——— ПЛАЗМОХИМИЯ ——

УДК 537.525

# ИССЛЕДОВАНИЕ КОНВЕРСИИ МАЛЫХ ПРИМЕСЕЙ ЭТАНОЛА В АРГОНЕ В ТЛЕЮЩЕМ РАЗРЯДЕ ПРИ АТМОСФЕРНОМ ДАВЛЕНИИ

© 2023 г. А. И. Сайфутдинов<sup>а,</sup> \*, Н. П. Германов<sup>а</sup>, А. А. Сайфутдинова<sup>а</sup>, А. Р. Сорокина<sup>а</sup>

<sup>а</sup>Казанский национальный исследовательский технический университет им. А.Н. Туполева-КАИ, Казань, Россия \*E-mail: as.uav@bk.ru

Поступила в редакцию 17.07.2022 г. После доработки 05.09.2022 г. Принята к публикации 05.09.2022 г.

В работе проведены исследования плазмохимической конверсии малых примесей этанола в аргоне в неравновесном тлеющем разряде атмосферного давления. Результаты моделирования показали, что доминирующими частицами в результате конверсии этанола являются СО, H<sub>2</sub> и H, CH<sub>4</sub>, C<sub>3</sub>H<sub>3</sub>, C<sub>2</sub>H<sub>2</sub>, C<sub>2</sub>H<sub>4</sub>, C<sub>2</sub>H<sub>5</sub>. Кроме того, показано формирование молекулярных частиц углерода, и значительные значения концентраций радикалов CH<sub>3</sub> и CH<sub>2</sub>, которые являются прекурсорами наноалмазов.

*Ключевые слова:* плазмохимический синтез, углерод, радикалы, тлеющий разряд, неравновесная плазма, атмосферное давление

DOI: 10.31857/S0023119323010114, EDN: DDNJHO

### введение

В последние десятилетия наноматериалы активно исследуются многими научными и инженерными сообществами. Уникальные оптические, электронные и механические свойства этих материалов очень привлекательны для множества потенциальных приложений [1–5]. В связи с этим представляет большой интерес, связанный с исследованием эффективных путей синтеза и модификации наноматериалов. На сегодняшний день можно смело утверждать, что использование неравновесной газоразрядной плазмы в качестве рабочей среды по синтезу наноструктур является одним из "золотых стандартов". Это связано с высокой пропускной способностью, селективностью, коротким временем роста наноструктур, оптимизированными свойствами материала и низкой стоимостью по производству наноматериалов [6-9].

В работах [10—15] были синтезированы наноструктуры в дуговом и СВЧ разрядах. В работе [16] была продемонстрирована возможность синтеза наноалмазов путем диссоциации паров этанола в плазме тлеющего микроразряда в потоке аргона при атмосферном давлении и температуре газа не превышающей 100°С. Результаты экспериментальных исследований показали, что синтезированные наночастицы имели диаметр от 2 до 5 нм и кристаллическую структуру кубического алмаза, н-алмаза и лонсдейлита.

Несмотря на значительный прогресс в плазменном наносинтезе, механизмы роста наноструктур в плазменной и газовой фазах до сих пор плохо изучены, как на микроскопическом, так и на атомистическом уровне. Это связано с невозможностью отслеживать ключевые этапы процессов синтеза, включая зародышеобразование и рост. Основная часть понимания механизмов наносинтеза исходит из оценки наноструктур, наночастиц и связанных примесей после выращивания (*ex-situ*) с использованием различных методов лазерной и рентгеновской спектроскопии, электронной микроскопии высокого разрешения [17–19] совместно с экспериментальным процессом проб и ошибок: изменение катализатора [20], исходного сырья [21], состава фонового газа [22, 23] и других параметров [24].

С другой стороны стремительное развитие вычислительных возможностей привело к развитию физико-математических моделей газовых разрядов, позволяющих прогнозировать физико-химические процессы, протекающие в неравновесной плазме.

В связи с вышесказанным, целью представленной работы было проведение численных расчетов по исследованию конверсии этанола в аргоне в неравновесной плазме тлеющего микроразряда при атмосферном давлении по условиям экспериментов, проведенных в [16].

### ОПИСАНИЕ МОДЕЛИ

В плазме, генерируемой в смеси газов аргон– этанол возможно протекание огромного числа элементарных плазмохимических реакций. Учет всех этих реакций в плазме тлеющего микроразряда в рамках даже одномерной геометрии является затруднительной задачей. В связи с этим, как правило, формулируется нульмерная или глобальная (Global) модель плазмы. В такой моделе предполагается, что мощность, вкладываемая в разряд, распределяется внутри камеры равномерно, а плазма пространственно однородна, т.е. пространственные профили частиц существенно не изменяются по сравнению с их средними значениями по объему. Модель основана на дифференциальных уравнениях, описывающих баланс частиц для различных сортов частиц. Электронная плотность рассчитывается из предположения квазинейтральности.

Уравнения баланса концентраций *n<sub>i</sub>* для каждого сорта частиц *i*, включая ионы, записывается в следующем виде

$$\frac{dn_i}{dt} = S_i,\tag{1}$$

где  $S_i$  — источник, который определяет генерацию и сток частиц в объеме плазмы и на ее границах (стенках разрядной камеры). В объеме плазмы источник определяется химическими реакциями между частицами, а на границе — стенкой камеры и переносом частиц. Для обозначения этих двух типов источников мы будем использовать нижние индексы V и S, которые обозначают, соответственно, объем и поверхность. Область определения реакций, в которых происходит генерация частиц будем обозначать {P}, а сток частиц — {D}. Исходя из этих обозначений, источник записывается следующим образом

$$S_{i} = \sum_{j \in \{P\}} R_{i}^{j} \bigg|_{V,S} - \sum_{j \in \{D\}} R_{i}^{j} \bigg|_{V,S}, \qquad (2)$$

где *j* представляет собой рассматриваемую реакцию, а  $R_i^j$  – скорость реакции с участием частиц сорта *i*.

Объемные реакции состоят из химических взаимодействий между отдельными частицами плазмы, и их скорость определяется реагентами. Для объемной реакции *j* скорость выражается соотношением

$$R^{j}\Big|_{V} = \sum_{j} k^{j} \prod_{l} n_{i}^{a_{ji}}, \qquad (3)$$

где  $k^{j}$  – константа реакции,  $a_{ji}$  – стехиометрический коэффициент *i*-го реагента. Константа реакции зависит либо от температуры электронов  $T_{e}$ , либо от температуры газа *T*. Константы скоростей реакций для частиц с участием электронов определяются путем свертки сечения процесса  $\sigma_i$  с функцией распределения f(w)

$$k_j = \left(\frac{2}{m_e}\right)^2 \int_0^\infty w \sigma_i(w) f(w) dw.$$
(4)

Функция распределения электронов определялась из локального кинетического уравнения Больц-мана [25].

В отличие от объемных реакций, реакции на границах индуцируются стенками камеры и эффективно зависят от переноса частиц. Эти реакции однозначно определяются зарядом и состоянием частицы. Положительные ионы рекомбинируют на стенке и возвращаются обратно в плазму в виде нейтралов. Нейтральные частицы диффундируют к границе, где они рекомбинируют или девозбуждаются на стенке камеры и отражаются обратно в объем. В дополнение к этим процессам может быть учтен процесс с массопереносом за счет конвекции: выноса одних частиц из плазмы и поступления плазмообразующего газа.

Для положительных ионов (с индеком *p*), поток на стенку разрядной камеры определяется скоростью Бома  $u_{\rm B} = (eT_e/m_p)$  следующим выражением  $n_p u_{\rm B}$ , где  $m_p$  обозначает массу иона. В предположении, что каждый ион, столкнувшийся со стенкой, нейтрализуется, скорость ухода иона на стенку выражается соотношением

$$R_p\big|_S = u_{\rm B} n_p \frac{A_{\rm ef,p}}{V},\tag{5}$$

где  $V = \pi R^2 L$  – объем плазмы,  $A_{ef,p} = 2\pi (R^2 + RL)$  – эффективная площадь стенки разрядной камеры.

Сток нейтральных частиц на границе плазмы определяется диффузионным потоком. Их столкновения со стенкой вызывают реакции, уникальные для каждого сорта, и последующие продукты возвращаются в плазму. Для обозначения их скоростей введем верхний индекс N, тогда для нейтральной частицы сорта *i* скорость реакции на стенке определится выражением [26]

$$\left. R_{i}^{N} \right|_{S} = n_{i} \left( \frac{\Lambda^{2}}{D_{i}} + \frac{2V(2 - \gamma_{i})}{A\gamma_{i} \left\langle v_{i} \right\rangle} \right)^{-1}, \tag{6}$$

где  $D_i$  — коэффициент диффузии [4],  $\langle v_i \rangle$  — средняя скорость нейтральной частицы,  $\gamma_i$  — вероятность реакции на стенке. Эффективная диффузионная длина  $\Lambda$  для цилиндра равна [25]

$$\Lambda^{2} = \left[ \left( \frac{\pi}{L} \right)^{2} + \left( \frac{2.405}{R} \right)^{2} \right]^{-1}.$$
 (7)

Прокачка газа через разрядную камеру определяется притоком и оттоком. Скорость притока плазмообразующего газа определяется соотношением

| Реакция                                                                                        | Константа реакции <i>k<sub>j</sub></i> , м <sup>3</sup> /с, или м <sup>6</sup> /с                                                         | Описание                |
|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| $e + Ar \rightarrow e + Ar$                                                                    | Определялась сверткой сечения реакции<br>с функцией распределения электронов,<br>полученной из кинетического уравнения, м <sup>3</sup> /с | Упругое рассеяние       |
| $e + Ar \leftrightarrow e + A^*$                                                               |                                                                                                                                           | Возбуждение             |
| $e + Ar \rightarrow 2e + Ar^+$                                                                 |                                                                                                                                           | Прямая ионизация        |
| $e + Ar^* \rightarrow 2e + Ar^+$                                                               |                                                                                                                                           | Ступенчатая ионизация   |
| $2e + Ar \rightarrow e + Ar$                                                                   | $8.75 \times 10^{-39} T_e^{-4.5} \text{ m}^6/\text{c}$                                                                                    |                         |
| $e + Ar_2^+ \rightarrow e + Ar^*$                                                              | $8.5 \times 10^{-19} \left(T_e^{-4.5} [\mathrm{K}]/300\right)^{-0.67} \mathrm{m}^6/\mathrm{c}$                                            |                         |
| $2\operatorname{Ar} + \operatorname{Ar}^{+} \to \operatorname{Ar} + \operatorname{Ar}_{2}^{+}$ | $2.25 \times 10^{-43} (T/300)^{-0.4} \text{ m}^6/\text{c}$                                                                                | Ионная конверсия        |
| $Ar^* + 2 Ar \rightarrow 3 Ar$                                                                 | $1.4 \times 10^{-43} \mathrm{m}^{6}/\mathrm{c}$                                                                                           | Девозбуждение           |
| $Ar^* + Ar^* \rightarrow Ar + Ar^+ + e$                                                        | $6 \times 10^{-16} (T/300)^{0.5} \text{ m}^3/\text{c}$                                                                                    | Пеннинговская ионизация |
| $Ar_2^+ + Ar \rightarrow Ar^+ + 2Ar$                                                           | $6.06 \times 10^{-6}/\text{Texp}(-15130/T) \text{ m}^3/\text{c}$                                                                          | Ионная конверсия        |

Таблица 1. Набор учитываемых плазмохимических процессов с участием плазмообразующего газа – аргона

$$R_{\text{Ar,C}_2\text{H}_5\text{OH}}^{\text{in}}\Big|_{S} = CQ \frac{P_{\text{atm}}}{Vk_{\text{B}}T_{\text{in}}},$$
(8)

где  $C = 1.667 \times 10^{-8}$  — коэффициент перевода из единиц SCCM в м<sup>3</sup>/с, Q — массовый расход в единицах SCCM,  $P_{\text{atm}}$  — атмосферное давление,  $T_{\text{in}} = 300 \text{ K}$  — температура газа на входе камеры. Аналогичным образом скорость ухода частицы сорта *i* 

$$R_i^{\text{out}}\Big|_{S} = CQ \frac{P_{\text{atm}}T}{Vk_{\text{B}}T_{\text{in}}} n_i.$$
<sup>(9)</sup>

Приведенное электрическое поле, заданное в качестве входных данных, определяется из уравнения цепи

$$V_p = V_{DC} - RI_p, \tag{10}$$

где  $V_p$  — потенциал плазмы,  $V_{DC}$  — приложенное напряжение, R — сопротивление цепи. Ток в плазме  $I_p$  вычисляется из соотношения

$$I_p = eSn_e\left(\mu N\right) \left(\frac{E}{N}\right),\tag{11}$$

где S — площадь поперечного сечения плазмы,  $\mu N$  — приведенная подвижность электронов, E/N приведенное электрическое поле, N — плотность газа. Из (10) и (11), получаем

ХИМИЯ ВЫСОКИХ ЭНЕРГИЙ том 57 № 1 2023

$$\frac{E}{N} = \frac{V_{DC}}{LN + eRSn_e(\mu N)}.$$
(12)

Для описания плазмохимических реакций в смеси газов аргон-этанол за основу были взяты элементарные процессы из работ [27–30]. Полный набор плазмохимический реакций представлен в табл. 1–3.

### РЕЗУЛЬТАТЫ

Численные расчеты были проведены по условиям экспериментального синтеза наноалмазов в плазме тлеющего разряда в аргоне с примесью этанола 180 ррт в потоке с расходом 100 SCCM. Значение напряжения на источнике было постоянным и равнялось 1000 В. Мощность, вводимая в разряд, регулировалась изменением балластного сопротивления. Рассмотрим некоторые результаты численных расчетов. На рис. 1 представлена временная динамика напряжения на разрядном току  $2.5 \times 10^5$  Ом, что соответствует разрядному току 3.6 мА. Видно, что пробой и установление напряжения в разряде происходит на временах нескольких микросекунд.

На рис. 2 представлена динамика концентраций электронов, атомарных и молекулярных ионов аргона и концентрации ионов этанола. Видно, что заряженные частицы начинают гене-

# САЙФУТДИНОВ и др.

Таблица 2. Набор реакции конверсии этанола и его продуктов с участием электронов

58

| Реакция                                                                         | Порог, эВ | Константа реакции <i>k<sub>j</sub></i> , м <sup>3</sup> /с |
|---------------------------------------------------------------------------------|-----------|------------------------------------------------------------|
| $C_2H_5OH + e \rightarrow C_2H_5 + OH + e$                                      | 7.90      | $4.7 \times 10^{-10}$                                      |
| $C_2H_5OH + e \rightarrow C_2H_4OH + H + e$                                     | 7.82      | $1.0 \times 10^{-9}$                                       |
| $C_2H_5OH + e \rightarrow CH_3CHOH + H + e$                                     | 7.82      | $1.0 \times 10^{-9}$                                       |
| $C_2H_5OH + e \rightarrow CH_3CH_2O + H + e$                                    | 7.82      | $1.0 \times 10^{-9}$                                       |
| $C_2H_5OH + e \rightarrow CH_2OH + CH_3 + e$                                    | 7.38      | $1.8 \times 10^{-9}$                                       |
| $OH + e \rightarrow O + H + e$                                                  | 8.80      | $2.8 \times 10^{-10}$                                      |
| $H_2 + e \rightarrow H + H + e$                                                 | 9.00      | $3.0 \times 10^{-10}$                                      |
| $\mathrm{HO}_2 + \mathrm{e} \rightarrow \mathrm{O}_2 + \mathrm{H} + \mathrm{e}$ | 4.00      | $3.1 \times 10^{-9}$                                       |
| $HO_2 + e \rightarrow OH + O + e$                                               | 5.60      | $1.7 \times 10^{-9}$                                       |
| $H_2O_2 + e \rightarrow OH + OH + e$                                            | 4.44      | $2.4 \times 10^{-9}$                                       |
| $H_2O_2 + e \rightarrow HO_2 + H + e$                                           | 7.56      | $4.1 \times 10^{-9}$                                       |
| $CO_2 + e \rightarrow CO + O + e$                                               | 10.00     | $5.2 \times 10^{-11}$                                      |
| $HCO + e \rightarrow CO + H + e$                                                | 1.60      | $2.1 \times 10^{-9}$                                       |
| $CH_4 + e \rightarrow CH_3 + H + e$                                             | 4.50      | $2.8 \times 10^{-9}$                                       |
| $CH_2O + e \rightarrow HCO + H + e$                                             | 7.56      | $4.1 \times 10^{-9}$                                       |
| $CH_2O + e \rightarrow CO + H_2 + e$                                            | 7.66      | $4.9 \times 10^{-9}$                                       |
| $CH_3O + e \rightarrow CH_2O + H + e$                                           | 7.56      | $4.1 \times 10^{-9}$                                       |
| $C_2H_4 + e \rightarrow C_2H_3 + H + e$                                         | 10.00     | $5.7 \times 10^{-10}$                                      |
| $C_2H_5 + e \rightarrow C_2H_4 + H + e$                                         | 3.38      | $1.6 \times 10^{-10}$                                      |
| $C_2H_5 + e \rightarrow CH_3 + CH_2 + e$                                        | 8.64      | $9.2 \times 10^{-9}$                                       |
| $C_2H_6 + e \rightarrow CH_3 + CH_3 + e$                                        | 7.66      | $4.9 \times 10^{-9}$                                       |
| $C_2H_6 + e \rightarrow C_2H_5 + H + e$                                         | 8.51      | $5.7 \times 10^{-9}$                                       |
| $C_2H_2 + e \rightarrow C_2H + H + e$                                           | 10.30     | $6.6 \times 10^{-10}$                                      |
| $C_2H_3 + e \rightarrow C_2H_2 + H + e$                                         | 3.48      | $1.8 \times 10^{-9}$                                       |
| $CH_2CHO + e \rightarrow CH_2CO + H + e$                                        | 7.56      | $4.1 \times 10^{-9}$                                       |
| $CH_2CO + e \rightarrow HCCO + H + e$                                           | 7.56      | $4.1 \times 10^{-9}$                                       |
| $CH_2OH + e \rightarrow CH_2O + H + e$                                          | 3.18      | 8.1×10 <sup>-9</sup>                                       |
| $CH_3OH + e \rightarrow CH_3 + OH + e$                                          | 7.94      | $4.7 \times 10^{-9}$                                       |
| $CH_3OH + e \rightarrow CH_2OH + H + e$                                         | 8.28      | $5.0 \times 10^{-9}$                                       |
| $CH_3OH + e \rightarrow CH_3O + H + e$                                          | 8.28      | $5.0 \times 10^{-9}$                                       |

Таблица 2. Окончание

| Реакция                                      | Порог, эВ | Константа реакции k <sub>j</sub> , м <sup>3</sup> /с |
|----------------------------------------------|-----------|------------------------------------------------------|
| $CH_3CHO + e \rightarrow CH_3 + HCO + e$     | 7.04      | 3.6×10 <sup>-9</sup>                                 |
| $CH_3CHO + e \rightarrow CH_3CO + H + e$     | 7.60      | $3.9 \times 10^{-9}$                                 |
| $CH_3CHO + e \rightarrow CH_2CHO + H + e$    | 7.60      | $3.9 \times 10^{-9}$                                 |
| $CH_3CO + e \rightarrow CH_3 + CO + e$       | 1.04      | $3.9 \times 10^{-9}$                                 |
| $CH_3CO + e \rightarrow CH_3 + CO + e$       | 3.60      | $7.6 \times 10^{-9}$                                 |
| $C_2H_4OH + e \rightarrow CH_2CO + H + e$    | 10.00     | $7.2 \times 10^{-10}$                                |
| $CH_3CHOH + e \rightarrow CH_3 + CH_2O + e$  | 5.12      | $1.4 \times 10^{-9}$                                 |
| $CH_3CHOH + e \rightarrow CH_3CHO + H + e$   | 8.80      | $1.0 \times 10^{-9}$                                 |
| $CH_3CH_2O + e \rightarrow C_2H_5 + O + e$   | 10.00     | $7.2 \times 10^{-10}$                                |
| $CH_3CH_2O + e \rightarrow CH_3 + CH_2O + e$ | 5.12      | $1.4 \times 10^{-9}$                                 |
| $CH_3CH_2O + e \rightarrow CH_3CHO + H + e$  | 7.56      | $4.1 \times 10^{-9}$                                 |
| $C_3H_4 + e \rightarrow C_3H_3 + H + e$      | 7.56      | $4.1 \times 10^{-9}$                                 |
| $C_3H_5 + e \rightarrow H + C_3H_4 + e$      | 7.56      | 4.1×10 <sup>-9</sup>                                 |
| $C_3H_5 + e \rightarrow CH_3 + C_2H_2 + e$   | 5.12      | $1.4 \times 10^{-9}$                                 |
| $C_3H_6 + e \rightarrow C_3H_5 + H + e$      | 7.48      | $4.9 \times 10^{-9}$                                 |
| $C_3H_6 + e \rightarrow C_2H_3 + CH_3 + e$   | 7.34      | 5.8×10 <sup>-9</sup>                                 |
| $H_2O + e \rightarrow OH + H + e$            | 7.00      | $3.6 \times 10^{-10}$                                |
| $O_2 + e \rightarrow O + O + e$              | 6.00      | $1.4 \times 10^{-9}$                                 |

рироваться на временах порядка нескольких десятков наносекунд, при этом равновесные значения устанавливаются на временах нескольких микросекунд. Доминирующим ионом является молекулярный ион аргона. Концентрация иона этанола резко возрастает к моменту времени 2 мкс и затем падает. К моменту времени 0.1 с ионов этанола практически не наблюдается.

На рис. 3 представлены неорганические продукты конверсии этанола в тлеющем разряде. Видно, что доминирующими частицами являются CO, H<sub>2</sub> и H. Их концентрации составляют  $6.5 \times 10^{21}$  м<sup>-3</sup>,  $4.67 \times 10^{21}$  м<sup>-3</sup> и  $4.1 \times 10^{21}$  м<sup>-3</sup> соответственно. Концентраций H<sub>2</sub>O, OH и O образуется меньше ~2 порядка и составляет  $2.04 \times 10^{19}$  м<sup>-3</sup>,  $3.42 \times 10^{17}$  м<sup>-3</sup> и  $5.8 \times 10^{16}$  м<sup>-3</sup> соответственно. Менее всего из неорганических соединений наблюдается образование CO<sub>2</sub> и HO<sub>2</sub>. большие концентрации углеводородов в результате конверсии примеси этанола в аргоне в плазме тлеющего разряда. Доминирующими частицами являются  $CH_4$  с концентрацией  $6.3 \times 10^{21}$  м<sup>-3</sup> к моменту времени 0.1 с,  $C_3H_3 - 3.36 \times 10^{19}$  м<sup>-3</sup>,  $CH_3 - 2.1 \times 10^{19}$  м<sup>-3</sup>,  $CH_2 - 8.6 \times 10^{17}$  м<sup>-3</sup>  $C_2H_2 - 4.03 \times 10^{17}$  мm<sup>-3</sup>,  $C_2H_4 - 1.97 \times 10^{17}$  м<sup>-3</sup> и  $C_2H_5 - 8.38 \times 10^{16}$  м<sup>-3</sup>. Радикалы  $CH_2$  и  $CH_3$  являются предшественниками формирования кристаллических наноалмазов.

Из рис. 4 видно, что образуется достаточно

На рис. 5 представлена динамика концентрации этанола и его производных: муравьиной кислоты, альдегидов и пр. Доминирующим сортом частиц является пары метилового спирта CH<sub>3</sub>OH с концентрацией  $1.0 \times 10^{17}$  м<sup>-3</sup>. Концентрации остальных веществ менее  $1.0 \times 10^{16}$  м<sup>-3</sup>.

Таблица 3. Набор реакции конверсии этанола и его продуктов без участия электронов

| Реакция                                                                             | Константа реакции k <sub>j</sub> , м <sup>3</sup> /с     |
|-------------------------------------------------------------------------------------|----------------------------------------------------------|
| $OH + H_2 \rightarrow H + H_2O$                                                     | $3.55 \times 10^{-16} T^{1.52} \exp(-1736/T)$            |
| $H + O_2 \rightarrow OH + O$                                                        | $1.62 \times 10^{-10} \exp(-7476/T)$                     |
| $O + H_2 \rightarrow OH + H$                                                        | $8.40 \times 10^{-20} T^{2.62} \exp\left(-3167/T\right)$ |
| $H + O_2 \rightarrow HO_2$                                                          | $7.51 \times 10^{-11}$                                   |
| $OH + HO_2 \rightarrow H_2O + O_2$                                                  | $3.54 \times 10^{-4} T^{-4.83} \exp(-1762/T)$            |
| $OH + HO_2 \rightarrow H_2O + O_2$                                                  | $1.51 \times 10^{-9} \exp(-5520/T)$                      |
| $H + HO_2 \rightarrow OH + OH$                                                      | $2.49 \times 10^{-10} \exp(-503/T)$                      |
| $\rm H + \rm HO_2 \rightarrow \rm H_2 + \rm O_2$                                    | $1.10 \times 10^{-10} \exp(-1070/T)$                     |
| $H + HO_2 \rightarrow O + H_2O$                                                     | $5.0 \times 10^{-11} \exp(-866/T)$                       |
| $O + HO_2 \rightarrow O_2 + OH$                                                     | $5.4 \times 10^{-11}$                                    |
| $OH + OH \rightarrow O + H_2O$                                                      | $5.93 \times 10^{-20} T^{-2.40} \exp(-1063/T)$           |
| $H + H + Ar \rightarrow H_2 + Ar$                                                   | $2.76 \times 10^{-30} T^{-1.0}$                          |
| $H + H + H_2 \rightarrow H_2 + H_2$                                                 | $2.54 \times 10^{-31} T^{-0.6}$                          |
| $H + H + H_2O \rightarrow H_2 + H_2O$                                               | $1.65 \times 10^{-28} T^{-1.25}$                         |
| $H + OH + Ar \rightarrow H_2O + Ar$                                                 | $6.09 \times 10^{-26} T^{-2.00}$                         |
| $H + O + Ar \rightarrow OH + Ar$                                                    | $1.3 \times 10^{-29} T^{-1.00}$                          |
| $O + O + Ar \rightarrow O_2 + Ar$                                                   | $5.21 \times 10^{-35} \exp(-900/T)$                      |
| $\mathrm{HO}_2 + \mathrm{HO}_2 \rightarrow \mathrm{H}_2\mathrm{O}_2 + \mathrm{O}_2$ | $6.97 \times 10^{-10} \exp(-6032/T)$                     |
| $\mathrm{HO}_2 + \mathrm{HO}_2 \rightarrow \mathrm{H}_2\mathrm{O}_2 + \mathrm{O}_2$ | $2.16 \times 10^{-13} \exp(-820/T)$                      |
| $OH + OH \rightarrow H_2O_2$                                                        | $2.06 	imes 10^{-10} T^{-0.37}$                          |
| $\mathrm{H_2O_2} + \mathrm{H} \rightarrow \mathrm{HO_2} + \mathrm{H_2}$             | $3.29 \times 10^{-18} T^{2.00} \exp(-1226/T)$            |
| $H_2O_2 + H \rightarrow OH + H_2O$                                                  | $5.10 \times 10^{-11} \exp(-2123/T)$                     |
| $H_2O_2 + O \rightarrow OH + HO_2$                                                  | $1.59 \times 10^{-17} T^{2.00} \exp(-1999/T)$            |
| $\mathrm{H_2O_2} + \mathrm{OH} \rightarrow \mathrm{HO_2} + \mathrm{H_2O}$           | $1.66 \times 10^{-12}$                                   |
| $\mathrm{H_2O_2} + \mathrm{OH} \rightarrow \mathrm{HO_2} + \mathrm{H_2O}$           | $9.63 \times 10^{-10} \exp(-4813/T)$                     |
| $CH_3 + CH_3 \rightarrow C_2H_6$                                                    | $1.53 \times 10^{-7} T^{-1.17} \exp(-320/T)$             |
| $CH_3 + H \rightarrow CH_4$                                                         | $3.55 \times 10^{-9} T^{-0.4}$                           |
| $CH_4 + H \rightarrow CH_3 + H_2$                                                   | $3.65 \times 10^{-20} T^{3.00} \exp\left(-4405/T\right)$ |
| $CH_4 + OH \rightarrow CH_3 + H_2O$                                                 | $6.96 \times 10^{-18} T^{2.00} \exp(-1282/T)$            |
| $CH_4 + O \rightarrow CH_3 + OH$                                                    | $1.15 \times 10^{-15} T^{1.56} \exp(-4272/T)$            |

ХИМИЯ ВЫСОКИХ ЭНЕРГИЙ том 57 № 1 2023

| Реакция                                                                                                                               | Константа реакции <i>k<sub>j</sub></i> , м <sup>3</sup> /с |
|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| $CH_4 + HO_2 \rightarrow CH_3 + H_2O_2$                                                                                               | $1.86 \times 10^{-11} \exp(-12405/T)$                      |
| $\overline{\mathrm{CH}_3 + \mathrm{HO}_2} \rightarrow \mathrm{CH}_3\mathrm{O} + \mathrm{OH}$                                          | 1.16×10 <sup>-11</sup>                                     |
| $\overline{\rm CH_3 + HO_2} \rightarrow \rm CH_4 + O_2$                                                                               | $4.98 \times 10^{-12}$                                     |
| $\overline{\mathrm{CH}_3 + \mathrm{O} \rightarrow \mathrm{CH}_2\mathrm{O} + \mathrm{H}}$                                              | $1.33 \times 10^{-10}$                                     |
| $CH_3 + O_2 \rightarrow CH_3O + O$                                                                                                    | $2.41 \times 10^{-11} \exp(-14705/T)$                      |
| $CH_3 + O_2 \rightarrow CH_2O + OH$                                                                                                   | $4.17 \times 10^{-13} \exp(-7370/T)$                       |
| $CH_3O + H \rightarrow CH_3 + OH$                                                                                                     | $1.66 \times 10^{-11}$                                     |
| $CH_2OH + H \rightarrow CH_3 + OH$                                                                                                    | $1.66 \times 10^{-11}$                                     |
| $CH_3 + OH \rightarrow HCOH + H_2$                                                                                                    | $1.66 \times 10^{-14} \exp\left(-209/T\right)$             |
| $CH_3 + OH \rightarrow CH_2 + H_2O$                                                                                                   | $4.98 \times 10^{-18} T^{2.00} \exp(-1259/T)$              |
| $\overline{\rm CH_3 + H \rightarrow \rm CH_2 + H_2}$                                                                                  | $1.49 \times 10^{-10} \exp(-7602/T)$                       |
| $CH_3 + M \rightarrow CH + H_2 + M$                                                                                                   | $1.15 \times 10^{-9} \exp\left(-41518/T\right)$            |
| $CH_3 + M \rightarrow CH_2 + H + M$                                                                                                   | $3.16 \times 10^{-8} \exp\left(-46020/T\right)$            |
| $CH_3 + OH(+M) \rightarrow CH_3OH(+M)$                                                                                                | $1.44 \times 10^{-10} T^{0.10}$                            |
| $CH_3OH(+M) \rightarrow HCOH + H_2(+M)$                                                                                               | $4.20 \times 10^9 T^{1.12} \exp(-43096/T)$                 |
| $CH_3OH(+M) \rightarrow CH_2O + H_2(+M)$                                                                                              | $2.03 \times 10^9 T \exp(-46036/T)$                        |
| $\overline{\text{CH}_3\text{OH} + \text{OH}} \rightarrow \text{CH}_2\text{OH} + \text{H}_2\text{O}$                                   | $4.33 \times 10^{-19} T^{2.18} \exp(-677/T)$               |
| $\overline{\rm CH_3OH + OH \rightarrow CH_3O + H_2O}$                                                                                 | $4.35 \times 10^{-18} T^{2.06} \exp(-461/T)$               |
| $\overline{\text{CH}_3\text{OH} + \text{O} \rightarrow \text{CH}_2\text{OH} + \text{OH}}$                                             | $6.44 \times 10^{-19} T^{2.50} \exp(-1551/T)$              |
| $\overline{\rm CH_3OH + H \rightarrow CH_2OH + H_2}$                                                                                  | $2.82 \times 10^{-17} T^{2.10} \exp\left(-2451/T\right)$   |
| $\overline{\rm CH_3OH + H \rightarrow CH_3O + H_2}$                                                                                   | $7.04 \times 10^{-18} T^{2.10} \exp(-2451/T)$              |
| $\overline{\rm CH_3OH + CH_3 \rightarrow CH_2OH + CH_4}$                                                                              | $5.30 \times 10^{-23} T^{3.17} \exp(-3610/T)$              |
| $\overline{\rm CH_3OH+CH_3\rightarrow CH_3O+CH_4}$                                                                                    | $2.41 \times 10^{-23} T^{3.10} \exp(-3491/T)$              |
| $\overline{\rm CH_3OH + HO_2 \rightarrow CH_2OH + H_2O_2}$                                                                            | $1.60 \times 10^{-13} \exp(-6332/T)$                       |
| $\overline{\mathrm{CH}_{2}\mathrm{O}+\mathrm{H}\left(+\mathrm{M}\right)\rightarrow\mathrm{CH}_{3}\mathrm{O}\left(+\mathrm{M}\right)}$ | $8.97 \times 10^{-13} T^{0.45} \exp(-1309/T)$              |
| $CH_2O + H(+M) \rightarrow CH_2OH(+M)$                                                                                                | $8.97 \times 10^{-13} T^{0.45} \exp(-1812/T)$              |
| $CH_3O + CH_3 \rightarrow CH_2O + CH_4$                                                                                               | $1.99 \times 10^{-11}$                                     |
| $\overline{\text{CH}_{3}\text{O} + \text{H} \rightarrow \text{CH}_{2}\text{O} + \text{H}_{2}}$                                        | $3.32 \times 10^{-11}$                                     |
| $\overline{\text{CH}_2\text{OH} + \text{H} \rightarrow \text{CH}_2\text{O} + \text{H}_2}$                                             | 3.32×10 <sup>-11</sup>                                     |

| Реакция                                                                                      | Константа реакции $k_j$ , м <sup>3</sup> /с    |
|----------------------------------------------------------------------------------------------|------------------------------------------------|
| $\overline{\rm CH_3O+OH \rightarrow CH_2O+H_2O}$                                             | $1.66 \times 10^{-11}$                         |
| $CH_2OH + OH \rightarrow CH_2O + H_2O$                                                       | $1.66 \times 10^{-11}$                         |
| $CH_3O + O \rightarrow CH_2O + OH$                                                           | $1.66 \times 10^{-11}$                         |
| $CH_2OH + O \rightarrow CH_2O + OH$                                                          | $1.66 \times 10^{-11}$                         |
| $CH_3O + O_2 \rightarrow CH_2O + HO_2$                                                       | $1.05 \times 10^{-13} \exp(-1309/T)$           |
| $CH_3O + CO \rightarrow CH_3 + CO_2$                                                         | $7.77 \times 10^{-22} T^{3.16} \exp(-2708/T)$  |
| $CH_2OH + O_2 \rightarrow CH_2O + HO_2$                                                      | $2.61 \times 10^{-9} T^{-1.00}$                |
| $CH_2OH + O_2 \rightarrow CH_2O + HO_2$                                                      | $1.20 \times 10^{-10} \exp(-1801/T)$           |
| $HCOH + OH \rightarrow HCO + H_2O$                                                           | $3.32 \times 10^{-11}$                         |
| $\rm HCOH + H \rightarrow CH_2O + H$                                                         | $3.32 \times 10^{-10}$                         |
| $HCOH + O \rightarrow CO + OH + H$                                                           | $1.33 \times 10^{-10}$                         |
| $HCOH + O_2 \rightarrow CO + OH + OH$                                                        | $1.66 \times 10^{-11}$                         |
| $HCOH + O_2 \rightarrow CO_2 + H_2O$                                                         | $1.66 \times 10^{-11}$                         |
| $HCOH \rightarrow CH_2O$                                                                     | $2.10 \times 10^{19} T^{-3.07} \exp(-15959/T)$ |
| $\overline{\mathrm{CH} + \mathrm{H}_2} \rightarrow \mathrm{H} + \mathrm{CH}_2$               | $1.79 \times 10^{-10} \exp(-1566/T)$           |
| $\overline{\mathrm{CH}_2 + \mathrm{OH} \rightarrow \mathrm{CH} + \mathrm{H}_2\mathrm{O}}$    | $1.88 \times 10^{-17} T^{2.00} \exp(-1510/T)$  |
| $\overline{\mathrm{CH}_2 + \mathrm{OH}} \rightarrow \mathrm{CH}_2\mathrm{O} + \mathrm{H}$    | $4.15 \times 10^{-11}$                         |
| $CH_2 + CO_2 \rightarrow CH_2O + CO$                                                         | $1.83 \times 10^{-13} \exp(-503/T)$            |
| $CH_2 + O \rightarrow CO + H + H$                                                            | $8.30 \times 10^{-11}$                         |
| $CH_2 + O \rightarrow CO + H_2$                                                              | $4.98 \times 10^{-11}$                         |
| $CH_2 + O_2 \rightarrow CH_2O + O$                                                           | $5.46 \times 10^{-3} T^{-3.30} \exp(-1444/T)$  |
| $CH_2 + O_2 \rightarrow CO_2 + H + H$                                                        | $5.46 \times 10^{-3} T^{-3.30} \exp(-1444/T)$  |
| $\overline{\mathrm{CH}_2 + \mathrm{O}_2 \rightarrow \mathrm{CO}_2 + \mathrm{H}_2}$           | $1.68 \times 10^{-3} T^{-3.30} \exp(-759/T)$   |
| $CH_2 + O_2 \rightarrow CO + H_2O$                                                           | $1.21 \times 10^{-4} T^{-2.54} \exp(-911/T)$   |
| $\overline{\mathrm{CH}_2 + \mathrm{O}_2} \rightarrow \mathrm{HCO} + \mathrm{OH}$             | $2.14 \times 10^{-4} T^{-3.30} \exp(-143/T)$   |
| $\overline{\mathrm{CH}_2 + \mathrm{CH}_3} \rightarrow \mathrm{C}_2\mathrm{H}_4 + \mathrm{H}$ | $6.64 \times 10^{-11}$                         |
| $CH_2 + HCCO \rightarrow C_2H_3 + CO$                                                        | $4.98 \times 10^{-11}$                         |
| $CH + O_2 \rightarrow HCO + O$                                                               | $5.48 \times 10^{-11}$                         |
| $CH + O \rightarrow CO + H$                                                                  | $9.47 \times 10^{-11}$                         |
| $CH + OH \rightarrow HCO + H$                                                                | $4.98 \times 10^{-11}$                         |

| Реакция                                                                                                                 | Константа реакции k <sub>j</sub> , м <sup>3</sup> /с     |
|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| $CH + CO_2 \rightarrow HCO + CO$                                                                                        | $5.65 \times 10^{-12} \exp(-347/T)$                      |
| $CH + H_2O \rightarrow CH_2O + H$                                                                                       | $1.94 \times 10^{-9} T^{-0.75}$                          |
| $CH + CH_2O \rightarrow CH_2CO + H$                                                                                     | $1.57 \times 10^{-10} \exp(-259/T)$                      |
| $\rm CH + CH_3 \rightarrow C_2H_3 + H$                                                                                  | 4.98×10 <sup>-11</sup>                                   |
| $\overline{\rm CH+CH_4\to C_2H_4+H}$                                                                                    | 9.96×10 <sup>-11</sup>                                   |
| $\overline{\rm CH_2O+OH \rightarrow HCO + H_2O}$                                                                        | $5.70 \times 10^{-15} T^{1.18} \exp(-225/T)$             |
| $\overline{\rm CH_2O + H \rightarrow \rm HCO + H_2}$                                                                    | $3.64 \times 10^{-16} T^{1.77} \exp(-1510/T)$            |
| $CH_2O + M \rightarrow HCO + H + M$                                                                                     | $5.50 \times 10^{-8} \exp\left(-40778/T\right)$          |
| $\overline{\mathrm{CH}_{2}\mathrm{O}+\mathrm{O} ightarrow\mathrm{HCO}+\mathrm{OH}}$                                     | $2.99 \times 10^{-11} \exp(-1551/T)$                     |
| $HCO + O_2 \rightarrow CO + HO_2$                                                                                       | $1.26 \times 10^{-11} \exp(-206/T)$                      |
| $HCO + M \rightarrow H + CO + M$                                                                                        | $3.09 \times 10^{-7} T^{-1.00} \exp(-8558/T)$            |
| $HCO + OH \rightarrow H_2O + CO$                                                                                        | $1.66 \times 10^{-10}$                                   |
| $HCO + H \rightarrow CO + H_2$                                                                                          | $1.98 \times 10^{-11} T^{0.25}$                          |
| $HCO + O \rightarrow CO + OH$                                                                                           | $4.98 \times 10^{-11}$                                   |
| $HCO + O \rightarrow CO_2 + H$                                                                                          | $4.98 \times 10^{-11}$                                   |
| $\rm CO + OH \rightarrow CO_2 + H$                                                                                      | $1.56 \times 10^{-20} T^{2.25} \exp(-1184/T)$            |
| $CO + O + M \rightarrow CO_2 + M$                                                                                       | $1.70 \times 10^{-33} \exp\left(-1510/T\right)$          |
| $CO + O_2 + M \rightarrow CO_2 + O$                                                                                     | $4.20 \times 10^{-12} \exp(-24008/T)$                    |
| $\rm CO + HO_2 \rightarrow \rm CO_2 + OH$                                                                               | $9.63 \times 10^{-11} \exp(-11546/T)$                    |
| $\overline{C_2H_5OH(+M)} \rightarrow CH_3 + CH_2OH(+M)$                                                                 | $5.94 \times 10^{23} T^{-1.68} \exp(-45895/T)$           |
| $C_2H_5OH(+M) \rightarrow C_2H_5 + OH(+M)$                                                                              | $1.25 \times 10^{23} T^{-1.54} \exp(48332/T)$            |
| $C_2H_5OH(+M) \rightarrow C_2H_4 + H_2O(+M)$                                                                            | $2.79 \times 10^{13} T^{0.09} \exp\left(-33295/T\right)$ |
| $C_2H_5OH(+M) \rightarrow CH_3HCO + H_2(+M)$                                                                            | $7.24 \times 10^{11} T^{0.10} \exp\left(-45816/T\right)$ |
| $C_2H_5OH + OH \rightarrow C_2H_4OH + H_2O$                                                                             | $2.89 \times 10^{-13} T^{0.27} \exp(-302/T)$             |
| $C_2H_5OH + OH \rightarrow CH_3CHOH + H_2O$                                                                             | $7.70 \times 10^{-13} T^{0.15}$                          |
| $C_2H_5OH + OH \rightarrow CH_3CH_2O + H_2O$                                                                            | $1.24 \times 10^{-12} T^{0.30} \exp(-823/T)$             |
| $C_2H_5OH + H \rightarrow C_2H_4OH + H_2$                                                                               | $2.04 \times 10^{-17} T^{1.80} \exp(-2567/T)$            |
| $C_2H_5OH + H \rightarrow CH_3CHOH + H_2$                                                                               | $4.28 \times 10^{-17} T^{1.65} \exp(-1423/T)$            |
| $\overline{\text{C}_{2}\text{H}_{5}\text{OH} + \text{H} \rightarrow \text{CH}_{3}\text{CH}_{2}\text{O} + \text{H}_{2}}$ | $2.49 \times 10^{-17} T^{1.60} \exp(-1529/T)$            |

| Реакция                                                                                                                                  | Константа реакции k <sub>j</sub> , м <sup>3</sup> /с      |
|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| $\overline{C_2H_5OH + O \rightarrow C_2H_4OH + OH}$                                                                                      | $1.56 \times 10^{-16} T^{1.70} \exp(-2748/T)$             |
| $\overline{C_2H_5OH + O \rightarrow CH_3CHOH + OH}$                                                                                      | $3.12 \times 10^{-17} T^{1.85} \exp(-918/T)$              |
| $\overline{C_2H_5OH + O \rightarrow CH_3CH_2O + OH}$                                                                                     | $2.62 \times 10^{-17} T^{2.00} \exp\left(-2239/T\right)$  |
| $\overline{\mathrm{C_2H_5OH} + \mathrm{CH_3} \rightarrow \mathrm{C_2H_4OH} + \mathrm{CH_4}}$                                             | $3.64 \times 10^{-22} T^{3.18} \exp(-4844/T)$             |
| $C_2H_5OH + CH_3 \rightarrow CH_3CHOH + CH_4$                                                                                            | $1.21 \times 10^{-21} T^{2.99} \exp(-4001/T)$             |
| $C_2H_5OH + CH_3 \rightarrow CH_3CH_2O + CH_4$                                                                                           | $2.41 \times 10^{-22} T^{2.99} \exp(-3851/T)$             |
| $\overline{C_2H_5OH + HO_2} \rightarrow CH_3CHOH + H_2O_2$                                                                               | $1.36 \times 10^{-20} T^{2.55} \exp(-5412/T)$             |
| $\overline{C_2H_5OH + HO_2 \rightarrow C_2H_4OH + H_2O_2}$                                                                               | $2.04 \times 10^{-20} T^{2.55} \exp(-7929/T)$             |
| $\overline{\text{C}_{2}\text{H}_{5}\text{OH} + \text{HO}_{2} \rightarrow \text{CH}_{3}\text{CH}_{2}\text{O} + \text{H}_{2}\text{O}_{2}}$ | $4.15 \times 10^{-12} \exp(-12082/T)$                     |
| $CH_3CH_2O + M \rightarrow CH_3HCO + H + M$                                                                                              | $1.93 \times 10^{11} T^{-5.89} \exp(-12724/T)$            |
| $CH_3CH_2O + M \rightarrow CH_3 + CH_2O + M$                                                                                             | $2.24 \times 10^{14} T^{-6.96} \exp(-11982/T)$            |
| $\overline{\rm CH_3CH_2O+O_2 \rightarrow CH_3HCO+HO_2}$                                                                                  | $6.64 \times 0^{-14} \exp(-554/T)$                        |
| $\overline{\mathrm{CH}_3\mathrm{CH}_2\mathrm{O}+\mathrm{CO}\rightarrow\mathrm{C}_2\mathrm{H}_5+\mathrm{CO}_2}$                           | $7.77 \times 10^{-22} T^{3.16} \exp(-2708/T)$             |
| $\overline{\rm CH_3CH_2O+H\rightarrow CH_3+CH_2OH}$                                                                                      | $4.98 \times 10^{-11}$                                    |
| $\overline{\mathrm{CH}_3\mathrm{CH}_2\mathrm{O}+\mathrm{H}\rightarrow\mathrm{C}_2\mathrm{H}_4+\mathrm{H}_2\mathrm{O}}$                   | $4.98 \times 10^{-11}$                                    |
| $CH_3CH_2O + OH \rightarrow CH_3HCO + H_2O$                                                                                              | $1.66 \times 10^{-11}$                                    |
| $CH_3CHOH + O_2 \rightarrow CH_3HCO + HO_2$                                                                                              | $8.00 \times 10^{-10} \exp\left(-2526/T\right)$           |
| $CH_3CHOH + O_2 \rightarrow CH_3HCO + HO_2$                                                                                              | $1.40 \times 10^{-8} T^{-1.20}$                           |
| $\rm CH_3CHOH + CH_3 \rightarrow C_3H_6 + H_2O$                                                                                          | $1.66 \times 10^{-11}$                                    |
| $CH_3CHOH + O \rightarrow CH_3HCO + OH$                                                                                                  | $1.66 \times 10^{-10}$                                    |
| $CH_3CHOH + H \rightarrow C_2H_4 + H_2O$                                                                                                 | $4.98 \times 10^{-11}$                                    |
| $CH_3CHOH + H \rightarrow CH_3 + CH_2OH$                                                                                                 | $4.98 \times 10^{-11}$                                    |
| $CH_3CHOH + HO_2 \rightarrow CH_3HCO + OH + OH$                                                                                          | $6.64 \times 10^{-11}$                                    |
| $CH_3CHOH + OH \rightarrow CH_3HCO + H_2O$                                                                                               | $8.30 \times 10^{-12}$                                    |
| $CH_3CHOH + M \rightarrow CH_3HCO + H + M$                                                                                               | $1.66 \times 10^{-10} \exp\left(-12586/T\right)$          |
| $CH_3HCO + OH \rightarrow CH_3CO + H_2O$                                                                                                 | $1.53 \times 10^{-17} T^{1.50} \exp\left(-484/T\right)$   |
| $CH_3HCO + OH \rightarrow CH_2HCO + H_2O$                                                                                                | $2.86 \times 10^{-19} T^{2.40} \exp\left(-410/T\right)$   |
| $CH_3HCO + OH \rightarrow CH_3 + HCOOH$                                                                                                  | $4.98 \times 10^{-9} T^{-1.08}$                           |
| $\overline{\text{CH}_{3}\text{HCO} + \text{O} \rightarrow \text{CH}_{3}\text{CO} + \text{OH}}$                                           | $2.94 \times 10^{-6} T^{-1.90} \exp(-1498/T)$             |
| $CH_3HCO + O \rightarrow CH_2HCO + OH$                                                                                                   | $6.18 \times 10^{-11} T^{-0.20} \exp\left(-1790/T\right)$ |

| Реакция                                                                                                    | Константа реакции k <sub>j</sub> , м <sup>3</sup> /с     |
|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| $CH_3HCO + H \rightarrow CH_3CO + H_2$                                                                     | $7.74 \times 10^{-11} T^{-0.35} \exp(-1504/T)$           |
| $CH_3HCO + H \rightarrow CH_2HCO + H_2$                                                                    | $3.07 \times 10^{-12} T^{0.40} \exp\left(-2698/T\right)$ |
| $CH_3HCO + CH_3 \rightarrow CH_3CO + CH_4$                                                                 | $6.48 \times 10^{-31} T^{5.80} \exp(-1108/T)$            |
| $CH_3HCO + CH_3 \rightarrow CH_2HCO + CH_4$                                                                | $4.07 \times 10^{-23} T^{3.15} \exp(-2883/T)$            |
| $CH_3HCO + HO_2 \rightarrow CH_3CO + H_2O_2$                                                               | $3.98 \times 10^{-5} T^{-2.20} \exp(-7063/T)$            |
| $CH_3HCO + HO_2 \rightarrow CH_2HCO + H_2O_2$                                                              | $3.85 \times 10^{-13} T^{0.40} \exp\left(-7483/T\right)$ |
| $CH_3HCO + O_2 \rightarrow CH_3CO + HO_2$                                                                  | $1.66 \times 10^{-10} \exp(-21245/T)$                    |
| $C_2H_6 + CH_3 \rightarrow C_2H_5 + CH_4$                                                                  | $9.13 \times 10^{-25} T^{4.00} \exp\left(-4179/T\right)$ |
| $\overline{\mathrm{C}_{2}\mathrm{H}_{6}+\mathrm{H}\rightarrow\mathrm{C}_{2}\mathrm{H}_{5}+\mathrm{H}_{2}}$ | $1.91 \times 10^{-16} T^{1.90} \exp\left(-3791/T\right)$ |
| $C_2H_6 + O \rightarrow C_2H_5 + OH$                                                                       | $4.98 \times 10^{-17} T^{2.00} \exp\left(-2575/T\right)$ |
| $\overline{C_2H_6 + OH \rightarrow C_2H_5 + H_2O}$                                                         | $1.20 \times 10^{-17} T^{2.00} \exp(-435/T)$             |
| $\overline{C_2H_5 + H \rightarrow C_2H_4 + H_2}$                                                           | $2.08 \times 10^{-10} \exp(-4027/T)$                     |
| $C_2H_5 + H \rightarrow CH_3 + CH_3$                                                                       | $4.98 \times 10^{-11}$                                   |
| $\overline{C_2H_5 + H \rightarrow C_2H_6}$                                                                 | $4.98 \times 10^{-11}$                                   |
| $\overline{C_2H_5 + OH} \rightarrow C_2H_4 + H_2O$                                                         | $6.64 \times 10^{-11}$                                   |
| $C_2H_5 + O \rightarrow CH_3 + CH_2O$                                                                      | $1.66 \times 10^{-10}$                                   |
| $C_2H_5 + HO_2 \rightarrow C_2H_6 + O_2$                                                                   | $4.98 \times 10^{-12}$                                   |
| $C_2H_5 + HO_2 \rightarrow CH_3CH_2O + OH$                                                                 | $4.98 \times 10^{-11}$                                   |
| $C_2H_5 + O_2 \rightarrow C_2H_4 + HO_2$                                                                   | $4.80 \times 10^{-4} T^{-5.40} \exp(-3819/T)$            |
| $C_2H_5 + O_2 \rightarrow CH_3HCO + OH$                                                                    | $8.14 \times 10^{-13} T^{-0.48} \exp(-4207/T)$           |
| $C_2H_4 + OH(+M) \rightarrow C_2H_4OH(+M)$                                                                 | $3.98 \times 10^{-6} T^{-2.30}$                          |
| $C_2H_4 + OH \rightarrow C_2H_3 + H_2O$                                                                    | $3.35 \times 10^{-11} \exp\left(-2988/T\right)$          |
| $C_2H_4 + O \rightarrow CH_3 + HCO$                                                                        | $1.69 \times 10^{-17} T^{1.88} \exp(-90/T)$              |
| $C_2H_4 + O \rightarrow CH_2HCO + H$                                                                       | $5.63 \times 10^{-18} T^{1.88} \exp(-90/T)$              |
| $\overline{C_2H_4 + CH_3 \rightarrow C_2H_3 + CH_4}$                                                       | $1.10 \times 10^{-23} T^{3.70} \exp(-4783/T)$            |
| $H + C_2 H_4 \rightarrow C_2 H_3 + H_2$                                                                    | $2.20 \times 10^{-18} T^{2.53} \exp(-6162/T)$            |
| $H + C_2H_4(+M) \rightarrow C_2H_5(+M)$                                                                    | $8.97 \times 10^{-13} T^{0.45} \exp(-916/T)$             |
| $\overline{C_2H_3 + H(+M)} \rightarrow C_2H_4(+M)$                                                         | $1.01 \times 10^{-11} T^{0.27} \exp(-141/T)$             |
| $C_2H_3 + O \rightarrow CH_2CO + H$                                                                        | $4.98 \times 10^{-11}$                                   |
| $C_2H_3 + O_2 \rightarrow CH_2O + HCO$                                                                     | $2.82 \times 10^5 T^{-5.31} \exp(-3272/T)$               |

| Реакция                                                                                                                | Константа реакции k <sub>j</sub> , м <sup>3</sup> /с      |
|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| $\overline{C_2H_3 + O_2} \rightarrow CH_2HCO + O$                                                                      | $9.13 \times 10^{-10} T^{-0.61} \exp(-2648/T)$            |
| $C_2H_3 + CH_3 \rightarrow C_3H_6$                                                                                     | $7.41 \times 10^{32} T^{-13.00} \exp(-6980/T)$            |
| $CH_2HCO + H \rightarrow CH_3 + HCO$                                                                                   | $8.30 \times 10^{-11}$                                    |
| $CH_2HCO + H \rightarrow CH_2CO + H_2$                                                                                 | $3.32 \times 10^{-11}$                                    |
| $CH_2HCO + O \rightarrow CH_2O + HCO$                                                                                  | $1.66 \times 10^{-10}$                                    |
| $\overline{\rm CH_2HCO+OH} \rightarrow \rm CH_2CO+H_2O$                                                                | $4.98 \times 10^{-11}$                                    |
| $\overline{\mathrm{CH}_{2}\mathrm{HCO}+\mathrm{O}_{2}\rightarrow\mathrm{CH}_{2}\mathrm{O}+\mathrm{CO}+\mathrm{OH}}$    | $4.98 \times 10^{-14}$                                    |
| $\overline{\mathrm{CH}_{2}\mathrm{HCO}+\mathrm{CH}_{3}\rightarrow\mathrm{C}_{2}\mathrm{H}_{5}+\mathrm{CO}+\mathrm{H}}$ | $8.14 	imes 10^{-10} T^{-0.50}$                           |
| $\overline{\mathrm{CH}_{2}\mathrm{HCO}+\mathrm{HO}_{2}\rightarrow\mathrm{CH}_{2}\mathrm{O}+\mathrm{HCO}+\mathrm{OH}}$  | $1.16 \times 10^{-11}$                                    |
| $\overline{\rm CH_2HCO + HO_2 \rightarrow CH_3HCO + O_2}$                                                              | $4.98 \times 10^{-12}$                                    |
| $CH_2HCO \rightarrow CH_3 + CO$                                                                                        | $1.17 \times 10^{43} T^{-9.83} \exp(-22028/T)$            |
| $CH_2HCO \rightarrow CH_2CO + H$                                                                                       | $1.81 \times 10^{43} T^{-9.61} \exp\left(-23092/T\right)$ |
| $CH_2CO + O \rightarrow CO_2 + CH_2$                                                                                   | $2.91 \times 10^{-12} \exp(-680/T)$                       |
| $CH_2CO + H \rightarrow CH_3 + CO$                                                                                     | $4.50 \times 10^{-20} T^{2.75} \exp(-359/T)$              |
| $CH_2CO + H \rightarrow HCCO + H_2$                                                                                    | $3.32 \times 10^{-10} \exp(-4027/T)$                      |
| $CH_2CO + O \rightarrow HCCO + OH$                                                                                     | $1.66 \times 10^{-11} \exp(-4027/T)$                      |
| $CH_2CO + OH \rightarrow HCCO + H_2O$                                                                                  | $1.66 \times 10^{-11} \exp(-1007/T)$                      |
| $\overline{\mathrm{CH}_2\mathrm{CO} + \mathrm{OH} \rightarrow \mathrm{CH}_2\mathrm{OH} + \mathrm{CO}}$                 | $6.19 \times 10^{-12} \exp(-510/T)$                       |
| $CH_2CO(+M) \rightarrow CH_2 + CO(+M)$                                                                                 | $3.00 \times 10^{14} \exp\left(-35734/T\right)$           |
| $C_2H + O \rightarrow CH + CO$                                                                                         | $8.30 \times 10^{-11}$                                    |
| $\overline{C_2H + OH} \rightarrow HCCO + H$                                                                            | $3.32 \times 10^{-11}$                                    |
| $\overline{\mathrm{C_2H}+\mathrm{O_2}\rightarrow\mathrm{CO}+\mathrm{CO}+\mathrm{H}}$                                   | $1.50 \times 10^{-11} \exp(230/T)$                        |
| $HCCO + O \rightarrow H + CO + CO$                                                                                     | $1.33 \times 10^{-10}$                                    |
| $HCCO + O \rightarrow CH + CO_2$                                                                                       | $4.90 \times 10^{-11} \exp(-560/T)$                       |
| $HCCO + O_2 \rightarrow HCO + CO + O$                                                                                  | $4.15 \times 10^{-16} T$                                  |
| $HCCO + O_2 \rightarrow CO_2 + HCO$                                                                                    | $3.99 \times 10^{-13} \exp(430/T)$                        |
| $HCCO + OH \rightarrow C_2O + H_2O$                                                                                    | $4.98 \times 10^{-11}$                                    |
| $C_2O + H \rightarrow CH + CO$                                                                                         | $1.66 \times 10^{-11}$                                    |
| $C_2 0 + 0 \rightarrow C0 + C0$                                                                                        | $8.30 \times 10^{-11}$                                    |
| $C_2O + OH \rightarrow CO + CO + H$                                                                                    | $3.32 \times 10^{-11}$                                    |

ХИМИЯ ВЫСОКИХ ЭНЕРГИЙ том 57 № 1 2023

| Реакция                                                                                                                                         | Константа реакции $k_j$ , м <sup>3</sup> /с               |
|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| $\overline{C_2 O + O_2} \rightarrow CO + CO + O$                                                                                                | $3.32 \times 10^{-11}$                                    |
| $C_3H_6 \rightarrow C_2H_2 + CH_4$                                                                                                              | $2.50 \times 10^{12} \exp(-35240/T)$                      |
| $C_3H_6 + O \rightarrow C_2H_5 + HCO$                                                                                                           | $2.62 \times 10^{-17} T^{1.76} \exp(612/T)$               |
| $\overline{\mathrm{C}_3\mathrm{H}_6+\mathrm{H}\rightarrow\mathrm{C}_2\mathrm{H}_4+\mathrm{C}\mathrm{H}_3}$                                      | $1.20 \times 10^{-11} \exp(-655/T)$                       |
| $\overline{C_3H_2 + H_2} \rightarrow HCCO + CO + H$                                                                                             | $3.32 \times 10^{-12} \exp(-503/T)$                       |
| $\overline{\mathrm{CH}_2 + \mathrm{CH}_2} \rightarrow \mathrm{C}_2\mathrm{H}_2 + \mathrm{H} + \mathrm{H}$                                       | $3.32 \times 10^{-10} \exp(-5532/T)$                      |
| $\overline{\mathrm{CH} + \mathrm{C}_2\mathrm{H}_2 \to \mathrm{C}_3\mathrm{H}_2 + \mathrm{H}}$                                                   | $1.66 \times 10^{-10}$                                    |
| $CH + CH_2 \rightarrow C_2H_2 + H$                                                                                                              | $6.64 \times 10^{-11}$                                    |
| $C_2H_4(+M) \rightarrow C_2H_2 + H_2(+M)$                                                                                                       | $1.80 \times 10^{14} \exp\left(-43799/T\right)$           |
| $\overline{C_2H_3 + H \rightarrow C_2H_2 + H_2}$                                                                                                | $1.49 \times 10^{-10}$                                    |
| $\overline{C_2H_3 + O_2 \rightarrow C_2H_2 + HO_2}$                                                                                             | $2.22 \times 10^{-18} T^{1.61} \exp(193/T)$               |
| $\overline{C_2H_3 + OH \rightarrow C_2H_2 + H_2O}$                                                                                              | $3.32 \times 10^{-11}$                                    |
| $\overline{C_2H_3 + C_2H} \rightarrow C_2H_2 + C_2H_2$                                                                                          | $4.98 \times 10^{-11}$                                    |
| $C_2H_3 + CH \rightarrow CH_2 + C_2H_2$                                                                                                         | $8.30 \times 10^{-11}$                                    |
| $C_2H_3 + CH_3 \rightarrow C_2H_2 + CH_4$                                                                                                       | $3.32 \times 10^{-11}$                                    |
| $C_2H_2 + OH \rightarrow C_2H + H_2O$                                                                                                           | $5.60 \times 10^{-17} T^{2.00} \exp(-7048/T)$             |
| $C_2H_2 + OH \rightarrow CH_2CO + H$                                                                                                            | $3.62 \times 10^{-28} T^{4.50} \exp(503/T)$               |
| $C_2H_2 + OH \rightarrow CH_2CO + H$                                                                                                            | $3.32 \times 10^{-13}$                                    |
| $C_2H_2 + OH \rightarrow CH_3 + CO$                                                                                                             | $8.02 \times 10^{-28} T^{4.00} \exp(1007/T)$              |
| $C_2H_2 + O \rightarrow CH_2 + CO$                                                                                                              | $1.02 \times 10^{-17} T^{2.00} \exp(-957/T)$              |
| $C_2H_2 + O \rightarrow HCCO + H$                                                                                                               | $2.38 \times 10^{-17} T^{2.00} \exp(-957/T)$              |
| $O + C_2H_2 \rightarrow OH + C_2H$                                                                                                              | $7.64 \times 10^{-5} T^{-1.41} \exp(14574/T)$             |
| $\overline{C_2H_2 + CH_3} \rightarrow C_2H + CH_4$                                                                                              | $3.01 \times 10^{-13} \exp(-8704/T)$                      |
| $C_2H_2 + O_2 \rightarrow HCCO + OH$                                                                                                            | $6.64 \times 10^{-17} T^{1.50} \exp\left(-15153/T\right)$ |
| $\overline{\mathrm{H} + \mathrm{C}_{2}\mathrm{H}\left(+\mathrm{M}\right)} \rightarrow \mathrm{C}_{2}\mathrm{H}_{2}\left(+\mathrm{M}\right)$     | $1.66 \times 10^{-7} T^{-1.00}$                           |
| $\overline{\mathrm{H} + \mathrm{C}_{2}\mathrm{H}_{2}\left(+\mathrm{M}\right) \rightarrow \mathrm{C}_{2}\mathrm{H}_{3}\left(+\mathrm{M}\right)}$ | $9.30 \times 10^{-12} \exp(-1208/T)$                      |
| $\overline{\mathrm{C}_{2}\mathrm{H}+\mathrm{H}_{2}\rightarrow\mathrm{C}_{2}\mathrm{H}_{2}+\mathrm{H}}$                                          | $6.79 \times 10^{-19} T^{2.39} \exp(-435/T)$              |
| $HCCO + CH \rightarrow C_2H_2 + CO$                                                                                                             | $8.30 \times 10^{-11}$                                    |
| $\frac{\text{HCCO} + \text{HCCO} \rightarrow \text{C}_2\text{H}_2 + \text{CO} + \text{CO}}{-}$                                                  | $1.66 \times 10^{-10}$                                    |
| $\overline{C_3H_2 + O \rightarrow C_2H_2 + CO}$                                                                                                 | $1.66 \times 10^{-10}$                                    |

68

| Реакция                                                                                 | Константа реакции <i>k<sub>j</sub></i> , м <sup>3</sup> /с                              |
|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| $\overline{C_3H_2 + OH \rightarrow C_2H_2 + HCO}$                                       | $8.30 \times 10^{-11}$                                                                  |
| $C_2H + OH \rightarrow C_2 + H_2O$                                                      | $\min\left(6.64 \times 10^{-17} T^2 \exp\left(-4027/T\right), 5 \times 10^{-11}\right)$ |
| $C + OH \rightarrow CO + H$                                                             | $8.30 \times 10^{-11}$                                                                  |
| $C + O_2 \rightarrow CO + O$                                                            | $1.99 \times 10^{-10} \exp(-2014/T)$                                                    |
| $\overline{\mathrm{C} + \mathrm{CH}_2} \rightarrow \mathrm{C}_2\mathrm{H} + \mathrm{H}$ | $8.30 \times 10^{-11}$                                                                  |
| $\overline{C_2 + H_2} \rightarrow C_2 H + H$                                            | $1.10 \times 10^{-10} \exp(-4002/T)$                                                    |
| $\overline{C_2 + O \rightarrow C + CO}$                                                 | $5.98 \times 10^{-10}$                                                                  |
| $C_2 + O_2 \rightarrow CO + CO$                                                         | $1.49 \times 10^{-11} \exp\left(-493/T\right)$                                          |
| $C_2 + OH \rightarrow C_2O + H$                                                         | $8.30 \times 10^{-11}$                                                                  |
| $H_2O + C \rightarrow CH + OH$                                                          | $1.30 \times 10^{-12} T^{0.67} \exp\left(-19785/T\right)$                               |
| $CH + CH \rightarrow C_2 + H_2$                                                         | $8.30 \times 10^{-12}$                                                                  |
| $CH_2 + M \rightarrow C + H_2 + M$                                                      | $2.66 \times 10^{-10} \exp(-32220/T)$                                                   |
| $CH + O \rightarrow C + OH$                                                             | $2.52 \times 10^{-11} \exp(-2381/T)$                                                    |
| $CH + H \rightarrow C + H_2$                                                            | $1.31 \times 10^{-10} \exp(-81/T)$                                                      |
| $C + CH_3 \rightarrow C_2H_2 + H$                                                       | $8.30 \times 10^{-11}$                                                                  |
| $C + C + M \rightarrow C_2 + M$                                                         | $8.27 \times 10^{-34} \exp(503/T)$                                                      |
| $C + CH \rightarrow C_2 + H$                                                            | $8.30 \times 10^{-11}$                                                                  |

Таблица 3. Окончание

На рис. 6 представлена динамика концентраций атомарного и молекулярного углерода в разряде. Видно, что максимальные значения концентраций достигают к моменту времени 1–2 мс и составляют  $1.95 \times 10^{17}$  м<sup>-3</sup> атомарного углерода и  $8.61 \times 10^{17}$  м<sup>-3</sup> молекулярного углерода. Далее наблюдается спад концентраций до значений  $3.75 \times 10^{12}$  и  $5.33 \times 10^{13}$  м<sup>-3</sup> соответственно. Во всем временном промежутке наблюдается доминирование молекулярного углерода над атомарным, что свидетельствует о более вероятном зародышеобразовании кристаллических наноалмазов по сравнению с сажей.

# ЗАКЛЮЧЕНИЕ

Таким образом, в работе сформулирована глобальная модель тлеющего микроразряда атмосферного давления в аргоне с малыми примесями этанола. В сформулированной модели проведен подробный численный кинетический анализ конверсии примеси этанола по условиям экспериментов, проведенных в работе [16]. Набор учитываемых плазмохимических элементарных процессов включает в себя более 50 реакций с участием электронов и более 255 реакций с участием тяжелых частиц.

Результаты моделирования показали, что доминирующими частицами в результате конверсии этанола являются CO,  $H_2$  и H, CH<sub>4</sub>, C<sub>3</sub>H<sub>3</sub>, C<sub>2</sub>H<sub>2</sub>, C<sub>2</sub>H<sub>4</sub>, C<sub>2</sub>H<sub>5</sub>. Кроме того, показано формирование молекулярных частиц углерода, и значительные значения концентраций радикалов CH<sub>3</sub> и CH<sub>2</sub>, которые являются прекурсорами наноалмазов.

Сформулированная модель и проведенные численные эксперименты являются важнейшим этапом в прогнозировании плазмохимических реакций, протекающих в тлеющем разряде в смеси газов Ar +  $C_2H_5OH$  в условиях синтеза на-



Рис. 1. Временные зависимости тока и напряжения на разряде в смеси газов аргон-этанол.



Рис. 2. Динамика концентраций заряженных и возбужденных частиц в тлеющем разряде в смеси газов аргон-этанол.

ноалмазов, формирования основных характеристик плазмы в тлеющем разряде в смеси газов и прогнозировании зарождения и роста наноструктур.

## ИСТОЧНИК ФИНАНСИРОВАНИЯ

Исследование выполнено при финансовой поддержке РНФ и Кабинета Министров Республики Татарстан в рамках научного проекта № 22-22-20099.

ХИМИЯ ВЫСОКИХ ЭНЕРГИЙ том 57 № 1 2023



Рис. 3. Динамика концентраций неорганических соединений в тлеющем разряде в смеси газов аргон-этанол.



Рис. 4. Динамика концентраций углеводородов и радикалов в тлеющем разряде в смеси газов аргон-этанол.



Рис. 5. Динамика концентраций этанола и его производных в тлеющем разряде в смеси газов аргон-этанол.



Рис. 6. Динамика концентраций атомарного и молекулярного углерода в тлеющем разряде в смеси аргон-этанол.

#### СПИСОК ЛИТЕРАТУРЫ

- 1. Ariyarathna I.R., Rajakaruna R.M.P.I., Karunaratne D. Nedra // Food Control. 2017. V. 77. P. 251–259.
- Dastjerd R., Montazer M. // Colloids Surf. B. 2010. V. 79. P. 5–18.
- Chu H., Wei L., Cui R., Wang J., Li Y. // Coord. Chem. Rev. 2010. V. 254. P. 1117–1134.
- Lohse S.E. and Murphy C.J. // J. Am. Chem. Soc. 2012. V. 134. P. 15607–15620.
- Kim T. and Hyeon T. // Nanotechnology. 2014. V. 25. P. 012001–012015.
- Porto C.Lo., Palumbo F., Palazzoa G., and Favia P. // Polym. Chem. 2017. V. 8. P. 1746–1749.
- Heyse P., Hoeck A.V., Roeffaers M.B.J., et al. // Plasma Process. Polym. 2011. V. 8. P. 965–974 (2011).
- Koga K., Dong X., Iwashita S., Czarnetzki U., Shiratani M. // J. Phys Conf. Ser. 2014. V. 518. P. 012020– 012026.
- Kortshagen U., Sankaran R.M., Pereira R., Girshick S., Wu J., and Aydil E. // Chem. Rev. 2016. V. 116. P. 11061–11127.
- 10. Vekselman V., Raitses Y., Shneider M.N. Growth of nanoparticles in dynamic plasma PHYSICAL RE-VIEW E. 2019. V. 99. № 063205. P. 1–5.
- Timerkaev B.A., Kaleeva A.A., Timerkaeva D.B., Saifutdinov A.I. // High Energy Chemistry. 2019. V. 53. № 5. P. 390–395.
- Timerkaev B.A., Shakirov B.R., Kaleeva A.A., Saifutdinov A.I. // High Energy Chemistry. 2021. V. 55. № 5. P. 402–406
- 13. *Lebedev Y.A., Averin K.A., Borisov R.S. et al.* // High Energy Chem. 2018. V. 52. № 324. P. 324–329.
- Averin K.A., Lebedev Yu.A., Tatarinov A.V. // High Energy Chem. 2019. V. 53. № 4. P. 331–335.
- Saifutdinova A.A., Sofronitskiy A.O., Timerkaev B.A., Saifutdinov A.I. // Russian Physics Journal. 2020. V. 62. № 11. P. 2132–2136.

- Kumar A., Lin P.A., Xue A., Hao B., Yap Y.Kh., Sankaran R. // Nature Communications. 2013. V. 4. № 2618. P. 1–8.
- 17. Dresselhaus M.S., Dresselhaus G., Saito R., and Jorio A. // Phys. Rep. 409, 47–49 (2005).
- Peña-Álvarez M., Corro E., Langua F., Baonza V.G., Taravillo M. // RSC Adv. 2016. V. 6. P. 49543–49550.
- Ferrari A.C. and Robertson J. // Philos. Trans. R. Soc. Lond. A. 2004. V. 362. P. 2477–2512.
- 20. Saito Y., Okuda M., and Koyama T. // Surf. Rev. Lett. 1996. V. 3. P. 863-867.
- 21. Williams K., Tachibana M., Allen J., et al. // Chem. Phys. Lett. 1999. V. 310. P. 31–37.
- 22. Farhat S., Chapelle M. L., Loiseau A., et al. // J. Chem. Phys. 2001. V. 115. P. 6752–6759.
- Grebenyukov V.V., Obraztsova E.D., Pozharov A.S., Arutyunyan N.R., Romeikov A.A., Kozyrev I.A. // Fullerenes Nanotubes Carbon Nanostruct. 2008. V. 16. P. 330–334.
- Das R., Shahnavaz Z., Md Eaqub Ali, Moinul Islam M., Bee Abd Hamid S. // Nanoscale Res. Lett. 2016. V. 11. P. 510–533.
- Райзер Ю.П. Физика газового разряда, 3-е изд., перераб. и доп., Долгопрудный: Интеллект, 2009. 734 с.
- 26. *Thorsteinsson E.G., Gudmundsson J.T.* // J. Phys. D Appl. Phys. 2010. V. 43 № 115201. P. 1–12.
- 27. Tsyganov D., Bundaleska N., Tatarova E., Dias A., Henriques J., Rego A., Ferraria A., Abrashev M.V., Dias F.M., Luhrs C.C., Phillips J. // Plasma Sources Science and Technology. 2015. V. 25. № 015013. P. 1–22.
- 28. *Marinov N.M.* // Int. J. Chem. Kinet. 1999. V. 31. P. 183–220.
- Napalkov O.G., Saifutdinov A.I., Saifutdinova A.A. et al. // High Energy Chem. 2021. V. 55. P. 525–530.
- 30. Levko D.S., Tsymbalyuk A.N., Shchedrin A.I. // Plasma Phys. Rep. 2012. V. 38. P. 913–921.