, хотя в меньших масштабах наблюдается при облучении МэВ ионами гелия поверхности другого фторопласта – ПТФЭ [22]. После бомбардировки ионами гелия He⁺² с энергией 5 МэВ содержание кислорода на поверхности ПТФЭ повышается на 2.2%. В работе [23] повышение содержания кислорода на поверхности облученного МэВ протонами ПТФЭ на 6.1% и сополимера тетрафторэтилена с гексафторпропиленом на 1.4% объясняется реакциями пострадиационного окисления радикалов, стабилизирующихся на поверхности облученного (со)полимера. В условиях эксперимента, облученный (со)полимер перед снятием спектров РФ-ЭС на короткое время (5-10 с) имел контакт с воздухом в момент снятия образца из ячейки ускорителя, что приводит к окислению подобных радикалов с последующим образованием кислородсодержащих функциональных групп.

Спецификой протонной бомбардировки политрифторхлорэтилена (ПТФХЭ) [24] является преимущественный разрыв основной цепи полимера и высокий выход хлорфторсодержащих продуктов и тетрафторэтилена, а также снижение выхода НF почти в 375 раз по сравнению с ПТФЭ [25] при его протонной бомбардировке в условиях эксперимента. Следовательно, вхождение атомов хлора в структуру фторопласта изменяет механизм его протонной бомбардировки и способствует защите его макромолекулы от реакции отрыва фтора ускоренными протонами. Увеличение содержания кислорода в спектре РФЭС поверхности облученного ПТФХЭ, также, как и при облучении протонами ПТФЭ [23] и сополи-

Образец	Мощность протона, МэВ	γ_s^d	γ_s^{ab}	$\gamma_{\rm s}$	$x^{p} \times 10^{2}$	<i>D</i> , (мН/м) ^{0.5}
Исходный полимер		36.2	3.4	39.6	8.6	0.18
Облученный полимер	1 (He ⁺¹)	28.4	14.3	42.7	33.5	4.38
	2 (He ⁺²)	26.8	17.3	44.1	39.2	3.82
	5 (He ⁺²)	30.21	15.99	46.2	34.61	3.22

Таблица 1. Поверхностные энергетические характеристики образцов ПВДФ, облученных ускоренными 1–5 МэВ ионами гелия дозой 10¹⁵ протон/см²

мера тетрафторэтилена с гексафторопропиленом [23], связано с окислением свободных радикалов. Появление кислородсодержащих функциональных полярных групп в поверхностном слое облученного ПТФХЭ приводит к возрастанию СПЭ и полярности поверхности полимера [24].

Подобная функционализация поверхности фторопласта или других термопластов может быть использована для модифицирования полимера, глубина такого радиационно-химического модифицирования легко регулируется энергией подающихся протонов.

Развивая данное научно-практическое направление в настоящей работе впервые исследовано влияние ускоренных 1–5 МэВ ионов гелия на поверхностные энергетические характеристики и параметр кислотности поверхности поливинилиденфторида "Kynar".

МЕТОДИКА ЭКСПЕРИМЕНТА

Пленка ПВДФ толщиной 0.5 мм, изготовленная из полимера марки "Kynar" была приобретена у компании "McMaster-Carr Supply Company" (Атланта, Штат Джорджия, США) и использована в работе без дополнительной очистки.

Облучение ускоренными ионами гелия проводили на ускорителе заряженных частиц в центре по облучению материалов имени Ховарда Дж. Фостера при Алабамском университете в городе Нормале, штат Алабама, США (Howard J. Foster Center for Irradiation of Materails of Alabama A&M University, USA, Alabama State, Normal). Мишень полимерной пленки размером $20 \times 20 \times 0.5$ мм была бомбардирована дозой 10^{15} ион/см² ионами He⁺¹ энергией 1 МэВ, а также ионами He⁺² с энергией 3 и 5 МэВ. Ток облучателя поддерживали в районе 300 нА во избежание перегрева поверхности полимера под пучком протонов. Остаточное давление выделяемых газов в облучателе поддерживали в пределах 0.13×10^{-3} Па.

СПЭ или (
$$\gamma_s$$
), ее кислотно-основная (γ_s^{ab}) и

дисперсионная (γ_s^d) составляющие определялись графическим методом на основании определения краевых углов смачивания поверхности тестовы-

ми жидкостями с использованием концепции Фоукса и уравнений Оуэнса—Вендта [2]. Поверхностное натяжение жидкостей, использованных в работе и его компоненты, а также методика измерения краевых углов смачивания с использованием катетометра КМ-8 приведены в наших работах [25, 26].

Параметр кислотности поверхности полимера определялся методом Э. Бергер [27].

Время установления равновесного значения краевого угла смачивания предварительно определялось для каждой жидкости на всех исследуемых поверхностях. Относительная погрешность измерений менее 2%. Коэффициент шероховатости определялся на основании профилограмм, полученных на приборе шупового типа профилографе — профилометре П-203. Коэффициенты шероховатости учитывали при расчете косинуса краевого угла смачивания с использованием уравнения Венцеля—Дерягина.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

О функционализации поверхности ПВДФ в результате бомбардировки ионами гелия и появлении полярных групп в поверхностном слое свидетельствуют результаты определения свободной поверхностной энергии и ее составляющих, а также полярности поверхности. Результаты исследования представлены в табл. 1.

На рис. 1 в качестве примера представлена графическая зависимость, на основании которой определялись энергетические характеристики поверхности. Отрезок, отсекаемый на оси ординат равен величине $(\gamma_s^d)^{0.5}$, а тангенс угла наклона отвечает за кислотно-основную составляющую СПЭ и соответствует величине $(\gamma_s^{ab})^{0.5}$. Согласно концепции Фоукса [3] величину свободной по-

верхностной энергии можно представить в виде суммы компонентов, обусловленных силами различной природы, и достаточно учитывать только два из них — дисперсионный и кислотно-основной:

$$\gamma_{\rm s}=\gamma_{\rm s}^{\rm ab}+\gamma_{\rm s}^{\rm d}.$$

Рис. 1. Графическая зависимость для определения полной свободной поверхностной энергии и ее составляющих для ПВДФ исходного *1* и его облученно-го +2 Не 5 МэВ аналога *2*.

Зависимость СПЭ и ее компонентов от дозы облучения представлена на рис. 2. Обращает на себя внимание различный характер воздействия облучения ионами гелия на компоненты СПЭ.

Отмечено возрастание кислотно-основной составляющей СПЭ с возрастанием энергии ионов до определенного значения. Это свидетельствует о возникновении полярных групп в поверхностном слое ПВДФ в результате облучения и подтверждает вышеизложенные данные о появлении пероксидных радикалов по данным ЭПР. Несколько неожиданно уменьшение дисперсионной составляющая СПЭ с увеличением энергии ионов гелия. Это, скорее всего, связано с отщеплением фтора и карбонизацией поверхности облучаемого полимера.

Б. Виджаендран [28] ввел понятие "полярность поверхности" – *x*^p. Она равна отношению кислотно-основной составляющей СПЭ твердой поверх-

ности γ_s^{ab} к полной СПЭ:

$$x^{\mathrm{p}} = \gamma_{\mathrm{s}}^{\mathrm{ab}} / \gamma_{\mathrm{s}}$$
.

Полярность поверхности ПВДФ, рассчитанная по вышеприведенной формуле также возрастает с увеличением энергии ионов гелия (рис. 3).

По величине γ_s^{ab} трудно судить о функциональности поверхности. Важную информацию о поверхностных свойствах полимеров и их изменении в результате различных физических воздействий можно получить, анализируя кислотноосновные свойства поверхности. В основе метода определения кислотных и основных свойств материалов, предложенного Э. Бергер, лежит урав-

Рис. 2. Зависимость кислотно-основной (γ_s^{ab}), дисперсионной (γ_s^d) составляющих свободной поверхностной энергии и полной (γ_s) свободной поверхностной энергии ПВДФ от энергии ионов He⁺¹ (1 МэВ) и ионов He⁺² с энергией 3 и 5 МэВ.

нение Оуэнса—Вэндта и традиционный графический метод определения составляющих СПЭ [2]. В рамках метода Э. Бергер [27] искомой оценкой является параметр кислотности D, представляющий собой различие в значениях γ_s^{ab} исследуемой поверхности для тестовых оснований Льюиса (анилин и формамид) и кислот (88%-й раствор фенола в воде и глицерин) с приблизительно одинаковыми значениями составляющих СПЭ.

Рис. 3. Зависимость полярности поверхности ПВД Φ от энергии ионов He⁺¹ (1 МэВ) и ионов He⁺² с энергией 3 и 5 МэВ.

ХИМИЯ ВЫСОКИХ ЭНЕРГИЙ том 55 № 6 2021

Рис. 4. Зависимость параметра кислотности поверхности ПВДФ от энергии ионов He^{+1} (1 МэВ) и ионов He^{+2} с энергией 3 и 5 МэВ.

Для каждой жидкости рассчитывается значение кислотно-основного компонента (W_{ab}) работы адгезии, затем определяется количественная характеристика кислотности поверхности D

$$\begin{split} W_{\rm ab} &= \left[\gamma_{\rm lv}^{\rm s} (1 + \cos \theta) - 2 (\gamma_{\rm lv}^{\rm d})^{0.5} (\gamma_{\rm s}^{\rm d})^{0.5} \right] / (\gamma_{\rm lv}^{\rm ab})^{0.5} ,\\ D &= W_{\rm ab} \left({\rm анилин} \right) \ + W_{\rm ab} \left({\rm формамид} \right) - \\ &- W_{\rm ab} \left({\rm фенол} \right) - W_{\rm ab} \left({\rm глицерин} \right), \end{split}$$

где $\gamma_{lv}^{s} - C\Pi \Im$ жидкости, соs θ – краевой угол смачивания, γ_{lv}^{ab} , γ_{lv}^{d} – кислотно-основная и дисперсионная составляющая СПЭ жидкости, γ_{s}^{d} – дисперсионная составляющая СПЭ твердой поверхности.

Определенный таким образом параметр кислотности выражает разницу в смачивании исследуемой поверхности тестовыми основаниями и тестовыми кислотами. Значение D > 0 говорит о преимущественной кислотности поверхности, в свою очередь D < 0 свидетельствует об основности поверхности.

Результаты оценки параметра кислотности поверхности ПВДФ в зависимости от энергии ионов гелия, которые приведены на рис. 4, показывают, что необлученная поверхность этого полимера близка к нейтральной. Облучение приводит к существенному возрастанию параметра кислотности. Это показывает, что в облученном полимере появляются и преобладают функциональные группы кислотного характера (протонодонорные или электроноакцепторные группы). При высоких дозах облучения кислотность поверхности несколько снижается, что, очевидно, вызвано процессами карбонизации.

Сравнение полученных результатов с аналогичными данными для ПТФЭ [25] показывают, что наличие водорода в молекуле ПВДФ повышает полярность поверхности необлученного полимера и увеличивает радиационную устойчивость.

ИСТОЧНИК ФИНАНСИРОВАНИЯ

Работа выполнена при финансовой поддержке Госзадания АААА-А19-119041090087-4 с использованием УНУ "Гамматок-100" ИПХФ РАН.

СПИСОК ЛИТЕРАТУРЫ

- 1. Zisman W.A. // Adv. Chem. Ser., Amer. Chem. Soc. 1964. V. 43. P. 1.
- Owens D.K., Wendt R.C. // J. Appl. Polym. Sci. 1969. V. 13. P. 1741.
- 3. *Fowkes F.M.* // J. Phys. Chem. 1963. V. 67. № 12. P. 2538.
- 4. Старостина И.А., Стоянов О.В., Краус Э. // Вестник казанского технологического университета. 2019. 152 с.
- Богданова Ю.Г. // Журн. структурной химии. 2011. Т. 52. № 6. С. 1224.
- Кинлок Э. Адгезия и адгезивы. Наука и технология. М.: Мир, 1991. 484 с.
- Starostina I.A., Stoyanov O.V., Bogdanova S.A., Deberdeev R.J., Kurnosov V.V., Zaikov G.E. // J. Appl. Polym. Sci. 2001. V. 9. P. 388.
- 8. Богданова С.А., Шашкина О.Р., Барабанов В.П., Стоянов О.В. // Вестник казанского технологического университета. 2011. № 15. С. 90.
- Богданова С.А., Шашкина О.Р., Белов Г.П., Голодков О.Н., Барабанов В.П., Старостина И.А. // Высокомолекулярные соединения. Сер. А. 2004. Т. 46. С. 1.
- Богданова С.А., Галеева А.И., Саутина Н.В., Галяметдинов Ю.Г. // Вестник казанского технологического университета. 2011. № 11. С. 43.
- 11. Bogdanova S.A., Belov G.P., Zaikov G.E., Stoyanov O.V. // Polymers Research J. 2013. V. 7. № 1. P. 105.
- Паншин Ю.А., Малкевич С.Г., Дунаевская Ц.С. // Фторопласты. Л.: Химия. Ленинградское отделение, 1978. 232 с.
- Scheirs J. // Modern Fluoropolymers. Chichester: John Wiley & Sons, 1997.
- Живулин В.Е., Песин Л. А., Меженина О. А., Ковалев И.Н., Злобина Н.А., Гаврилов М.А., Морилова В.М., Корякова О.В. // Известия Томского политехнического университета. Математика и механика. Физика. 2014. Т. 325. № 2. С. 149.
- Bar-Cohen Y. // Electroactive Polymer (EAP) Actuators as Artificial Muscles Reality, Potential and Challenges. Washington (USA): SPIE Press, 2001. 687 P.
- Кочервинский В.В. // Успехи химии. 1994. Т. 64. № 4. С. 383.

- 17. Foster F.S., Harasiewicz K.A., Sherar M.D. // IEEE Trans Ultrason Ferro Freq Contr. 2000. V. 47. № 6. P. 1363.
- 18. *Иванов В.С.* // Радиационная химия полимеров. Ленинград: Химия, 1988. С. 206.
- 19. Аллаяров С.Р., Ольхов Ю.А., Ольхов Ю.А., Аллаяров С.Р., Никольский В.Г., Диксон Д.А. // Химия высоких энергий. 2014. Т. 48. № 1. С. 33.
- 20. Аллаяров С.Р., Ольхов Ю.А., Штефан И.Н., Мунтеле К.И., Ила Д., Диксон Д.А. // Химия высоких энергий. 2012. Т. 46. № 2. С. 126.
- 21. Ольхов Ю.А., Аллаяров С.Р., Мунтеле К.И., Диксон Д.А. // Химия высоких энергий. 2014. Т. 48. № 3. С. 171.
- Ольхов Ю.А., Аллаяров С.Р., Мунтеле К.И., Диксон Д.А. // Химия высоких энергий. 2014. Т. 48. № 3. С. 175.

- 23. Аллаяров С.Р., Диксон Д.А. // Химия высоких энергий. 2017. Т. 51. № 1. С. 3.
- Аллаяров С.Р., Диксон Д.А., Аллаярова У.Ю., Климанова Е.Н., Шаймухаметова И.Ф., Богданова С.А. // Химия высоких энергий. 2020. Т. 54. № 4. С. 301.
- Шаймухаметова И.Ф., Аллаяров С.Р., Богданова С.А., Белов Г.П., Семавин К.Д., Демидов С.В., Диксон Д.А. // Химия высоких энергий. 2018. Т. 52. С. 392.
- Аллаяров С.Р., Шаймухаметова И.Ф., Богданова С.А., Белов Г.П., Голодков О.Н., Диксон Д.А. // Химия высоких энергий. 2018. Т. 52. № 4. С. 273.
- 27. *Berger E.J.* // J. Adhes. Sci. Technol. 1990. V. 4. № 5. P. 373.
- Vijayendran B.R. // J. Appl. Polym. Sci.1979. V. 23. № 3. P. 733.