УДК 544.23

ВЛИЯНИЕ ИОНИЗИРУЮЩЕГО ОБЛУЧЕНИЯ НА СЕГМЕНТАЛЬНУЮ ПОДВИЖНОСТЬ ЦЕПЕЙ МАКРОМОЛЕКУЛ ПОЛИВИНИЛОВОГО СПИРТА

© 2022 г. В. А. Ломовской^{а,} *, О. В. Суворова^а, Н. А. Абатурова^а, Н. Ю. Ломовская^а, С. А. Кулюхин^а, Ю. С. Павлов^а

^аИнститут физической химии и электрохимии им. А.Н. Фрумкина, Ленинский пр. 31 к. 4, Москва, 119071 Россия

*e-mail: lomovskoy@phyche.ac.ru Поступила в редакцию 19.05.2022 г. После доработки 19.05.2022 г. Принята к публикации 23.05.2022 г.

Методом релаксационной спектрометрии изучено влияние ионизирующего излучения на сегментальную подвижность цепей макромолекул поливинилового спирта. Показано, что в зависимости от дозы облучения ускоренными электронами степень релаксационной микронеоднородности α-процесса релаксации значительно увеличивается, вследствие обрыва цепей макромолекул или их сшивки и структурной перестройки. Существенного изменения физико-механических свойств ПВС в зависимости от дозы при γ-облучении в поглощенных дозах от 700 до 1500 кГр выявлено не было.

Ключевые слова: поливиниловый спирт, ионизирующее облучение, релаксационные свойства, диссипативные процессы

DOI: 10.31857/S0023119322050102

Хорошо известно, что воздействие ионизирующего излучения на полимеры вызывает структурные дефекты [1, 2]. Излучение вызывает разрушение исходной структуры с образованием фрагментов молекул [3, 4], заряженных частиц, ионов, свободных радикалов, либо индуцирует сшивание, или и то и другое вместе. Это приводит к изменениям плотности, растворимости, молекулярной массы, а также оптических и электрических свойств. Величина и характер изменений зависят от состава полимера и энергии ионизирующего излучения. Интерес к таким исследованиям приобрел особенное значение в последние годы с учетом потенциальных применений в интегрированной электронике, люминофорах и модификациях поверхности. Поливиниловый спирт (ПВС) является одним из важных полимеров, широко используемых в промышленности. Поэтому представлялось интересным изучить влияние ионизирующего излучения на структуру ПВС, как в состоянии водного раствора [1-3], так и в виде образованных из таких растворов пленок [4, 5]. Кроме того, большой интерес представляет изучение возможности создания композитных мате-

388

риалов, содержащих компоненты ПВС, под воздействием ионизирующего излучения [6]. Для этого в систему ПВС вводили гуминовые кислоты [7, 8], целлюлозу [9], хитозан [10], полиэтиленгликоль [11], крахмал [12] с последующим воздействием γ-облучения. Целый ряд исследований посвящен изучению свойств нанокомпозитов, созданных из ПВС с полупроводниковыми наночастицами сульфида свинца, индуцированными *in situ* включением наночастиц PbS в сшитую полимерную сеть — гидрогель ПВС. Кроме того, изучались композиты с оксидами свинца, цинка, кобальта, серебра и железа [13–16].

В цитированных работах структура и характеристика ПВС до и после облучения были определены с помощью инфракрасной спектроскопии (ИК-спектроскопии), ультрафиолетовой спектроскопии (УФ-спектроскопии) и рентгеновской дифракции (РРД). Дополнительные изменения, наблюдаемые при анализе продуктов разложения методом FTIR, показали, что радиолиз воды в ПВС инициирует высвобождение атомов Н- и ОН-групп с образованием карбонильных групп и двойных связей, и их последующее окисление (окружающая атмосфера–воздух). Кроме того, одновременно происходят и другие реакции деградации (например, расщепление цепи, циклизация), образование связей C=C и C= согласно следующей схеме [1]:

Образование последних подтверждается спектрами FTIR [2].

В работах [1, 6] приведены данные термогравиметрического анализа (TGA) и сканирующей электронной микроскопии (SEM), изменение структуры и морфологии пленок ПВС при дозах γ-облучения до 300 кГр.

Из литературных данных можно заключить, что γ-облучение пленок ПВС приводит к частичному расщеплению основной цепи макромолекулы. Это облегчает сегментарное движение, вызывая перестройку цепей молекул ПВС. По мере удаления части OH-групп цепи могут легче перемещаться относительно друг друга. создавая условия для структурообразования и кристаллизации.

Ряд исследований посвящен получению композитных материалов, образующихся при воздействии электронным пучком (ЕВ) на систему, содержащую поливиниловый спирт (полимерная матрица) и наночастицы различных металлов [17, 18].

Первоначально такие системы представляют собой гидрогели, которые при воздействии ЕВ и последующем высушивании становятся твердыми пленками, используемыми для различных целей, указанных выше.

Процесс сшивки в таких системах представлен на следующей схеме [17]:

Цель данного исследования состояла в выявлении влияния облучения ускоренными электронами (EB) и γ-облучения на изменение релаксационных характеристик ПВС, проявляющиеся на спектрах внутреннего трения $\lambda = f(T)$ и температурных зависимостях частоты собственных затухающих колебаний v = f(T), возбужденных в системе ПВС. Одновременно проведен теоретический анализ влияния дозы облучения на физикомеханические и физико-химические характеристики сегментальной подвижности (α-процесса релаксации) в структуре ПВС.

Проведенные нами ранее исследования локальных областей неупругости в ПВС различной молекулярной массы в интервале температур от –150 до +150°С в режиме свободно затухающего процесса, возбуждаемого в исследуемых образцах, позволили выявить несколько диссипативных процессов различной интенсивности в разных температурных интервалах [19–21].

 μ -Процесс диссипации наблюдается в интервале температур от -140 до -50° С и имеет малую интенсивность на спектре внутреннего трения $\lambda = f(T)$. Данный процесс имеет сложную природу и расщепляется на три локальных диссипативных процесса, протекающих в разных температурных интервалах и имеющих различные механизмы внутреннего трения, связанные с подвижностью различных форм связанной молекулярной воды в структуре полимера.

β-Процесс, наблюдаемый в интервале температур от -80 до +20°C, имеет среднюю интенсивность на спектре $\lambda = f(T)$, релаксационный механизм внутреннего трения и связан с подвижность звеньев цепи макромолекул ПВС.

 α -Процесс, наблюдаемый в интервале температур от +50 до +80°С, характеризуется максимальной интенсивностью на спектре $\lambda = f(T)$. Данный диссипативный процесс имеет релаксационный механизм внутреннего трения и связан с сегментальной подвижностью цепей макромолекул ПВС. В данной работе рассмотрено влияние облучения только на α -процесс релаксации.

В предыдущих наших публикациях было проведено исследование влияния малых доз электронного и СВЧ-облучения на данный диссипативный процесс в ПВС. Показано, что для обоих типов облучения наблюдается расширение непрерывного спектра времен релаксации α-диссипативного процесса, свидетельствующее о возрастании релаксационной микронеоднородности в сегментальной подвижности цепи макромолекул [22, 26].

ОБРАЗЦЫ И МЕТОДИКИ

В качестве объекта исследования использовали ПВС марки 16/1 (ГОСТ 10779-78) с молекулярной массой М = 31.4 кДа и степенью гидролиза 98.7%. Пленки полимера готовили из его водных растворов концентрацией 8 вес. %. Для приготовления раствора брали определенную навеску ПВС, заливали ее дистиллированной водой и

Таблица 1. Параметры проведения облучения

Параметры облучения	Значение			
Режим	Импульсный			
Длительность импульса, мск	6			
Энергия электронов (среднее по спектру), МэВ	5			
Частота импульсов, Гц	100			
Температура, °С	15-25*			

* Термостатирование либо аппаратный контроль температуры в зависимости от дозы не проводились по условиям эксперимента.

Таблица 2. Данные дозиметрии. Дозы 100-380 кГр

Плановая поглощенная доза, кГр	Поглощенная доза (погрешность 15%), кГр
5.0	5.3
100.0	106.0*
200.0	212.0*
380.0	392.0*

* Расчетные дозы, кратные поглощенной дозе 5.3 кГр.

оставляли на 24 ч для набухания полимера. Затем приготовленную смесь выдерживали в кипящей водяной бане в течение 3 ч при постоянном перемешивании до получения однородного прозрачного раствора. Из полученного раствора после его охлаждения и удаления пузырьков воздуха отливали пленки на чашки Петри. Отлитые заготовки высушивали при температуре 22°C в течение 7 дней до полного отделения от подложки. Из полученных пленок вырезали пластинки размером 65 × 5 × 0.2 мм. Полученные пластинки помещали на 1 ч в термошкаф, нагретый до 100°C. После досушивания получали образцы ПВС, содержащие до 2.5% воды. Все образцы помещали в эксикатор над хлористым кальцием.

Облучение подготовленных образцов ускоренными электронами (ЕВ) осуществлялось в закрытых пробирках на радиационно-технологической установке КРТУ "Радуга" с вертикально расположенным ускорителем и колоколообразной биозащитой со средней по спектру энергией пучка 5 МэВ по методике, описанной в работе [22], согласно принятой практике радиационной обработки материалов [23–25].

Рис. 1. Внешний вид и принципиальная схема УНУ "Гамматок 100".

Образцы помещались на конвейере установки перпендикулярно распространению пучка и направлению перемещения образцов на конвейере под сканируемым пучком при мощности дозы ~4 кГр/с, что обеспечивало однородное облучение образцов с заданной входной дозой. Доза облучения образцов за один проход на установке была настроена на величину 5 кГр и далее варьировалась (100.0...200.0...380.0 кГр) путем выбора кратной скорости конвейера и прохождения объекта под пучком требуемое количество раз. Основные параметры проведения облучения представлены в табл. 1.

Доза контролировалась пленочными дозиметрами СО ПД(Э)-1/10 за один проход под пучком, кратные поглощенные дозы при облучении образцов определялись умножением на коэффициент кратности проходов. Данные измерений представлены в табл. 2.

Перед экспериментами пластинки образцов упаковывали в пробирки из полистирола и плотно закрывали крышкой. Серию пробирок с образцами облучали дозами в диапазоне до 380 кГр, в то время как пробирки с контрольными образцами оставались необлученными.

Радиационная обработка образцов воздействием γ-излучения радионуклида ⁶⁰Со проводилась на уникальной научной установке "Гамматок-100", представляющей собой радиационную установку с неподвижным облучателем типа "беличье колесо" с 16 каналами, в которых находятся

	Пара	метры УНУ	Доза Д _е , кГр		
Образец энергия излучения ⁶⁰ Co, МэВ в центре камеры, Гр/с		требуемое значение	фактическое значение		
№ 1	1.25	3	750	783	
№ 2	1.25	3	1500	1566	

Таблица 3. Поглощенная доза ионизирующего излучения при проведении работ на уникальной научной установке (УНУ) ИПХФ РАН "Гамматок-100" [27]

Рис. 2. Спектры внутреннего трения (а) и температурно-частотные зависимости (б) ПВС образцов: контрольного необлученного, (кривые *1*) и для облученных ЕВ 100, 200 и 380 кГр (кривые *2*, *3*, *4* соответственно).

32 источника ⁶⁰Со типа ГИК-7-4, общая активность облучателя в период проведения работ составляла около 65900 Ки. Мощность дозы в центре рабочей камеры в зоне радиации и облучения объектов соответствовала 3 Гр/с. Схема установки представлена на рис. 1. Образцы перед закладкой в камеру предварительно размещали в индивидуальных конвертах из фольги. Эксперимент проводили на воздухе при температуре, не превышающей 60°С.

Расчет поглощенной дозы осуществляли по времени экспозиции на основе данных ферросульфатной дозиметрии с использованием дозиметра Фрике за единицу времени с учетом разницы между электронными плотностями дозиметра и ПВС $[(C_2H_4O)_x]$, согласно ГОСТ 27602-88 (табл. 3). Дополнительно была проведена пленочная дозиметрия с использованием дозиметров СО ПД(Ф) Р-5/50 (серия 18.11). Для контрольной поглощенной дозы 25 кГр была зафиксирована оптическая плотность индикатора 0.499 у.о.е. (условных оптических единиц) относительно необлученного пленочного индикатора, что соответствует дозе 25.2 кГр. Для образцов № 1 и № 2 кратные контролю поглощенные дозы составили 806.4 и 1612.8 кГр (±15%) соответственно.

ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Спектры внутреннего трения $\lambda = f(T)$ для ПВС, полученные методом релаксационной спектрометрии в интервале температур от -150 до $+150^{\circ}$ С, представлены на рис. 2а. На спектрах на-

Рис. 3. Температурно-частотная зависимость для образца ПВС, облученного (ЕВ) дозой 380 кГр. Пример определения величин $v_{\rm H}$, v_{κ} и $v_{\alpha max}$ для расчета дефекта модуля ΔG , времени релаксации в α -пике, ($\tau_{\alpha max}$) и соответственно $\Delta \tau_{\alpha max}$.

блюдается два диссипативных процесса различной интенсивности – α - и β -процессы. Наиболее интенсивный пик потерь (α -процесс) проявляется в области температуры 43°С. В данной работе мы рассматриваем только α -пик. На рис. 2а представлены спектры как исходного образца (кривая *I*), так и образцов, подвергнутых ЕВ-облучению дозами 100, 200 и 380 кГр (кривые 2–4) соответственно. Обращает на себя внимание значительное снижение интенсивности пиков потерь для облученных образцов ($\lambda_{\alpha max}$), некоторое снижение температуры проявления α -процесса ($T_{\alpha max}$) и расширение температурного интервала проявления пика (табл. 2). Рисунок 26 демонстрирует температурную зависимость частоты колебательного процесса v = f(T). В области температур проявления на спектре α -диссипативного процесса мы наблюдаем существенный излом, что характеризуется дефектом модуля сдвига ΔG материала, в данном случае ПВС. Исходя из температурно-частотных зависимостей свободно затухающих колебаний (рис. 26), для образцов ПВС как исходных, так и облученных был определен дефект модуля ΔG . Величина ΔG определялась из соотношения (1), учитывающего связь изменения частоты колебательного процесса, возбуждаемого в исследуемом образце, и изменения модуля сдвига материала образца

№ п/п	ПозакГр	α-процесс						
J N2 11/11	дозактр	<i>T</i> , °C		диапазон изменения	дефект модуля ΔG			
1	0	30	60	2.1	1.17	0.69		
2	100	28	60	1.9	1.22	0.58		
3	200	22	60	1.7	1.22	0.48		
4	380	17	60	1.7	1.2	0.50		

Таблица 4. Расчет величины дефекта модуля для образцов ПВС при различной дозе облучения (ЕВ)

№ п/п	Доза облучения кГр	$T_{\rm max}$, °C	λ_{max}	$v_{\alpha max}$, Гц	U_{lpha} , кДж/моль	$\tau_{\alpha max,} c$	Δτ, c	ΔG
1	0	43	0.46	1.60	62.30	0.10	0.10	0.69
2	100	43	0.35	1.45	62.56	0.11	0.22	0.59
3	200	39	0.33	1.43	61.80	0.11	0.20	0.48
4	380	38	0.27	1.36	61.73	0.12	0.31	0.42

Таблица 5. Физико-химические и физико-механические характеристики образцов ПВС до и после облучения ускоренными электронами (ЕВ)

$$\Delta G = \frac{v_{\alpha_{\rm H}}^2(T) - v_{\alpha_{\rm K}}^2(T)}{v_{\alpha_{\rm H}}^2(T)},$$
(1)

где $v_{\alpha_{\rm H}}^2(T)$ и $v_{\alpha_{\rm K}}^2(T)$ – значение частоты колебательного процесса при температуре начала и конца аномального излома кривой v = f(T) соответственно.

На рис. 3 наглядно представлен метод расчета ΔG и определения $v_{\alpha max}$. В табл. 4 показаны результаты математической обработки полученных экспериментальных данных.

Исходя из данных табл. 4, можно судить об уменьшении величины дефекта модуля ΔG для облученных образцов. Это свидетельствует о существенных изменениях в структуре материала,

разрушении трехмерной сетки и возможном увеличении степени кристалличности, что подтверждается литературными данными по рентгеновской дифракции [1]. На частотной зависимости v = f(T) также можно увидеть уменьшение величины $v_{\alpha max}$ — частоты затухающих колебаний в максимуме диссипативных потерь (табл. 4), что связано с изменением как локального дефекта модуля ΔG_{α} , так и упругих характеристик всей системы в целом.

Величина $v_{\alpha max}$ использовалась нами для расчета физико-химических характеристик α -процесса в рамках феноменологического модельного представления о возникновении локальных диссипативных процессов на спектрах внутреннего трения [22]. Расчет проведен исходя из модели

Рис. 4. Температурная зависимость нормированных (приведенных) кривых для α-процесса релаксации ПВС контрольного (необлученного) *1* и подвергнутых ЕВ облучению в дозах 100, 200 и 380 кГр – *2*, *3*, *4* соответственно.

Рис. 5. Приведенный спектр внутреннего трения (а) и спектр времен релаксации (б) α-процесса, для образца ПВС, облученного (ЕВ) дозой 380 кГр. Схематически показано определение Δτ на полувысоте α-пика релаксации.

Таблица 6.	Расчет	величины дефекта	модуля для	образцов	ПВС при	различной дозе	е γ-облучения
------------	--------	------------------	------------	----------	---------	----------------	---------------

№ п/п	Доза ү облучения	α-процесс						
кГр		<i>T</i> , °C		диапазон измен	дефект модуля ΔG			
1	0	34	56	2.1	1.2	0.673		
2	750	38	62	2.2	1.3	0.651		
3	1500	36	58	1.95	1.3	0.556		

Рис. 6. Спектры внутреннего трения (а) и температурно-частотные зависимости (б) для образцов ПВС: контрольного необлученного (кривая *1*) и для γ-облученных дозой 750 и 1500 кГр (кривые *2*, *3* соответственно).

№ п/п	Доза ү облучения кГр	$T_{\alpha \max}$, K	$T_{\rm max}$,°C	λ_{max}	ν _{αmax} , Γц	$U_{lpha},$ кДж/моль	$\tau_{\alpha \max}$	Δτ	ΔG
1	0	316.5	43.5	0.460	1.53	62.512	0.104	0.18	0.673
2	750	322.3	49.26	0.330	1.52	63.675	0.105	0.21	0.651
3	1500	325.6	52.58	0.250	1.45	64.458	0.110	0.26	0.556

Таблица 7. Физико-химические и физико-механические характеристики образцов ПВС до и после ү-облучения

396

ХИМИЯ ВЫСОКИХ ЭНЕРГИЙ том 56 № 5 2022

Рис. 7. Температурная зависимость нормированных (приведенных) кривых для α- процесса релаксации ПВС образцов: контрольного необлученного (кривая *I*) и подвергнутых γ-облучению в дозах 750 и 1500 кГр (кривые 2, 3 соответственно).

стандартного линейного тела в соответствии с уравнениями:

$$2\pi\nu\tau_{\max} = 1 \to \tau_{\max} = \frac{1}{2\pi\nu_{(T=T\max)}}.$$
 (2)

Тогда для α-процесса релаксации

$$\tau_{\alpha \max} = \frac{1}{2\pi \nu_{(T=T\alpha\max)}}.$$
(3)

Рассчитанные по соотношению (3) дискретные значения времени α -релаксации $\tau_{\alpha max}$ для всех систем (табл. 5) не изменяются с увеличением дозы облучения.

Кроме того, по приведенным нормированным зависимостям $\frac{\lambda_i}{\lambda_{\max}} = f\left(\frac{\tau_i - \tau_{\max}}{\tau_{\max}}\right)$ (рис. 4) может быть качественно дана оценка степени релаксационной микронеоднородности α -процесса релаксации в системе ПВС при разных дозах облучения, наглядно характеризующаяся разницей времен релаксации ($\Delta \tau$). На рис. 5 схематически изображена схема расчета величины $\Delta \tau$. Результаты таких расчетов представлены в табл. 5 и рис. 8.

ХИМИЯ ВЫСОКИХ ЭНЕРГИЙ том 56 № 5 2022

Видно, что величина $\Delta \tau \alpha$ -процесса значительно возрастает в облученных образцах.

Энергию активации данного процесса возможно определить из Аррениусовской зависимости времени релаксации т от температуры в виде

$$\tau_i = \tau_0 \exp \frac{U}{RT_i},\tag{4}$$

$$U_{\alpha} = RT_{\max} \ln \frac{\tau_{\alpha \max}}{\tau_0}.$$
 (5)

Данные по рассчитанной энергии активации представлены в табл. 3 и на рис. 8.

При сопоставлении $\Delta \tau = f(\Delta T)$ для исходных и облученных образцов ПВС (табл. 5) количественно показано расширение спектра $H(\tau)$ времени релаксации после облучения, т.е. ЕВ-облучение приводит к структурным изменениям в системе ПВС, причем эти структурные изменения вызывают увеличение релаксационной микронеоднородности всей системы в области температур α -процесса релаксации.

Полученные экспериментальные результаты и математические расчеты количественно показывают расширение $\Delta \tau$ спектра времени релаксации

Рис. 8. Зависимость физико-химических и физико-механических характеристик образцов ПВС, облученных ЕВ и γ -облучением от дозы воздействия. $T_{\alpha\max}$ (1a – EB-облучение, $16 - \gamma$ -облучение). Энергия активации U кДж/моль (2a – EB-облучение, $26 - \gamma$ -облучение). Дефект модуля ΔG (3a – EB-облучение, $36 - \gamma$ -облучение). Изменение времени релаксации $\Delta \tau$, с (4a – EB-облучение, $46 - \gamma$ -облучение).

при облучении, что вызвано структурными изменениями в исследуемой системе. Структурные изменения вызывают увеличение релаксационной микронеоднородности всей системы в области температур α-процесса релаксации.

Аналогичные спектры внутреннего трения, температурно-частотные зависимости для образцов ПВС, подвергнутых γ-облучению, представлены на рис. 6, 7.

Проведены математические расчеты физикомеханических и физико-химических величин, для γ-облученных образцов, также как описано выше для ЕВ облученных образцов. Результаты таких расчетов представлены в табл. 6 и 7.

Сравнительные физико-химические и физико-механические характеристики всех изученных образцов наглядно изображены на рис. 8 (кривые 1a, 2a, 3a, 4a - для образцов подвергнутых ЕВ-облучению, кривые 16, 26, 36, 46 - для образцов, $подвергнутых <math>\gamma$ -облучению).

Таким образом можно сделать заключение, что EB-облучение вызывает значительное расширение спектра времен релаксации $\Delta \tau$ диссипативного α -процесса, связанного с сегментальной подвижностью, и обусловленное частичным обрывом цепей макромолекулы и образованием структурной перестройки. В свою очередь γ -облучение в дозах 750 и 1500 кГр, превышающих максимальную поглощенную дозу в экспериментах с облучением электронным пучком более чем в пять раз, не приводит к сильному увеличению величины $\Delta \tau$, свидетельствующей о релаксационной микронеоднородности.

Наблюдается заметное снижение температуры максимума диссипативных потерь $T_{\alpha max}$ для EB облученных образцов, тогда как для γ -облученных $T_{\alpha max}$ незначительно повышается.

Дефект модуля ΔG у EB-облученных образцов значительно снижается, что можно сказать также и об энергии активации *U*. В тоже время у γ -облученных образцов энергия активации возрастает, при этом образуется более жесткий по своим механическим свойствам и одновременно более однородный по релаксационным характеристикам материал.

ИСТОЧНИК ФИНАНСИРОВАНИЯ

Работа выполнена по госзаданию по плану на 2022 год.

СПИСОК ЛИТЕРАТУРЫ

1. Bhat N.V., Nate M.M., Kurup M.B., Bambole V.A., Sabharwal S. // Nuclear Instruments and Methods in

ХИМИЯ ВЫСОКИХ ЭНЕРГИЙ том 56 № 5 2022

Physics Research Section B: Beam Interactions with Materials and Atoms 2005. V. 237. № 3–4. P. 585.

- 2. *Гришина А.Д. //* Доклады АН СССР. 1963. Т. 150. № 4. С. 129.
- 3. Allayarov S.R., Confer M.P., Dixon D.A., Rudneva T.N., Kalinin L.A., Tolstopyatov E.M., Frolov I.A., Ivanov L.F., Grakovich P.N., Golodkov O.N. // Polymer Degradation and Stability. 2020. V. 181. № 109331.
- 4. Benlian Wang, Makoto Kodama, Sukekuni Mukataka, Etsuo Kokufuta // Polymer Gels and Network 1998/6.71–81.
- 5. Шешин Е.П., Денисова Л.В. // Вестник БГТУ им. В.Г. Шухова. 2016. № 12. С. 170.
- El-Sawy N.M., El-Arnaouty M.B., Abdel Ghaffar A.M. // Polymer-Plastics Technology and Engineering. 2010. V. 49. № 2. P. 169.
- Ilcin M., Hola O., Bakajova B. et al. // J. Radioanal. Nucl. Chem. 2010. V. 283. № 1. P. 9.
- Bakajova B., Ilcin M., Hola O., Kucerik J. // J. Radioanal Nucl Chem. 2011. V. 287. P. 449.
- Iuliana Mihaela, Jipa Marta, Stroescu Anicuta Stoica-Guzun, Tanase Dobre, Sorin Jinga, Traian Zaharescu // Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2012. V. 278. P. 82.
- Shaima M. Nasef, Ehab E. Khozemy, Elbadawy A. Kamoun, H. El-Gendi // International Journal of Biological Macromolecules. 2019. V. 137. P. 878.
- Shechata M.M., Radwan S.I., Saleh H.H., Ali Z.I. // Journal of Radioanalitical and Nuclear Chemistry. 2020. V. 323. P. 897.
- 12. Cieśla K., Abramowska A. // Radiation Physics and Chemistry. 2021. V. 180. № 109290.
- Jadranka Ž. Kuljanin-Jakovljević, Aleksandra N. Radosavljević, Jelena P. Spasojević, Milica V. Carević, Miodrag N. Mitrić, Zorica M. Kačarević-Popović // Radiation Physics and Chemistry. 2017. V. 130. P. 282.
- 14. *Nouh S.A., Benthami K.* // Journal of Vinyl and Additive Technology. 2018. V. 25. № 3. P. 271.
- Alhazime A.A., Barakat M.M, Benthami K., Nouh S.A. // Journal of Vinyl and Additive Technology. 2020. V. 27. № 2. P. 347.
- Alshahrani B., ElSaeedy H.I., Fares S., Korna A.H., Yakout H.A., Maksoud M.I., Fahim R.A., Ashour A.H., Awed A.S. // J. Mater. Sci: Mater Electron. 2021. V. 32. № 1333.
- Ghazy O.A., Saleh H.H., Shehata M.M., Hosni H.M., Ali Z.I. // Radiation Physics and Chemistry. 2022. V. 191. № 109848.
- Dai G., Xiao H., Zhu S., Shi M. // Advanced Materials Research. 2014. V. 852. P. 304.
- 19. Ломовской В.А. Физико-химическая механика основные положения. М: ИФХЭ РАН, 2019. 416 с.
- Lomovskoy V.A., Abaturova A.N., Lomovskaya N.Y., Khlebnikova O.A. // Polymer Science. 2015. V. 57. № 2. P. 123.

400

- Lomovskoy V.A., Abaturova N.A., Lomovskaya N.Y., Khlebnikova O.A. // Mechanics of Composite Materials. 2019. V. 54. № 6. P. 815.
- 22. Ломовской В.А., Суворова О.В., Абатурова Н.А., Ломовская Н.Ю., Шатохина С.А., Кулюхин С.А. // Химия высоких энергий. 2021. Т. 55. № 3. С. 219.
- 23. Pavlov Yu.S., Bystrov P.A., Nepomnyaschy O.N. // Radiation Physics and Chemistry. 2020. V. 177. P. 109129.
- Bystrov P.A., Pavlov Yu.S., Souvorova O.V., Yakupov I.Yu. // Radiation Physics and Chemistry. 2019. T. 161. P. 83.
- Bystrov P.A., Pavlov Yu.S., Kazyakin A.A., Kozlov A.A. // Problems of Atomic Science and Technology. 2019. V. 124. № 6. P. 185.
- Lomovskoy V.A., Nekrasova N.V., Lomovskaya N.Yu., Khlebnicova O.A., Abaturova N.A., Galushko T.B., Corbunov A.M. // Mechanics of Composite Materials. 2020. V. 30. № 12. P. 685.
- 27. Кирюхин Д.П., Кичигина Г.А., Аллаяров С.Р., Бадамшина Э.Р. // Химия высоких энергий. 2019. Т. 53. № 3. С. 224.