——— РАДИАЦИОННАЯ ХИМИЯ ———

УДК 539.196

РЕЗОНАНСНЫЕ СОСТОЯНИЯ ОТРИЦАТЕЛЬНЫХ МОЛЕКУЛЯРНЫХ ИОНОВ 1H-1,2,4-ТРИАЗОЛА, ОБРАЗУЮЩИХСЯ ПО МЕХАНИЗМУ МЕЖОБОЛОЧЕЧНОГО РЕЗОНАНСА

© 2022 г. Е. Е. Цеплин^{а,} *, С. Н. Цеплина^а, В. Г. Лукин^а, О. Г. Хвостенко^а

^аИнститут физики молекул и кристаллов УФИЦ РАН, пр. Октября, 151, Уфа, 450075 Россия

**E-mail: tzeplin@mail.ru* Поступила в редакцию 11.04.2022 г. После доработки 05.05.2022 г. Принята к публикации 15.05.2022 г.

Получен масс-спектр отрицательных ионов резонансного захвата электронов 1H-1,2,4-триазола. Обнаружена корреляция пиков кривых эффективного выхода отрицательных ионов в области энергий электронов 5–12 эВ с энергиями синглетных переходов молекулы 1H-1,2,4-триазола. На основе этой корреляции проведено отнесение наблюдаемых резонансных состояний отрицательных молекулярных ионов к межоболочечным резонансам.

Ключевые слова: отрицательные ионы, резонансный захват электронов, межоболочечные резонансы, 1H-1,2,4-триазол

DOI: 10.31857/S0023119322050163

введение

В настоящее время известно несколько механизмов газофазных процессов резонансного захвата электронов молекулами (РЗЭ), которые сопровождаются образованием временно-живущих отрицательных молекулярных ионов, нестабильных относительно выброса добавочного электрона и диссоциации. Механизмы РЗЭ включают в себя одночастичные резонансы (резонансы формы и колебательно-возбужденные фешбаховские), а также резонансы, сопровождающиеся электронным возбуждением образующегося молекулярного иона (электронно-возбужденные фешбаховские и межоболочечные) [1-6]. Среди электронно-возбужденных резонансов наиболее известны электронновозбужденные фешбаховские, при образовании которых захваченный электрон и "собственный" возбужденный электрон молекулы располагаются на одной и той же вакантной молекулярной орбитали (ВМО) [7]. Межоболочечные резонансы (МР) стали известны относительно недавно. Впервые они были обнаружены в гелии [8], затем в CS₂ [9] и позже – в ряде органических соединений [4, 10-12]. В случае МР дополнительный электрон захватывается на высоколежащую квазиридберговскую молекулярную орбиталь (MO), образованную диполем возбужденной молекулы, а его материнским состоянием, как правило, является соответствующее синглетно-возбужденное состояние. Энергии МР лежат в области

энергии электронного возбуждения молекулы и коррелируют с энергиями соответствующих электронно-возбужденных синглетных состояний нейтральной молекулы. Поскольку захват добавочного электрона в МР происходит на высоколежащую квазиридберговскую МО, захваченный электрон слабо связан с ядром, и поэтому энергия МР будет близка к энергии материнского синглета (меньше на величину сродства к электрону материнской молекулы, находящейся в данном синглетном электронно-возбужденном состоянии).

В настоящей работе обнаружена корреляция пиков кривых эффективного выхода (КЭВ) отрицательных ионов (ОИ) с энергиями синглетных переходов молекулы для 1H-1,2,4-триазола. Эта корреляция позволила отнести наблюдаемые резонансные состояния отрицательных молекулярных ионов в области энергий электронов 5–12 эВ к межоболочечным резонансам, а также определить их электронные конфигурации.

МЕТОДИЧЕСКАЯ ЧАСТЬ

Масс-спектр отрицательных ионов резонансного захвата электронов (МСОИ РЗЭ) 1H-1,2,4триазола (Chemical Line, 99%) записан на статическом масс-спектрометре МИ-1201В, модифицированном для регистрации отрицательных ионов в режиме резонансного захвата электронов молекулами [13]. Схема масс-спектрометра и

		,		
S	№№ 3MO–BMO	ЗМО-ВМО	Е ^{рас} , эВ	f
<i>S</i> ₁ (A")	$17 \rightarrow 19$	$n_{\rm N3}({\rm a'}) \rightarrow \pi^*_{\rm (C=N)3}$	6.14	0.0051
<i>S</i> ₂ (A")	$18 \rightarrow 20$	$\pi_{(C=N)2} \rightarrow \sigma^*_{(N-H)2}$	6.64	0.0030
<i>S</i> ₃ (A')	$17 \rightarrow 20$	$n_{\rm N3}(a') \rightarrow \sigma^*_{\rm (N-H)2}$	6.95	0.0156
<i>S</i> ₄ (A')	$18 \rightarrow 19$	$\pi_{(C=N)2} \rightarrow \pi^*_{(C=N)3}$	7.02	0.0980
<i>S</i> ₅ (A")	$17 \rightarrow 21$	$n_{\rm N3}({\rm a'}) \rightarrow \pi^*_{\rm (C=N)4}$	7.26	0.0015
<i>S</i> ₆ (A')	$16 \rightarrow 19$	$n_{\rm N1}(a'') \to \pi^*_{({\rm C}={\rm N})3}$	7.35	0.0426
<i>S</i> ₇ (A")	$16 \rightarrow 20$	$n_{\rm N1}(a'') \rightarrow \sigma^*_{\rm (N-H)2}$	7.44	0
<i>S</i> ₈ (A")	$15 \rightarrow 19$	$n_{\rm N2}(a') \rightarrow \pi^*_{(C=N)4}$	7.60	0.0022
<i>S</i> ₉ (A")	$18 \rightarrow 23$	$\pi_{(C=N)2} \rightarrow R_{23}^{*a}$	7.71	0.0053
<i>S</i> ₁₀ (A'')	$18 \rightarrow 22$	$\pi_{(C=N)2} \to R_{22}^*$	7.74	0.0119
<i>S</i> ₁₁ (A')	$18 \rightarrow 21$	$\pi_{(C=N)2} \rightarrow \pi^*_{(C=N)4}$	7.91	0.1105
<i>S</i> ₂₁ (A')	$16 \rightarrow 21$	$n_{\rm N1}(a^{\prime\prime}) \rightarrow \pi^*_{\rm (C=N)4}$	8.74	0.0343
<i>S</i> ₃₂ (A')	$18 \rightarrow 28$	$\pi_{(C=N)2} \to R_{28}^*$	9.59	0.2199
S ₃₈ (A')	$18 \rightarrow 29$	$\pi_{(C=N)2} \to R_{29}^*$	10.27	0.0401
S ₄₆ (A')	$14 \rightarrow 20$	$\sigma_{(C-H)2} \rightarrow \sigma^*_{(N-H)2}$	10.94	0.0914

Таблица 1. Расчет электронного спектра 1H-1,2,4-триазола методом TDDFT B3LYP/6-311+G(d,p)

S – номера возбужденных синглетных состояний с указанием их симметрии (*C_S*); № № – номера пары ЗМО-ВМО участвующей в электронном переходе с наибольшим вкладом; ЗМО-ВМО – тип МО; E^{pac} – расчетные вертикальные энергии переходов; *f* – сила осциллятора. ^а R_{23}^* – диффузная вакантная молекулярная орбиталь № 23 ридберговского типа.

условия проведения эксперимента были подробно описаны ранее [14, 15]. Расчет электронного спектра выполнен методом TDDFT на основе функционала B3LYP [16, 17] с базисным набором 6-311+G(d,p) [18] для 80 возбужденных синглетных состояний с использованием пакета программ Gaussian 09 [19].

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Согласно экспериментальным данным область синглетного поглощения 1Н-1,2,4-триазола в растворах начинается при высоких энергиях: больших, чем 5.77 эВ (215 нм) [20, 21]. Это подтверждается и спектром вакуумного поглощения в газовой фазе 1-метил-1,2,4-триазола [22], соединения, близкого по строению к 1Н-1,2,4-триазолу. Этот диапазон поглощения лежит за пределами регистрации классической УФ спектроскопии поглощения, поэтому энергии синглетных переходов в настоящей работе были рассчитаны методом TDDFT с функционалом B3LYP, который показал хорошее воспроизведение спектров поглошения различных молекулярных систем [23-29]. Согласно данным расчета TDDFT B3LYP/6-311+G(d,p), первый синглетный переход 1H-1.2.4-триазола обладает энергией 6.14 эВ (табл. 1). Поскольку переход был рассчитан для свободной молекулы, без учета среды, он соответствует первому синглетному переходу изученной молекулы в газовой фазе, что существенно, поскольку процесс резонансного захвата, с которым в настоящей работе сопоставляется электронное возбуждение материнской молекулы, происходит в газовой фазе.

Кривые эффективного выхода отрицательных фрагментарных ионов из МСОИ 1Н-1,2,4-триазола, полученного в настоящей работе, представлены на рис. 1. Пики этих кривых, по их положению на шкале энергии, можно разделить на две группы. Первая группа расположена при энергии электронов 0-4 эВ, вторая - при 5-12 эВ. В диапазоне энергий 5-12 эВ по максимумам КЭВ можно выделить восемь резонансных состояний (табл. 2). Первый из них расположен в области энергий 6.6–6.8 эВ (6.6 эВ – *m/z* 42; 6.7 эВ – *m/z* 41; $6.8 \Rightarrow B - m/z 40$). Его энергия находится в области электронного возбуждения молекулы во второе синглетное состояние $S_2 - 6.64$ эВ (табл. 1, рис. 2). На этом основании резонанс при 6.6-6.8 эВ можно отнести к межоболочечному резонансу, для которого синглет $S_2 \; (\pi_{(C=N)2} \to \sigma^*_{(N-H)2})$ является материнским, и захват налетающего электрона происходит на высоколежащую квазиридберговскую ВМО (QR^*). Этот резонанс продуцирует молекулярные ионы с электронной конфигурацией $(\pi_{(C=N)2})^1 (\sigma^*_{(N-H)2})^1 (QR^*)^1$ и его можно обозначить как MP (S_2) (табл. 2). "Плечо" на низкоэнергетической стороне, соответствующей КЭВ ионов m/z 67, 42, 26, расположенное при энергии 6.0 эВ,

свидетельствует о наличии еще одного максиму-

ХИМИЯ ВЫСОКИХ ЭНЕРГИЙ том 56 № 5 2022

Рис. 1. Кривые эффективного выхода отрицательных ионов масс-спектра резонансного захвата электронов 1H-1,2,4триазола; m/z – массовое число, I – интенсивность отрицательных ионов, $(CN_2H)^-$ – структура фрагментарного иона. При проведении эксперимента температура стенок камеры ионизации составляла (63.0 ± 0.5)°C, температура штока ввода пробы – (45.30 ± 0.05)°C, распределение электронного пучка по энергии, оцененное по кривым эффективного выхода ионов SF6⁻ при нулевой энергии, составляло 0.3–0.4 эВ (ширина пика на полувысоте).

ма КЭВ, плохо разрешенного по энергии. Это "плечо" расположено в области энергий, соответствующей первому возбужденному синглетно-

му состоянию S_1 ($n_{N3}(a') \rightarrow \pi^*_{(C=N)3}$) — 6.14 эВ. Соответственно, указанный резонанс при 6.0 эВ можно отнести к MP(S_1) с электронной конфигу-

рацией молекулярного иона $(n_{N3}(a'))^1 (\pi^*_{(C=N)3})^1 (QR^*)^1$. Максимум следующего пика КЭВ ионов m/z 67, 26, 66 и 39 находится в области энергий

7.0–7.2 эВ (7.0 эВ – m/z 67, 26; 7.1 эВ – m/z 66; 7.2 эВ – m/z 39). В энергетической области этого резонанса имеются два синглетных перехода: S_3 – 6.95 эВ и S_4 – 7.02 эВ (табл. 1). Но поскольку сродство к электрону возбужденного состояния S_3 будет отрицательным, а сила осциллятора перехода S_4 в 6 раз больше, чем S_3 , эти факторы позволяют отнести резонанс в области 7.0–7.2 эВ к MP(S_4) с электронной конфигурацией соответствующего

РС	<i>Е</i> , эВ	Электронная конфигурация	<i>ЕА_V</i> , эВ	m/z(I)
$MP(S_1)$	6.0	$(n_{\rm N3}({\rm a}'))^1 (\pi^*_{\rm (C=N)3})^1 (QR^*)^{1} {\rm a}$	0.14	67(2.4), 42(6), 26(390)
MP(<i>S</i> ₂)	6.6–6.8	$(\pi_{(C=N)2})^1 (\sigma^*_{(N-H)2})^1 (QR^*)^1$	0.04	42(9), 41(890), 40(70),
$MP(S_4)^6$	7.0–7.2	$(\pi_{(C=N)2})^1 (\pi^*_{(C=N)3})^1 (QR^*)^1$	0.02	67(10), 66(100), 39(44), 26(710)
$MP(S_{11})^{6}$	7.8-8.0	$(\pi_{(C=N)2})^1 (\pi^*_{(C=N)4})^1 (QR^*)^1$	0.11	67(5), 66(90), 41(600), 40(12), 26(760)
$MP(S_{21})^6$	8.6	$(n_{N1}(a''))^1 (\pi^*_{(C=N)4})^1 (QR^*)^1$	0.14	66(55), 39(22), 26(450)
$MP(S_{32})^{6}$	9.5	$(\pi_{(C=N)2})^1 (R_{28}^*)^1 (QR^*)^1$	0.09	67(4), 26(360)
$MP(S_{38})^{6}$	10.2-10.5	$(\pi_{(C=N)2})^1 (R_{29}^*)^1 (QR^*)^1$	0.07	41(300), 39(48), 26(370)
$MP(S_{46})^{6}$	10.8	$(\sigma_{(C-H)2})^1 (\sigma^*_{(N-H)2})^1 (QR^*)^1$	0.14	67(13), 66(130), 40(10), 26(360)

Таблица 2.	Отнесение резонансных	состояний отрицательного	молекулярного иона 1	l H-1,2,4-триазола
------------	-----------------------	--------------------------	----------------------	--------------------

РС – тип резонансного состояния, в скобках указано материнское состояние резонанса; E – энергия резонанса; EA_V – вертикальное сродство к электрону соответствующего материнского состояния; m/z(I) – массовое число аниона на кривой которого регистрируется резонанс, в скобках указана интенсивность пика (имп/с), соответствующего этому резонансу. ^a $(n_{N3}(a))^1 (\pi_{(C=N)3}^n)^1 (QR^*)^1$ – данное обозначение электронной конфигурации ОИ показывает, что один электрон располо-

жен на ЗМО молекулы $n_{N_3}(a')$, один электрон на ВМО молекулы $\pi_{(C=N)3}$ и один на высоколежащей диффузной квазиридберговской ВМО QR^* ; остальные ЗМО молекулы полностью заняты электронами, а ВМО – свободны.

⁶ В качестве материнского состояния указано близкое по энергии синглетное состояние с наибольшей силой осциллятора, имеющее положительное электронное сродство к рассматриваемому резонансу.

Рис. 2. Корреляционная диаграмма энергий возбужденных синглетных состояний молекулы 1H-1,2,4-триазола (*S*), рассчитанных методом TDDFT/6-311+G(d,p), и энергий резонансных состояний отрицательного молекулярного иона 1H-1,2,4-триазола (PC).

молекулярного иона $(\pi_{(C=N)2})^1 (\pi^*_{(C=N)3})^1 (QR^*)^1$. По аналогичному принципу проведено отнесение остальных зарегистрированных в этой энергетической области резонансных состояний при энергиях 7.8–8.0, 8.6, 9.5, 10.2–10.5 и 10.8 эВ (рис. 2, табл. 2). В целом, на основании наблюдаемой корреляции, представленной на рис. 2, можно заключить, что сродство к электрону молекулы 1H-1,2,4-триазола, находящейся в том или ином синглетно-электронно-возбужденном состоянии, невелико и не превышает величину 0.2 эВ, что полностью согласуется с результатами работ [4, 10–12].

Что касается резонансных состояний 1H-1,2,4-триазола в области энергий 1—4 эВ, то обычно в этой области находятся резонансы формы [3], но могут быть обнаружены и электронно-возбужденные фешбаховские резонансы [30], поэтому этот вопрос требует дальнейших исследований.

ЗАКЛЮЧЕНИЕ

Показано, что резонансные состояния отрицательных молекулярных ионов 1H-1,2,4-триазола, регистрируемые в области электронной энергии 5—12 эВ, коррелируют с энергиями электронновозбужденных синглетов нейтральной молекулы. Обнаруженная корреляция позволяет отнести эти резонансы к типу межоболочечных, материнскими состояниями которых являются соответствующие синглеты. Оценка сродства к электрону молекулы 1H-1,2,4-триазола, находящейся в различных электронно-возбужденных синглетных состояниях, дала значения для этого сродства меньшие, чем 0.14 эВ.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Bardsley J.N., Mandl F.* // Rep. Prog. Phys. 1968. V. 31. № 2. P. 471.
- 2. Schultz G.J. // Rev. Mod. Phys. 1973. V. 45. № 3. P. 423.
- 3. *Christophorou L.G.* Electron-Molecule Interactions and their Applications. Academic Press, Orlando, FL, 1984.
- Khvostenko V.I., Vorob'ev A.S., Khvostenko O.G. // J. Phys. B: At. Mol. Opt. Phys. 1990. V. 23. № 12. P. 1975.
- 5. *Illenberger E., Momigny J.* Gaseous Molecular Ions. An Introduction to Elementary Processes Induced by Ionization; Steinkopff Verlag Darmstadt, Springer-Verlag: New York, 1992.
- Fabrikant I.I., Eden S., Mason N.J. et al. // Advances in Atomic, Molecular, and Optical Physics 2017. V. 66. P. 545.
- 7. Feshbach H. // Ann. Phys. 1958. V. 5. № 4. P. 357.
- Buckman S.J., Hammond P., Read F.H. et al. // J. Phys. B: At. Mol. Phys. 1983. V. 16. № 21. P. 4039.
- 9. Dressler R., Allan M., Tronc M. // J. Phys. B: At. Mol. Phys. 1987. V. 20. № 2. P. 393.
- Khvostenko O.G., Yarullina Z.Sh., Shishlov N.M. et al. // Rapid Commun. Mass Spectrom. 1999. V. 13. № 12. P. 1091.
- Tseplin E.E., Tseplina S.N., Tuimedov G.M. et al. // J. Electron Spectrom. Relat. Phenom. 2009. V. 171. № 1-3. P. 37.
- Khvostenko O.G., Lukin V.G., Tuimedov G.M. et al. // J. Electron Spectrosc. Relat. Phenom. 2015. V. 199. P. 1.
- 13. Хвостенко В.И. Масс-спектрометрия отрицательных ионов в органической химии. М.: Наука, 1981.
- Лукин В.Г., Хвостенко О.Г. // УФН. 2017. Т. 187. № 9. С. 981.
- 15. Лукин В.Г., Хвостенко О.Г., Хатымова Л.З. и др. // Хим. физика. 2021. Т. 40. № 11. С. 29.
- 16. Becke A.D. // J. Chem. Phys. 1993. V. 98. № 7. P. 5648.
- Lee C., Yang W., Parr R.G. // Phys. Rev. B. 1988. V. 37. № 2. P. 785.
- Petersson G.A., Al-Laham M.A. // J. Chem. Phys. 1991. V. 94. № 9. P. 6081.
- Frisch M.J., Trucks G.W., Schlegel H.B. et al. // Gaussian 09, Revision C.1; Gaussian Inc: Wallingford CT, 2009.

ХИМИЯ ВЫСОКИХ ЭНЕРГИЙ том 56 № 5 2022

- Atkinson M.R., Parkes E.A., Polya J.B. // J. Chem. Soc. 1954. P. 4256.
- Lumme P., Pitkänen I. // Acta Chem. Scand. A. 1974.
 V. 28. № 10. P. 1106.
- 22. Palmer M.H., Camp P.J., Hoffmann S.V. et al. // J. Chem. Phys. 2012. V. 136. № 9. e094310.
- 23. *Scalmani G., Frisch M.J., Mennucci B. et al.* // J. Chem. Phys. 2006. V. 124. № 9. e094107.
- Wu L., Ouyang B., Zhao Y. et al. // J. Raman Spectrosc. 2017. V. 48. № 9. P. 1201.
- 25. *Boo B.H., Kim J.H.* // Bull. Korean Chem. Soc. 2013. V. 34. № 1. P. 309.

- 26. Khvostenko O.G., Kinzyabulatov R.R., Khatymova L.Z. et al. // J. Phys. Chem. A. 2017. V. 121. № 39. P. 7349.
- 27. *Tseplin E.E., Tseplina S.N.* // Chem. Phys. Lett. 2019. V. 716. P. 142.
- 28. Цеплина С.Н., Цеплин Е.Е. // Химия высоких энергий. 2021. Т. 55. № 1. С. 96.
- 29. *Цеплина С.Н., Цеплин Е.Е.* // Химия высоких энергий. 2018. Т. 52. № 6. С. 517.
- 30. *Khvostenko O.G., Khatymova L.Z., Lukin V.G. et al.* // Chem. Phys. Lett. 2018. V. 711. P. 81.