——— ФОТОКАТАЛИЗ —

УДК 541.124+145.15

ФОТОКАТАЛИТИЧЕСКОЕ ВОССТАНОВЛЕНИЕ ДИОКСИДА УГЛЕРОДА В ВОДНЫХ СУСПЕНЗИЯХ ОКИСНО-ТИТАНОВОГО ПОЛУПРОВОДНИКА

© 2023 г. Т. С. Джабиев^{а, *}, Л. В. Авдеева^а, Т. А. Савиных^а, З. М. Джабиева^а

^а Федеральное государственное бюджетное учреждение Институт проблем химической физики науки Российской академии наук, просп. акад. Семенова, 1, Черноголовка, Московская обл., 142432 Россия

**E-mail: dzhabiev@icp.ac.ru* Поступила в редакцию 30.06.2022 г. После доработки 19.07.2022 г. Принята к публикации 19.07.2022 г.

Изучены реакции фотокаталитического восстановления CO_2 в водных суспензиях окисно-титанового полупроводника TiO_2 с фотоосажденными сокатализаторами Pt и Cu. Установлено, что состав и количество продуктов восстановления CO_2 существенно зависит от природы сокатализатора, нанесенного на TiO_2 . Предложен механизм образования продуктов восстановления CO_2 .

Ключевые слова: полупроводник TiO₂, фотокатализатор, восстановление CO₂ **DOI:** 10.31857/S0023119323010047, **EDN:** DCMNQC

введение

По мере истощения запасов горючих ископаемых (уголь, нефть, природный газ) все более актуальной становится проблема поиска альтернативных источников энергии, а также сырья для химической промышленности. При сжигании исходного топлива образуется огромное количество диоксида углерода (CO₂) и его концентрация в атмосфере Земли постепенно увеличивается. Это может привести к парниковому эффекту, и в конечном итоге, к глобальному потеплению всей планеты. Все это делает весьма актуальной задачу широкомасштабного превращения СО2 в ценные химические соединения. В течение ряда последних десятилетий были сделаны попытки использовать СО₂ в качестве исходного вещества в промышленности химического синтеза. И хотя несколько процессов такого рода известны, например, синтез карбамида, соды, салициловой кислоты и т.д., возможности химического использования СО₂ до сих пор остаются довольно ограниченными [1]. Усилия же многочисленных исследовательских групп во всем мире направлены на поиск новых реакций с участием CO2. В настоящее время изучаются методы получения органических соединений из СО₂ как в фотокаталитических системах, электрохимических, фотоэлектрохимических, в том числе и в присутствии полупроводниковых материалов [2-27]. Отметим, что основным недостатком электрохимических и фотоэлектрохимических процессов восстановления СО2 является высокая

стоимость потребляемой при этом энергии, которая со временем только возрастет, если в будущем не будут найдены новые источники энергии.

В данной работе приведены результаты исследования фотокаталитического восстановления CO_2 в водных суспензиях окисно-титанового полупроводника при осаждении на его поверхности металлических платины (Pt/TiO₂) и меди (Cu/TiO₂).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Исходные соединения: бидистиллированная вода, $SrCl_2 \cdot 6H_2O$ "ч", $TiCl_4$ "ч", $(NH_4)_2 \cdot SO_4$ "осч", H_2SO_4 "осч", H_2PtCl_6 (Merck), $CuSO_4$ "осч".

Приготовление TiO₂ (анатаз)

ТіО₂ получен по методике [28]. К 100 мл раствора сульфата титана, содержащего 0.9 моль/л Ті(IV) и 1.43 моль/л H_2SO_4 , добавляли 13.7 мл концентрированной H_2SO_4 . После прибавления к этому раствору избытка сульфата аммония (21.7 г), раствор оставляли на 24 ч (сутки) для кристаллизации. Полученный после фильтрования осадок отмывали водой (3 раза) и сушили на воздухе. Затем прокаливали при 750°C 3 ч. Полученный образец имел белый цвет. Нанесение Pt и Cu на поверхность TiO₂ проводили по методике [29] фотохимическим восстановлением водного раствора H_2PtCl_6 и CuSO₄ под действием УФ света. На поверхности ПП осаждались высокодисперсные

Рис. 1. Положение границ энергетических зон полупроводников и уровней некоторых редокс-пар при Ph 7, по отношению к нормальному водородному потенциалу.

металлические Pt и Cu. В ходе реакции выделялся O_2 , поскольку донором электронов для восстановления ионов металлов служила H_2O . Количество O_2 соответствует степени восстановления Me^{+n} .

Фотореакцию проводили в кварцевом реакторе объемом 15 мл с плоским окном диаметром 4 см при облучении ртутной лампой сверхвысокого давления ДРШ-1000. Продукты фотореакции определяли хроматографически с помощью насоса Теплера на хроматографе ЛХМ-8Д, откалиброванных по определяемому веществу. Квантовый выход H₂, CO, CH₄ определяли по формуле, где W_0 – скорость выделения продуктов реакции, I_0 – интенсивность светового потока, при $\lambda = 365$ нм. Перед использованием СО2 очищали от примесей многократным перемораживанием в вакууме или пропускали через колонку с активированным никель-хромовым катализатором. После очистки во втором случае примесь О2 в реагенте не превышала 0.01 об. %.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Термодинамика процесса восстановления

Известно, что при фотокаталитическом восстановлении CO_2 , донором электронов является H_2O . Одноэлектронное восстановление CO_2 водой, т.е. перенос электрона с H_2O на CO_2 с образование катион-радикала H_2O^+ и анион-радикала CO_2 возможно, если уровень зоны проводимости ПП лежит выше одноэлектронного потенциала восстановления CO_2 (т.е. выше 1.9 В), а уровень валентной зоны лежит ниже уровня редокс-пары H_2O/OH (рис. 1).

В соответствии со схемой положения границ энергетических зон ПП первое из этих условий не удовлетворяется ни для одной из рассматриваемых ПП, т.е. все уровни зоны проводимости лежат ниже уровня редокс-пары CO_2^{-1}/CO_2 . Второму условию удовлетворяют только окисные ПП WO₂, ZnO, TiO₂. Одноэлектронное восстановление CO_2 до CO_2^- на рассмотренных ПП-материалах невозможно. Однако многоэлектронное восстановление СО₂ можно осуществить с образованием таких продуктов, как НСООН, СО (двухэлектронное), CH₂O, C (четырехэлектронное) или CH₄ (восьмиэлектронное восстановление). Реакции (1)-(5) с соответствующими редокс-потенциалами относительно нормального водородного редокспотенциала при рН 7 приведены ниже [30]:

$$CO_2 + 2e^- + 2H^+ = HCOOH, E_0 = -0.61 B, (1)$$

$$CO_2 + 2e^- + 2H^+ = CO + H_2O, \quad E_0 = -0.53 \text{ B}, \quad (2)$$

$$CO_2 + 4e^- + 4H^+ = HCOH + H_2O,$$

 $E_0 = -0.48 \text{ B},$ (3)

$$CO_2 + 6e^- + 6H^+ = CH_3OH + H_2O,$$

 $E_0 = -0.38 \text{ B},$
(4)

Рис. 2. Кинетика выделения CH_4 и H_2 при фотокаталитическом восстановлении CO_2 . Условия: 0.1 г TiO_2/Pt (0.5 мас. %), $CO_2 - 1$ атм., 303 K, Ph = 6, 20 мл H_2O .

$$CO_2 + 8e^- + 8H^+ = CH_4 + 2H_2O, \quad E_0 = -0.24 \text{ B.} (5)$$

Известно, что при восстановлении CO_2 на металлических электродах из платины образуются CO, HCOOH и углеводороды, а также CH₄. Нами исследована фотохимическая реакция восстановления CO₂ в водной суспензии катализатора Pt/TiO₂, (100 мг TiO₂ и 0.5 мас. % Pt в 15 мл H₂O), приготовленного фотоосаждением платины на анатаз. На рис. 2 приведены кинетические кривые образования CH₄ и H₂ при *t* 30–35°C и pH 6 в водной суспензии.

Видно, что процесс образования CH_4 через 2– 3 ч полностью прекращается, а скорость генерирования H_2 существенно снижается. Такое поведение системы полностью согласуется с наблюдавшейся ранее [31] и объясняется отравлением поверхности металлического катализатора монослоем углерода, который осаждался на поверхности металла. Таким образом, была осуществлена эндоэргическая реакция

$$\mathrm{CO}_2 + 2\mathrm{H}_2\mathrm{O} \to \mathrm{CH}_4 + 2\mathrm{O}_2,\tag{6}$$

со стандартной энергией Гиббса $\Delta G = 1.037$ эВ с.

В случае нанесения на поверхность TiO_2 металлической меди в качестве катализатора, помимо H₂, CH₄, C образуется CO. На рис. 3 приведена схема фотокаталитического восстановления CO₂ водой на Cu/TiO₂. Кинетические кривые образования CO в зависимости от количества взятого катализатора Cu/TiO₂ представлены на рис. 4. Количество катализатора Cu/TiO₂ меняли от 0.08 до 0.14 г.

Оксид углерода образуется без индукционного периода. При увеличении количества взятого ПП

Рис. 3. Схема фотокаталитического восстановления CO₂ водой на TiO₂/Cu.

Cu/TiO₂ от 0.08 г до 0.14 г начальная скорость генерирования CO увеличивается в 7 раз, а выход CO за 3.5 ч до 1.85 мкмоль · r^{-1} . Квантовый выход CO $\Phi = 0.04$.

Аналогичным образом ведет себя и кинетика образования H_2 в тех же условиях фотохимической реакции восстановления, представленная на рис. 5, причем начальные скорости образования H_2 меняются симбатно (как и в случае СО). Они равны соответственно 20, 33 и 75 мкмоль/ч, что согласуется с отношением скоростей выделения СО – продукта двухэлектронного восстановления CO₂ (рис. 4). Оцененный квантовый выход H_2 , $\Phi = 0.22$.

Рис. 4. Зависимость скорости выделения СО при фотокаталитическом восстановлении СО₂ водой от времени. Условия: TiO₂/Cu (0.5 мас. %), CO₂ – 1 атм, 1 - 0.08, 2 - 0.1, 3 - 0.14 г, 303K, Ph = 6, 20 мл H₂O.

Рис. 5. Кинетика выделения H_2 при фотокаталитическом восстановлении CO₂ водой от времени. Условия (см. рис. 4). Кривая 3 – образец после потери активности прогревался в токе воздуха при 773 К в течение двух часов.

В отличие от кинетических кривых образования H_2 и CO, кинетика накопления CH₄, приведенная на рис. 6, имеет S-образный вид, что указывает на стадийный механизм формирования CH₄, причем окись углерода CO не является предшественником образования CH₄, поскольку максимальная концентрация CH₄ достигается не через 2.5 ч, как это имеет место в случае CO (см. рис. 4).

Снижение скорости образования CH_4 после 4—5 ч фотолиза не связано с израсходованием предварительно адсорбированного на поверхность ПП CO_2 , поскольку добавление в реагирующую систему в ходе реакции дополнительных количеств CO_2 (указано стрелкой на кривой *1* рис. 6) практически не меняет закономерного снижения активности катализатора.

Разумеется, скорость генерирования продуктов восстановления должна зависеть от количества адсорбированного в начале реакции CO_2 . Кривая *I* на рис. 6 (начальный участок) получена при проведении фотокаталитической реакции на хранившемся фотокатализаторе на воздухе в течение суток. За это время фотокатализатор (Cu/TiO₂) адсорбировал почти предельно возможное количество CO_2 , хотя его концентрация в окружающей среде составляет ~0.03%.

Поскольку на кривой 1 (рис. 6) вначале в системе присутствовало несколько меньше адсорбированного CO_2 , то максимальная скорость об-

Рис. 6. Кинетика выделения CH₄ при восстановлении CO₂ водой в разных условиях приготовления катализатора. Условия: количество взятого TiO₂/Cu: 1 - 0.1, 2 - 0.14, 3 - 0.08 г; CO₂ 1 - 0.75, 2, 3 - 1 атм; кривая 1 -образец дополнительно насыщался CO₂ (указано стрелкой), кривая 3 -образец прогревался после потери активности в течение двух часов в токе воздуха при 773 К.

разования CH₄ оказалась меньше на 25%. Выход же CH₄ после напуска в реактор дополнительного количества CO₂ практически равен выходу на кривой 2 (рис. 6), когда количество взятого катализатора (Cu/TiO₂) ~ на 18% превосходило соответствующее количество на кривой 1. Возможно, это связано с большим количеством образовавшегося в случае кривой 2 (рис. 4) монооксида углерода CO (кривая 2 на рис. 4) по сравнению с кривой 1. Полная утрата каталитической активности фотокатализаторов Cu/TiO₂ (кривые 2 и 3 на рис. 6 после 7 ч фотолиза) также объясняется отравлением катализатора, т.е. покрытием металлической поверхности Cu в фотопроцессе углеродом, по-видимому, в виде графита.

Полное отравление катализатора формирования CH_4 не приводит к полной остановке процесса образования H_2 после 7 ч фотолиза (рис. 5). Поскольку катализатором обоих процессов является металлическое покрытие (Pt или Cu), то продолжение образования H_2 хотя и с меньшей скоростью, когда CH_4 уже не образуется, связано с меньшими стерическими затруднениями для малой молекулы H_2 покинуть поверхность металла, почти закрытую плотным слоем графита. Однако мы полагаем, что активные центры формирования H_2 , CO и CH_4 при фотовосстановлении CO_2 различны. Несмотря на то, что они образованы на одном и том же катализаторе наблюдается большая разни-

ца в начальных скоростях образования H_2 (см. кривые 2, 3 на рис. 5) при практически совпадающих начальных скоростях образования CH_4 в тех же условиях (см. рис. 6). Прямым подтверждением отравления катализатора углеродной пленкой в ходе процесса служит регенерация исходной активности термической обработкой в токе воздуха.

Кривые 3 на рис. 6 и 5 представляют кинетику образования CH_4 и H_2 , которые после потери каталитической активности прогревались в течение двух часов в токе воздуха при 773 К. Видно, что активность в формировании CH_4 восстановилась полностью, тогда как для H_2 и CO-генерирующей способности недостаточно. Эффективность образования CH_4 достигает $\Phi = 0.012$.

ВОЗМОЖНЫЙ МЕХАНИЗМ ОБРАЗОВАНИЯ ПРОДУКТОВ ФОТОКАТАЛИТИЧЕСКОГО ВОССТАНОВЛЕНИЯ СО₂ ВОДОЙ

Согласно нашим исследованиям CO₂ связывается с поверхностью меди лишь слабыми силами физической адсорбции. Не было замечено никаких эффектов, результатом которых была бы диссоциация адсорбированного CO₂, хотя авторы работы [32] не исключают полностью возможности образования промежуточных продуктов диссоциации, что может способствовать избыточному обмену. Механизм восстановления CO₂ не может

включать прямого переноса $e_{3.п}^-$ на адсорбированную молекулу CO_2 , поэтому надо думать, что первая стадия восстановления состоит в реакции фотогенерированных хемисорбированных атомов водорода на медной поверхности, аналогично тому, как это предполагается для электрохимического процесса [33]. Последующие стадии ведут к адсорбированным на поверхности молекулам CO, которые могут десорбироваться в газовую фазу или подвергаться дальнейшему восстановлению на поверхности Cu до CH₄.

Эти стадии можно записать следующим образом:

$$H_2O + Cu + \bar{e_{3.n.}} \rightleftharpoons Cu - H_{adc.+}OH^-,$$
(7)

$$\operatorname{Cu} + \operatorname{CO}_2 \rightleftharpoons \operatorname{Cu}(\operatorname{CO}_2)_{\oplus \mu_3, \mathrm{auc.}},$$
(8)

$$Cu-H_{adc.} + Cu(CO_2)_{\phi_{H3.adc.}} \rightarrow Cu-OCHO_{adc.},$$
(9)

$$Cu - OCHO_{adc.} + Cu - H_{adc.} \longrightarrow \frac{Cu}{Cu} CH = O + H_2O$$
(10)

$$Cu CH=0 \longrightarrow 2Cu + CO$$
(11)

Один из часто наблюдаемых продуктов восстановления – НСООН может быть получен при акцептировании второго е_{з.п} промежуточным продуктом реакции (3)

$$Cu-OCHO_{auc.} + e_{3.II} \rightarrow Cu + HCOO^{-}.$$
 (12)

Образование же продуктов, идентифицируемых в фотокаталитическом процессе, можно представить следующим образом:

$$\begin{array}{c} HO & H \\ H & C & H \\ \downarrow & \parallel & \downarrow \\ Cu - Cu - Cu \\ \end{array} \xrightarrow{H} \begin{array}{c} H & H \\ C & H \\ Cu - Cu - Cu \\ \end{array} \xrightarrow{H} \begin{array}{c} H \\ Cu - Cu \\ \end{array} \xrightarrow{H} \begin{array}{c} H \\ H_2O \\ \end{array}$$
(15)

$$\begin{array}{ccc} H & CH_2 H \\ I & \parallel & I \\ Cu - Cu - Cu \end{array} \xrightarrow{} Cu - Cu - Cu + CH_4 \quad (16)$$

$$\begin{array}{c} O & OH \\ H & C \\ Cu - Cu - Cu \end{array} \xrightarrow{I} C \\ Cu - Cu - Cu \end{array}$$
(17)

Фиксируемый на начальных стадиях фотопроцесса СО образуется по реакции (11). Последовательное восстановление хемисорбированного СО на поверхности меди приводит либо к образованию CH₄ по реакциям (13)—(16), либо на поверх-

ХИМИЯ ВЫСОКИХ ЭНЕРГИЙ том 57 № 1 2023

ности осаждается углеродная пленка по реакциям (17)—(18), что приводит к отравлению катализатора. Регенерация сводится к взаимодействию поверхностного углерода с кислородом (выжигание), с освобождением активных центров от углерода. Молекулярный водород образуется при взаимодействии двух частиц типа Cu—H_{адс}. Таким образом, могут быть объяснены все наблюдавшиеся маршруты этого сложного процесса.

выводы

1. Показано, что металлическая медь может служить катализатором формирования продуктов H₂, CO, CH₄ фотокаталитического восстановления CO₂ в водных суспензиях окисно-титанового полупроводника TiO₂.

2. Выход продуктов восстановления CO_2 на катализаторе TiO_2/Cu выше, чем на катализаторе TiO_2/Pt .

3. Предложен механизм образования продуктов восстановления CO₂ водой.

ИСТОЧНИК ФИНАНСИРОВАНИЯ

Работа выполнена в рамках Государственного задания (№ АААА-А19-119071190045-0) с использованием оборудования Аналитического центра коллективного пользования ИПХФ РАН.

СПИСОК ЛИТЕРАТУРЫ

- 1. Катализ в С₁-химии / Под. ред. Кайма В. Л.: Химия, 1987. 296 с.
- Zhong W., Sa R., Li L., et all // J. Am. Chem. Soc. 2019. V. 141. P. 7615.
- https://doi.org/10.1021/jacs.9b02997
 3. White J.L., Baruch M.F., Pander III J.E., et all // Chem. Rev. 2015. V. 115. P. 12888.
- https://doi.org/10.1021/acs.chemrev.5b00370
- Li X., Yu J., Jaroniec M., Chen X. // Chem. Rev. 2019. V. 119. P. 3962. https://doi.org/10.1021/acs.chemrev.8b00400
- Takeda H., Cometto C., Ishitani O., Robert M. // ACS Catal. 2017. 7. P. 70. https://doi.org/10.1021/acscatal.6b02181
- Francke R., Schille B., Roemelt M. // Chem. Rev. 2018. V. 118. P. 4631.
- https://doi.org/10.1021/acs.chemrev.7b00459
- Rao H., Schmidt L., Bonin J., Robert M. // Nature. 2017. V. 548. P.74. https://doi.org/10.1038/nature23016
- 8. Fang Y., Wang X. // Chem. Commun. 2018. V. 54. P. 5674. https://doi.org/ https://doi.org/10.1039/C8CC02046A
- Maeda K., Kuriki R., Zhang M., et all // J. Mater. Chem., A. 2014. 2. P. 15146. https://doi.org/10.1039/C4TA03128H
- Kuhl K.P., Cave E.R., Abram D.N., Jaramillo T.F. // Energy Environ. Sci. 2012. 5. P. 7050. https://doi.org/10.1039/C2EE21234J

- Arquer F.P.G.D., Bushuyev O.S., Luna P.D., et all // Adv. Mater. 2018. 30. 1802858. https://doi.org/10.1002/adma.201802858
- Gao S., Lin Y., Jiao X., et all // Nature. 2016. V. 529. P. 68.
- https://doi.org/10.1038/nature16455
 13. *Jouny M., Luc W., Jiao F. //* Ind. Eng. Chem. Res. 2018. V. 57. P. 2165.
- https://doi.org/10.1021/acs.iecr.7b03514
 14. Kuilin Lv., Yanchen Fan, Ying Zhu, et all // J. Mater. Chem., A. 2018. V. 6. № 12. P. 5025.
- https://doi.org/10.1039/C7TA10802H 15. *Lee S., Park G., Lee J.* // ACS Catal. 2017. 7. P. 8594. https://doi.org/10.1021/acscatal.7b02822
- Xu S., Carter E.A. // J. Am. Chem. Soc. 2018. V. 140. 28. P. 8732.

https://doi.org/10.1021/jacs.8b03774

- Brown E.S., Peczonczyk S.L., Wang Z., Maldonado S. // J. Phys. Chem., C. 2014. V. 118. 22. P. 11593. https://doi.org/10.1021/jp503147p
- Beiler A.M., Khusnutdinova D., Jacob S.I., Moore G.F. // ACS Appl. Mater. Interfaces. 2016. 8. 15. P. 10038. https://doi.org/10.1021/acsami.6b01557
- Keith J.A., Carter E.A. // J. Am. Chem. Soc. 2012.
 V. 134. 18. P. 7580. https://doi.org/10.1021/ja300128e
- Lu X., Huang S., Diaz M.B., et all // IEEE Journal of Photovoltaics. 2012. 2. 214. https://doi.org/10.1109/JPHOTOV.2011.2182180
- Navalón S., Dhakshinamoorthy A., Álvaro M. // Chem-SusChem. 2013. P. 562. https://doi.org/10.1002/cssc.201200670
- Huygh S., Bogaerts A., Neyts E.C. // J. Phys. Chem., C. 2016. V. 120. 38. P. 21659. https://doi.org/10.1021/acs.jpcc.6b07459
- Yongfei Ji, Yi Luo // J. Am. Chem. Soc. 2016. V. 138. 49. P. 15896.
- https://doi.org/10.1021/jacs.6b05695 24. Xie S., Wang Y., Zhang Q., et all // Chem. Commun.
- 2013. 49. P. 2451. https://doi.org/10.1039/C3CC00107E
- White J.L., Baruch M.F., Pander III J.E., et all // Chem. Rev. 2015. V. 115. 23. P. 12888. https://doi.org/10.1021/acs.chemrev.5b00370
- Chang X., Wang T., Gong J. // Energy Environ. Sci. 2016. 9. P. 2177.
- https://doi.org/10.1039/C6EE00383D
 27. *Mao J., Li K., Peng T. //* Catal. Sci. Technol. 2013. 3. № 10. P. 2481.
- https://doi.org/10.1039/C3CY00345K
- 28. *Горощенко Я.Г.* Химия титана. Киев: Наукова думка, 1970. 416 с.
- 29. Lehn J.-M., Sauvage J.-P., Ziessel R. // Nouv. J. Chim. 1984. V. 4. № 11. P. 623.
- Dimitrijevic N.M., Vijayan B.K., Poluektov O.G., et al. // J. Am. Chem. Soc. 2011. V. 133. P. 3964. https://doi.org/10.1021/ja108791u
- Hemminger J.C., Carr R., Somorjai G.A. // Chem. Phys. Lett. 1978. V. 57. 1. P. 100. https://doi.org/10.1016/0009-2614(78)80359-5
- 32. *Haas T., Pritchard J.* // J. Chem. Soc., Faraday Trans. 1990. V. 86. № 10. P. 1889. https://doi.org/10.1039/FT9908601889
- Cook R.L., MacDuff R.C., Sammells A.F. // Electrochem. Soc. 1988. V. 135. № 6. P. 1320. https://doi.org/10.1149/1.2095972