_____ РАДИАЦИОННАЯ ____ ХИМИЯ

УДК 541.15:541.515:543.422.27

ПОВЕРХНОСТНЫЕ СВОЙСТВА ГАММА-ОБЛУЧЕННОГО ПОЛИПРОПИЛЕНА

© 2023 г. С. А. Богданова^{*a*, *b*}, И. Ф. Шаймухаметова^{*a*, *b*}, Р. Ю. Галимзянова^{*b*}, Ю. Н. Хакимуллин^{*b*}, Т. Н. Руднева^{*a*}, С. В. Демидов^{*a*}, С. Р. Аллаяров^{*a*}, *

^а Федеральный исследовательский центр проблем химической физики и медицинской химии Российской академии наук, Черноголовка, 142432 Россия

^b Казанский национальный исследовательский технологический университет, Казань, 420015 Россия

**E-mail: sadush@icp.ac.ru* Поступила в редакцию 27.12.2022 г. После доработки 14.03.2023 г. Принята к публикации 15.03.2023 г.

Исследовано влияние γ-облучения на поверхностные свойства полипропилена (ПП) в зависимости от поглощенной дозы. Установлено, что γ-облучение приводит к увеличению свободной поверхностной энергии полимера, ее кислотно-основной составляющей и полярности поверхности. Анализ ИК-спектров γ-облученных образцов ПП свидетельствует об образовании в составе макромолекул ПП кислородсодержащих групп, что подтверждается значениями параметра кислотности поверхности. Увеличение дозы приводит к росту содержания продуктов радиационного превращения. О протекающих процессах окисления и деструкции свидетельствует также значительное увеличение показателя текучести расплава (ПТР) полипропилена до поглощенной дозы 150 кГр. При дозах облучения свыше 150 кГр происходит снижение ПТР, что говорит о том, что такие дозы ионизирующего излучения приводит к преобладанию процессов структурирования или сшивки полимера.

Ключевые слова: полипропилен, гамма-облучение, свободная поверхностная энергия, предел текучести расплава

DOI: 10.31857/S0023119323040058, EDN: QNDUBF

введение

Уникальные характеристики полипропилена (ПП), такие как биологическая инертность и гидрофобность, высокие физико-механические свойства, прозрачность, низкая стоимость способствуют стремительному росту изделий на основе полипропилена в области биомедицины [1, 2]. Из ПП производят шприцы, катетеры, контейнеры для сбора и транспортировки анализов, пакеты для переливания крови, диализаторы для очистки крови и т.д. Большая часть этих медицинских устройств стерилизуется. Причем для стерилизации, как правило, в равной степени используются два промышленных метода – газовый и радиационный [3– 6]. При радиационном воздействии ПП деструктирует по радикальному механизму. Деструкционные процессы наиболее интенсивно происходят на поверхности изделий. При этом происходит активное окисление полимера за счет взаимодействия с кислородом воздуха. Несмотря на то, что деструкция ПП вследствие воздействия ионизирующего излучения в настоящее время хорошо изучена [7]. исследования об изменении свойств поверхности

полимера малочисленны. Вместе с тем, последние годы характеризуются возросшим интересом к поверхностным свойствам полимеров, которые играют сушественную роль в процессах алгезии. адсорбции, нанесения покрытий, получения композитов, функционализации и эксплуатации материалов. Особенно информативна в этом плане свободная поверхностная энергия полимеров и ее компоненты. Ранее в наших работах было исследовано воздействие гамма-излучения на поверхностные свойства некоторых практически важных полимеров и показано, что они дифференцированно зависят от природы полимера, условий и дозы облучения, что позволяет оценивать радиационную устойчивость [8-12]. Поэтому определение поверхностных энергетических характеристик ПП медицинского назначения является актуальной задачей.

Целью настоящей работы является исследование влияния γ -облучения на поверхностные и объемные свойства ПП в зависимости от поглощенной дозы.

Таблица	 Характеристик 	и полипропилена
---------	-----------------------------------	-----------------

Характеристики	PP H030 GP/3		
Показатель текучести расплава, г/10 мин (при 2.16 кг/230°С)	2.5–3.5		
Предел текучести при растяжении, МПа	30		
Плотность, кг/м ³	950		
Модуль упругости при изгибе, МПа	1200		
Относительное удлинение при пределе текучести, %	9		

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Объектом исследования являлись образцы ПП марки PP H030 GP/3 (табл. 1), которые были получены методом литья под давлением (тип №1 ГОСТ 11262-80).

Радиолиз образцов ПП проводился на воздухе γ-лучами ⁶⁰Со на УНУ "Гамматок-100" ФИЦ ПХФ и МХ РАН при 303 К.

ИК-спектры образцов ПП регистрировались в диапазоне частот 400–4000 см⁻¹ на Фурье-спектрометре Bruker ALPHA, оснащенном приставкой нарушенного полного внутреннего отражения с алмазной призмой однократного отражения (НПВО, FTIR-ATR).

Свободная поверхностная энергия (СПЭ) (γ_s), ее кислотно-основная (γ_s^{ab}) и дисперсионная (γ_s^d) составляющие определялись по значениям краевых углов смачивания поверхности ПП тестовыми жидкостями. Поверхностное натяжение использованных жидкостей (γ_L), его кислотно-основная (γ_L^{ab}) и дисперсионная (γ_L^d) составляющие приведены в табл. 2.

Краевой угол смачивания экспериментально определялся при 293 К методом сидящей капли в

Таблица 2. Поверхностное натяжение тестовых жидкостей и значения его кислотно-основной и дисперсионной составляющих

Тестовая жидкость	γ _l , мН/м	γ_l^{ab} , мН/м	γ_l^d , мН/м
Вода	72.2	50.2	22.0
Глицерин	64.0 30.0		34.0
Диметилсульфоксид	43.6	8.7	34.9
Диметилформамид	37.3	4.9	32.4
Формамид	58.3	26.0	32.3
α-Br-нафталин	44.6	0.0	44.6
Этиленгликоль	48.3	29.3	19.0
Йодистый метилен	50.8	2.3	48.5
Фенол	40.4	37.8	2.6
Анилин	43.2	41.2	2.0
Насыщ. p-p K ₂ CO ₃	104.9	70.9	34.0

ячейке с гидравлическим затвором при помощи катетометра КМ-8, снабженного микрометрической насалкой. С помошью микрошприца наносилось не менее 7 капель одинаковых размеров так, чтобы их диаметр не превышал 2-3 мм. Все измерения проводили при 293 ± 1 К. Образцы полимера тщательно обезжиривали ацетоном и промывали дистиллированной водой. Время установления равновесного значения краевого угла смачивания предварительно определяли для каждой жидкости на всех исследуемых поверхностях. Относительная погрешность измерений менее 2%. Коэффициент шероховатости определяли на основании профилограмм, полученных на профилографе-профилометре П-203. Коэффициенты шероховатости учитывали при расчете косинуса краевого угла смачивания с использованием уравнения Венцеля-Дерягина. Параметр кислотности поверхности определяли по методу Бергер [13].

Показатель текучести расплава (**ПТР**) полипропилена определяли на приборе ИИРТ-5, в соответствии с ГОСТ 11645-73. Измерения проводились при 190°С при воздействии груза 0.875 кг и с внутренним диаметром капилляра 1.0 мм.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Свободная поверхностная энергия *ү*-облученного полипропилена

Определение СПЭ и ее составляющих, а также параметров кислотности поверхности полимеров по данным смачивания является в настоящее время наиболее доступным и часто применяемым методом [14, 15]. В этом случае используются тестовые жидкости различной природы с известными значениями поверхностного натяжения и его компонентов. С использованием концепции Фоукса [16], уравнений Оуэнса–Вендта [17] и графической зависимости, построенной в нашем случае по данным смачивания поверхности ПП одиннадцатью тестовыми жидкостями, мы определили поверхностные энергетические характеристики для необлученных и γ-облученных образцов ПП, которые приведены в табл. 3.

Как видно из представленных в табл. 3 результатов, воздействие γ-излучения приводит к увеличению СПЭ, и она при дозе облучения 60 кГр

Доза, кГр	γ_s^{ab} , мН/м	γ_s^d , мН/м	γ _S , мН∕м	<i>D</i> , (мН/м) ^{0.5}	$x^p \times 10^2$
0	2.44	26.75	29.19	0.56	8.36
10	2.78	27.01	29.80	0.70	9.33
20	3.31	27.52	30.84	0.60	10.73
30	3.82	27.99	31.81	1.08	12.01
40	4.52	28.12	32.64	2.12	13.85
50	5.47	28.63	34.10	2.44	16.04
60	6.99	28.82	35.82	2.22	19.51

Таблица 3. Поверхностные энергетические характеристики ү-облученного ПП

увеличивается на 22.7% по отношению к значениям показателя для необлученного полимера. Основной вклад в изменение СПЭ при повышении поглощенной дозы вносит кислотно-основная составляющая γ_s^{ab} Это свидетельствует о появлении функциональных групп в поверхностном слое полимера. Нами была рассчитана полярность поверхности $x^p = \gamma_s^{ab}/\gamma_s$ [18]. Как видно из табл. 3, γ -облучение приводит к увеличению полярности поверхности облученного дозой 60 кГр образца ПП в 2.3 раза по отношению к значениям показателя для необлученного полимера. Учитывая, что ПП по своей природе неполярный полимер, полярность его поверхности может быть обусловлена, как окислением кислородом воздуха, так и содержащимися в его составе стабилизаторами.

В рамках метода Бергер [14] искомой оценкой является параметр кислотности D, представляющий собой различие в значениях γ_s^{ab} исследуемой поверхности для тестовых оснований Льюиса (анилин и формамид) и кислот (88%-й раствор фенола в воде и глицерин) с приблизительно одинаковыми значениями составляющих СПЭ, рассчитывается по уравнению:

$$D = 2 \left[(\gamma_s^{ab} (анилин))^{1/2} + (\gamma_s^{ab} (формамид))^{1/2} \right] - 2 \left[(\gamma_s^{ab} (фенол))^{1/2} + (\gamma_s^{ab} (глицерин))^{1/2} \right].$$

Определенный таким образом параметр кислотности выражает разницу в смачивании исследуемой поверхности тестовыми основаниями и тестовыми кислотами. Значение D > 0 говорит о преимущественной кислотности поверхности, в свою очередь D < 0 свидетельствует об основности поверхности. Полученные результаты указывают на положительные значения параметра кислотности (D), что свидетельствуют о преобладании в поверхностном слое полимера функциональных групп кислотного характера (рис. 1). Увеличение поглощенной дозы приводит к повышению параметра кислотности практически в 4 раза с 0.5 до

2.2 (мH/м)^{1/2}, что свидетельствует об интенсивном окислении полимера при воздействии γ-излучения.

Таким образом, проведенные исследования показывают, что γ-излучение оказывает существенное влияние на поверхность полимера, прежде всего на протекание окислительных процессов, о чем свидетельствует повышение кислотно-основной составляющей СПЭ.

Нужно отметить, что использование кислотно-основного анализа позволяет судить об эффективности используемого в полимере комплекса стабилизаторов, а также делать предположения о механизмах радиационного окисления, протекающих при повышении дозы облучения.

ИК-Фурье спектры ү-облученного полипропилена

Общий вид ИК-спектра образца ПП до γ -облучения представлен на рис. 2а. В нем наблюдается пять пиков в районе волновых чисел 3000—2800 см⁻¹, связанные с асимметричным (2950, 2916 см⁻¹) и симметричным (2876, 2867, 2837 см⁻¹) валентными колебаниями связей С—Н в метиленовых группах. В спектре ПП регистрируются полосы погло-

Рис. 1. Зависимость параметра кислотности от поглощенной дозы γ-облучения ПП.

Рис. 2. Вид ИК-спектров образцов исходного (а) и γ-облученного дозой 450 кГр образцов ΠΠ (б).

Рис. 3. Зависимость от дозы γ -облучения интенсивности полос поглощения при 1711 см⁻¹ (*1*) и 1165 см⁻¹ (*2*) относительно интенсивности полос поглощения при 2837 см⁻¹ в образцах ПП.

щения, отвечающие за деформационные колебания СН группы (при 1457 см⁻¹) и СН₃ группы (при 1375 см⁻¹).

Радиолиз вносит существенные изменения в ИК-спектр ПП (рис. 2а и 2б). В результате γ -облучения в ИК-спектре ПП изменяется интенсивность и положение отдельных полос поглощения, имеющиеся в полимере до радиолиза, и появляются новые полосы.

Анализ ИК-спектров ПП, облученного различной дозой (80, 200, 450, 1160, 2100, 4500, 7500 и 11500 кГр), показывает, что с увеличением дозы облучения наблюдается появление новых сигналов и рост их интенсивности: $-1820-1660 \text{ см}^{-1}$ – группа из двух накладывающихся пиков (1739, 1711 см⁻¹), соответствующих колебаниям по связи >C=O в альдегидах, кетонах, кислотах, сложных эфирах, в том числе непредельных; 1457 см⁻¹ – пик, обусловленный плоскими деформационными колебаниями C–H в >C=CH₂; 1330–900 см⁻¹ – группа широких, перекрывающихся пиков (максимумы 1329, 1303, 1253, 1215, 1165, 1155, 1101, 1044 см⁻¹), подтверждающая присутствие кислородсодержащих групп в облученном ПП;

- 997, 973, 940 см⁻¹ – пики, обусловленные деформационными колебаниями связей -C=H в RC=CH;

— 899, 841, 808 см⁻¹ и менее — пики, характерные для структур, содержащих RHC=CHR и RHC=CH₂.

Характерной особенностью ИК-спектра γ -облученного на воздухе ПП является возникновение пиков различной интенсивностью в диапазоне частот 1750—1710 см⁻¹ (рис. 26), соответствующих полосам поглощения карбонильной группы (максимум при 1739 и 1711 см⁻¹).

С увеличением дозы облучения, наряду с появлениями новых пиков, изменяется и соотношение интенсивностей полос поглощения, относящихся к колебаниям алифатической метиленовой группы >CH₂. При этом интенсивность сигнала при 1375 см⁻¹, характеристического для колебаний концевых метильных групп –CH₃, с дозой облучения уменьшается слабо. Исходя из этого, можно предположить, что происходит перестройка углеродного скелета.

Таким образом, в ИК-спектре γ-облученного на воздухе ПП возникают серия полос поглощения различной интенсивности, характерных для фрагментов макромолекулы, содержащих кислород, а также ненасыщенные связи.

На рис. 3 представлена зависимость от дозы γ -облучения интенсивности некоторых полос поглощения (1711 см⁻¹ (кривая *I*), 1165 см⁻¹ (кривая *2*)) относительно интенсивности полосы поглощения при 2837 см⁻¹ в образцах ПП. Видно, что в них с повышением дозы γ -облучения наблюдается усиление относительной интенсивности полос поглощения кислородсодержащих фрагментов С=О и С-О. Установлено, что с повышением дозы γ -облучения отношение интенсивности полос поглощения при 1165 см⁻¹, свидетельствующее о появлении в облученном полимере кислородсодержащих С-О групп к интенсивности полос 2837 см⁻¹, возрастает при малых дозах и выходит на постоянное значение при высоких дозах облучения.

Проведенные исследования показывают, что воздействие гамма-излучения приводит к интенсивному окислению поверхности полимера. Тем

Рис. 4. Зависимость показателя текучести расплава ПП от дозы у-облучения.

не менее, процессы окисления и деструкции протекают и в толще образцов.

О взаимосвязи поверхностных и объемных свойств облученных полимеров говорит зависимость ПТР полимера от дозы облучения. Следует отметить, что анализ изменения ПТР является наиболее простым и в то же время достаточно точным методом определения степени деструкции. На рис. 4 представлена зависимость ПТР облученного ПП от дозы облучения. Как видно из представленных данных с увеличением поглощенной дозы до 150 кГр ПТР полимера существенно увеличивается, что свидетельствует об интенсивной радиационной деструкции ПП. Дальнейшее снижение ПТР при дозах облучения свыше 150 кГр говорит о том, что такие дозы ионизирующего излучения приводят к преобладанию процессов структурирования или сшивки полимера. В результате при дозах 450 кГр образцы ПП практически перестают течь.

На основании исследований поверхностных энергетических характеристик, спектров МНПВО можно прийти к выводу о том, что γ-облучение оказывает существенное влияние на поверхность ПП, прежде всего на протекание окислительных процессов, о чем свидетельствует повышение СПЭ, ее кислотно-основной составляющей, полярности поверхности и параметра кислотности. О протекании интенсивного окисления и деструкции не только на поверхности, но и в толще полимера свидетельствует также увеличение значения показателя текучести расплава для данной марки полипропилена при увеличении поглощенной дозы до 150 кГр.

ИСТОЧНИК ФИНАНСИРОВАНИЯ

Работа выполнено при поддержке Государственно-го задания АААА-А19-119041090087-4.

СПИСОК ЛИТЕРАТУРЫ

- Gavrila D.E., Stoian V., Caramitu A., Mitrea S. Composite Materials [Internet]/Chowdhury M. A., Armenta J.L.R., Rahman M.M., Asiri A., Inamuddin I. eds. London: IntechOpen, 2020. https://www.intechopen.com/chapters/71600 [cited 2022 Dec 27].
- Van Lierde S. // Med Device Technol. 2004. V. 15. № 5. P. 33.
- Лисаневич М.С., Галимзянова Р.Ю., Хакимуллин Ю.Н., Федорова Т.А., Мезенцева Е.В., Иванов В.В. // Изв. высш. уч. заведений. Технология текстильной промышленности. 2021. № 5. С. 94.
- Лисаневич М.С., Галимзянова Р.Ю., Мусин И.Н., Макаров Т.В. Стерилизация медицинских изделий // Учебное пособие. Казань: Изд-во: ООО "Редакционно-издательский центр "Школа", 2020. 86 с.
- 5. Галимзянова Р.Ю., Рахматуллина Э.Р., Лисаневич М.С., Хакимуллин Ю.Н // Вестник технологического университета. 2020. Т. 23. № 2. С. 19.
- Lisanevich M.S., Rakhmatullina E.R., Khakimullin Yu N., Galimzyanova R.Yu., Akhmadullin R.M., Perukhin Y.V. // Key Engineering Materials. Trans. 2019. V. 816. P. 328.
- Иванов В.С. Радиационная химия полимеров. Ленинград: Химия, 1988. С. 206.
- Shaimukhametova I.F., Shigabieva Y.A., Bogdanova S.A., Allayarov S.R. // High Energy Chem. 2020. V. 54. № 2. P. 111.
- Shaimukhametova I.F., Allayarov S.R., Demidov S.V., Bogdanova S.A. // High Energy Chem. 2021. V. 55. № 5. P. 381.
- Allayarov S.R., Confer M.P., Bogdanova S.A., Shigabieva Y.A., Dixon D.A. // Polymer Degradation and Stability. 2021. V. 191. P. 109697.
- Allayarov S.R., Confer M.P., Demidov S.V., Malkov G.V., Bogdanova S.A., Shaimukhametova I.F., Nikolsky V.G., Perukhin Yu.V., Podvalnaya Yu.V., Zyukin I.V., Dixon D.A. // Polymer. 2021. V. 237. P. 124342.
- Allayarov S.R., Confer M.P., Bogdanova S.A., Rudneva T.N., Allayarova U.Yu, Shaimukhametova I.F., Demidov S.V., Mishchenko D.V., Klimanova E.N., Sashenkova T.E., Chekalina S.D., Aldoshin S.M., Dixon D.A. // Radiation Physics and Chemistry. 2022. V. 201. P. 110436.
- Berger E.J. // J. Adhes. Sci. Technol. 1990. V. 4. № 5. P. 373.
- Старостина И.А., Стоянов О.В., Краус Э. Развитие методов смачивания для оценки состояния поверхности. Казань: КНИТУ, 2019. 152 с.
- Старостина И.А., Стоянов О.В. Кислотно-основные взаимодействия и адгезия в металл-полимерных системах. Казань: КГТУ, 2010. 195 с.
- Fowkes F.M., Wendt R.C. // J. Phys. Chem. 1963. V. 67. № 12. P. 2538.
- 17. Owens D.K. // J. Appl. Polym. Sci. 1969. V. 13. P. 1741.
- Vijayendran B.R. // J. Appl. Polym. Sci. 1979. V. 23. № 3. P. 733.