——— ПЛАЗМОХИМИЯ ——

УДК 544.556.1

ОКИСЛИТЕЛЬНАЯ И НЕ ОКИСЛИТЕЛЬНАЯ КОНВЕРСИЯ ЭТИЛЕНА В БАРЬЕРНОМ РАЗРЯДЕ

© 2023 г. А. Ю. Рябов^{а,} *, С. В. Кудряшов^а

^а Федеральное государственное бюджетное учреждение науки Институт химии нефти Сибирского отделения РАН, проспект Академический, 4, Томск, 634055 Россия

> **E-mail: a.y.ryabov@yandex.ru* Поступила в редакцию 11.01.2023 г. После доработки 13.03.2023 г. Принята к публикации 15.03.2023 г.

Изучена окислительная и неокислительная конверсия этилена в барьерном разряде в присутствии воды с образованием преимущественно непредельных соединений (ацетилена, бутена, бутадиена). Показана эффективность конверсии этилена в аргоне в сравнении с его окислением воздухом в оксигенаты. Простая теоретическая оценка потерь энергии электронов разряда в исходной газовой смеси и несложные кинетические расчеты позволяют объяснить изменение величины конверсии этилена, а также направление протекания процесса.

Ключевые слова: этилен, барьерный разряд, окисление, неокислительная конверсия, кинетика **DOI:** 10.31857/S0023119323040125, **EDN:** QOAKFA

введение

Исследование является продолжением работ [1, 2] направленных на изучение механизма и кинетики превращения легких олефинов в барьерном разряде, для разработки нового подхода к селективному плазмохимическому превращению углеводородов в ценные нефтехимические соединения.

Ранее в работе [1], при окислении пропилена в барьерном разряде рассмотрен возможный механизм образования продуктов реакции, обсуждены маршруты образования кислородсодержащих веществ и предельных и непредельных углеводородных соединений, протекающих независимо друг от друга. Выдвинутые предположения о возможном механизме протекания реакции основаны на простых теоретических расчетах потерь энергии электронов барьерного разряда в исходных смесях. Из которых видно, что возбуждение электронных состояний молекул кислорода стимулирует протекание реакции по окислительному маршруту, а электронных состояний молекул пропилена — образование различных углеводородов.

Представляло интерес оценить применимость данного подхода для оценки направленности протекания плазмохимической конверсии прочих олефиновых углеводородов, например, этилена, что явилось целью настоящего исследования.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Окисление этилена проводили воздухом, не окислительную конверсию — в атмосфере аргона, на экспериментальной установке и по методике, представленной в работе [3]. Поток газов смешивается с водой, далее газожидкостная смесь направляется в плазмохимический реактор, где при комнатной температуре подвергается воздействию БР.

Плазмохимический реактор представляет собой планарную конструкцию и выполнен из дюралюминия с одним диэлектрическим барьером (стеклотекстолит, толщиной 1 мм). Зазор в разрядной зоне составляет 1 мм, площадь разрядной зоны равна 48 см². Во всех экспериментах амплитуда высоковольтных импульсов напряжения не превышала 9 кВ, частота их повторения равнялась 400 Гц. Объемный расход газовой смеси составлял 60 см³/мин, воды — 0.3 см³/мин. Анализ газообразных и жидких продуктов реакции проводился с помощью газового хроматографа, оборудованного детектором по теплопроводности и пламенно-ионизационным детектором.

Расчет потерь энергии электронов разряда в смесях этилена с воздухом и аргоном выполнен с помощью программы Bolsig+ [4]. Сечения рассеяния электронов молекулами этилена, аргона, кислорода, азота и воды взяты из базы данных [5]. Приведенная напряженность поля на разрядном промежутке имеет значения 37.2 и 90.9 Td, при активной мощности разряда в 0.9 и 2.2 Bt, соответ-

	Содержание, мас. %				
Соединение	С2Н4-воздух-Н2О	C ₂ H ₄ -Ar-H ₂ O			
Метан	3.5	0.5			
Ацетилен	47.1	19.4			
Этан	3.8	6.1			
C3	5.2	10.4			
C4	7.1	49.3			
C5+	5.2	14.4			
Метанол	6.9	_			
Ацетальдегид	10.3	_			
Этанол	10.9	_			
Конверсия, %	12.8	58.9			
Энергозатраты, кВт ч/кг	36.1	6.6			

Таблица 1. Содержание продуктов превращения этилена в зависимости от состава исходной газовой смеси в БР. $[C_2H_4] = 9\%$, [Bo3dyx/Ar] = 89%, $[H_2O] = 2\%$

ственно, для смесей этилен–аргон–вода и этилен–воздух–вода. Способ расчета для напряженности поля и активной мощности разряда представлен в [2, 3].

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

В табл. 1 представлен состав основных продуктов превращения этилена в различных средах. В обоих случаях, наблюдается образование углеводородов, предельных и непредельных соединений с числом атомов углерода от 1 до 6. При наличии воздуха в исходной смеси происходит образование оксигената — метанола, ацетальдегида и этанола. Содержание которых не превышает ~28.2% от общего количества всех продуктов реакции. Из углеводородов образуется преимущественно ацетилен с содержанием в 47.1%.

Замена воздуха на аргон в исходной смеси снижает содержание ацетилена в продуктах реакции с 47.1 до 19.4%, но значительно увеличивает количество углеводородов С4 с 7.1 до 49.3%, преимущественно содержащих бутенов и бутадиена. Наблюдается повышение количества соединений с большей молекулярной массой углеводородов C5+ с 5.2 до 14.4%.

Конверсия этилена при замене в исходной смеси воздуха на аргон изменяется с 12.8 до 58.9%, кратно уменьшаются и энергозатраты на превращение этилена при использовании аргона с 36.1 до 6.6 кВт ч/кг.

Значительные изменения состава продуктов реакции и содержание некоторых веществ в них (ацетилена или бутенов и бутадиена), а также увеличение конверсии этилена при замене воздуха на аргон, можно объяснить, рассмотрев результаты расчетов потерь энергии электронов в исходных смесях.

Анализ потерь энергии электронов в разряде, позволяет оценить распределение энергии между молекулами в исходной смеси и их уровни возбуждения. В результате диссоциации возбужденных молекул происходит образование активных частиц плазмы, инициирующих превращение веществ, и являясь одной из основных стадий в построении математической модели плазмохимического процесса.

Расчет потерь энергии электронов разряда в смесях этилена с воздухом и аргоном представлен в табл. 2.

Из табл. 2 видно, что основные потери энергии электронов БР в смеси этилен—аргон—вода приходятся на возбуждение электронных состояний молекул этилена ~86.1%. Замена аргона на воздух в исходной смеси приводит к кратному снижению возбужденных состояний молекул этилена до ~14%, преимущественно, наблюдается возбуждение различных состояний молекул азота. Около 64% энергии выделяемой в разряде расходуется на возбуждение молекул азота, которые практически не участвуют в превращении этилена, что объясняет более низкую конверсию этилена в смеси с воздухом в сравнении с конверсией его в аргоне (табл. 1).

Теоретические расчеты потерь энергии электронов БР в смеси этилен—воздух—вода показывают, что на возбуждение электронных состояний молекул кислорода так же приходится незначительное

Потери энергии, %	C ₂ H ₄ -Ar-H ₂ O			С ₂ Н ₄ -воздух-Н ₂ О			
	C_2H_4	Ar*	H ₂ O	C_2H_4	O ₂	N ₂	H ₂ O
Колебательные состояния	7.8	0.5	5.2	0.4	1.0	45.3	0.4
Электронные состояния	86.1	1.0	0.5	13.5	18.0	18.5	0.2
Ионизация	0.4	0.1	0	1.3	0.6	0.7	0

Таблица 2. Потери энергии электронов БР в смесях этилена с воздухом и этиленом. $[C_2H_4] = 9\%$, [воздух/Ar] = 89%, $[H_2O] = 2\%$

* Для аргона приведены упругие соударения.

количество энергии электронов ~18.0% (табл. 2), и как следствие, низкая начальная концентрация атомарного кислорода на стадии разрядного инициирования реакции, что объясняет низкую эф-фективность плазмохимического процесса окисления этилена воздухом.

Одновременно с образованием атомарного кислорода в реакционной смеси будут появляться углеводородные радикалы в результате электронного возбуждение молекул этилена, которое достигает 13.5%. Их взаимодействие с исходными молекулами или друг с другом при дальнейшем превращении приводит к появлению целого спектра продуктов (кислородсодержащие соединения и углеводороды), снижая селективность процесса (табл. 1).

На основании анализа потерь энергии электронов БР возможно оценить верхнюю границу выхода атомов и радикалов в результате диссоциации электронно-возбужденных молекул исходной смеси. Сравнение состава активных частиц, образующихся на стадии разрядного инициирования реакций, для смесей этилена с воздухом и аргоном позволит рассмотреть особенности протекания реакций окисления и неокислительной конверсии в БР.

Инициирование плазмохимического процесса для смесей этилена с воздухом и аргоном происходит в результате следующего основного набора реакций [6]:

$$C_2H_4 + e \rightarrow C_2H_3 + H + e, \qquad (1)$$

$$C_2H_4 + e \to C_2H_2 + H_2 + e,$$
 (2)

$$C_2H_4 + e \rightarrow C_2H_2 + 2H + e.$$
(3)

Из табл. 2 видно, что на возбуждение молекул аргона приходится малое количество энергии электронов БР, что позволяет пренебречь их участием в процессе превращения этилена.

Наличие воздуха в исходной смеси подразумевает основные электронно-молекулярные реакции для молекул кислорода и азота [7]:

$$O_2 + e \to 2O + e, \tag{4}$$

$$N_2 + e \to N_2^* + e, \tag{5}$$

$$N_2 + e \rightarrow 2N + e. \tag{6}$$

ХИМИЯ ВЫСОКИХ ЭНЕРГИЙ том 57 № 4 2023

Моделирование стадии разрядного инициирования реакции за один высоковольтный импульс напряжения выполнено применением программного пакета Kintecus [8]. Необходимые для расчетов значения эффективных констант скорости электронно-молекулярных реакций диссоциации молекул (k_{eff}) для исходных смесей получены с использованием программного пакета Bolsig+[4]. Выражение для оценки эффективной константы электронно-молекулярной реакции (k_{eff}), связывающее действительную константу скорости электронно-молекулярной реакции с ключевыми параметрами БР, подробно описаны в работах [3, 9].

На рис. 1 представлен расчетный состав основных химически-активных и нейтральных частиц, образующихся на стадии разрядного инициирования реакции для смесей, этилен-воздух-вода и этилен-аргон-вода в БР за один высоковольтный импульс напряжения. Видно, что для смеси с воздухом наблюдается образование атомов азота и его возбужденных молекул. Ранее [8] показано, что наличие молекул азота в исходной смеси не оказывает заметное влияние на образование кислородсодержащих продуктов при окислении легких олефинов. Наиболее вероятно атомы азота и возбужденные молекулы азота при взаимодействии с молекулярным кислородом образуют различные оксиды азота или дезактивируются до молекулярного азота [9, 10].

Согласно расчетам для смеси этилен—воздух вода наибольшее количество радикалов приходится на атомарный кислород ~27.5%, но окислительная реакция в данном случае происходит малоэффективно, образование кислородсодержащих веществ в продуктах составляет всего ~28.2% (табл. 1). Образование ацетилена (C_2H_2) в расчетном составе частиц составляет 6.1% по сравнению с его количеством в 15.2% для смеси с аргоном, однако, в продуктах реакции наблюдается обратная зависимость образование ацетилена в присутствии воздуха в несколько раз больше в случае превращения смеси этилена с аргоном (табл. 1).

Рассмотрим некоторые реакции, влияющие на образование продуктов превращения этилена в БР в присутствии воздуха и аргона. Наличие кис-

Рис. 1. Расчетный состав химически активных и нейтральных частиц, образующихся на стадии разрядного инициирования реакции для смесей, этилен-воздух-вода и этилен-аргон-вода в БР за один высоковольтный импульс напряжения.

(10)

лорода в смеси этилен-воздух-вода определяет направленность реакций с их участием:

$$C_2H_4 + O \rightarrow CH_3 + HCO,$$

$$k = 7.41 \times 10^{-13} \text{ cm}^3/\text{molecule} \times \text{s [11]},$$
(7)

$$C_2H_4 + O \rightarrow C_2H_3 + OH,$$
(8)

$$k = 2.56 \times 10^{-15} \text{ cm}^3/\text{molecule} \times \text{s} [12],$$

$$C_2H_3 + O_2 \rightarrow CH_2O + HCO,$$

 $k = 1.06 \times 10^{-11} \text{ cm}^3/\text{molecule} \times \text{s [13]},$
(9)

$$C_2H_3 + O_2 \rightarrow C_2H_2 + HO_2,$$

$$k = 2.01 \times 10^{-13} \text{ cm}^3/\text{molecule} \times \text{s} [11],$$

$$H + O_2 \rightarrow HO_2,$$

$$k = 7.51 \times 10^{-11} \text{ cm}^3/\text{molecule} \times \text{s [14]},$$
(11)

Видно, что реакции с участием молекулярного или атомарного кислорода могут способствовать образованию не только кислородсодержащих соединений, но и молекул ацетилена (C_2H_2), что хорошо согласуется с экспериментом. Дополнительно, взаимодействие атомарного водорода с молекулой кислорода (реакция (11)) наиболее вероятно по сравнению с конкурирующей реакцией гидрирования непредельных связей в молекулах углеводородов (реакция (14), (15)), что так же способствует увеличению содержания ацетилена в продуктах реакции при наличии кислорода в смеси.

В отсутствии кислорода образовавшиеся частицы взаимодействуют между собой и молекулами этилена:

$$C_2H_4 + C_2H_3 \rightarrow 1, 3enC_4H_6 + H,$$

 $k = 3.91 \times 10^{-18} \text{ cm}^3/\text{molecule} \times \text{s [11]},$
(12)

$$C_{2}H_{3} + C_{2}H_{3} \rightarrow 1,3enC_{4}H_{6},$$

$$k = 9.5 \times 10^{-11} \text{ cm}^{3}/\text{molecule} \times \text{s [15]},$$
(13)

$$C_2H_4 + H \rightarrow C_2H_5,$$

 $k = 1.3 \times 10^{-12} \text{ cm}^3/\text{molecule} \times \text{s [11]},$
(14)

$$C_2H_2 + H \rightarrow C_2H_3,$$

 $k = 1.84 \times 10^{-13} \text{ cm}^3/\text{molecule} \times \text{s [16]},$
(15)

$$C_2H_3 + C_2H_5 \rightarrow C_4H_8,$$

 $k = 6.5 \times 10^{-11} \text{ cm}^3/\text{molecule} \times \text{s [15]}.$ (16)

Наглядно видно, что рекомбинация основных радикалов приводит к образованию преимущественно соединений с числом атомов углерода в молекуле 4 (бутена и бутадиена), что подтверждается экспериментальными данными.

ЗАКЛЮЧЕНИЕ

Изучена окислительная и неокислительная конверсия этилена в барьерном разряде в присутствии воды. Основными продуктами являются непредельные углеводороды (ацетилен, бутен, бутадиена). Эффективность конверсии этилена в аргоне выше, чем в случае его окисления воздухом в оксигенаты. Простая теоретическая оценка потерь энергии электронов разряда в исходной газовой смеси и несложные кинетические расчеты позволяют объяснить особенности механизма реакции, а также предсказать направление протекания процесса. Подобные выводы ранее были сделаны и для процесса превращения пропилена в БР.

Это свидетельствует о принципиальной возможности управления направлением протекания плазмохимических реакций с участием углеводородов и создает научные предпосылки для разработки нового поколения процессов переработки углеводородного сырья для целей нефтехимического и органического синтеза.

ИСТОЧНИК ФИНАНСИРОВАНИЯ

Работа выполнена в рамках государственного задания ИХН СО РАН, финансируемого Министерством науки и высшего образования Российской Федерации (проект FWRN-2021-0003).

СПИСОК ЛИТЕРАТУРЫ

 Рябов А.Ю., Кудряшов С.В., Очередько А.Н., Мукушева Г. // Химия высоких энергий. 2021. Т. 55. № 4. С. 333.

- 2. Рябов А.Ю., Кудряшов С.В., Очередько А.Н. // Химия высоких энергий. 2022. Т. 56. № 3. С. 245.
- 3. *Kudryashov S., Ryabov A., Shchyogoleva G.* // J. Phys. D: Appl. Phys. 2016. V. 49. P. 025205.
- Hagelaar G.J.M. // Plasma Sources Sci. Technol. 2005. V. 14. № 4. P. 722.
- 5. Viehland database [Электронный ресурс]. Режим доступа: www.lxcat.net.
- Janev R.K., Reiter D. // Physics of Plasmas. 2004. V. 11. P. 780.
- Stefanović I. et al. // Plasma Sources Sci. Technol. 2001. V. 10. P. 406.
- 8. *Ianni J.C. Kintecus V.* 5.5. 2015. http://www.kintecus.com.
- 9. Кудряшов С.В., Рябов А.Ю., Очередько А.Н. // Химия высоких энергий. 2018. Т. 52. № 2. С. 150.
- 10. *Рябов А.Ю., Кудряшов С.В., Очередько А.Н. //* Химия высоких энергий. 2021. Т. 22. № 3. С. 237.
- Tsang W., Hampson R.F // J. Phys. Chem. Ref. Data. 1986. V. 15.
- Mahmud K., Marshall P., Fontijn A. // J. Phys. Chem. 1987. V. 91.
- 13. Park J.-Y., Heaven M.C., Gutman D. // Chem. Phys. Lett. 1984. V. 104.
- Atkinson R., Baulch D.L., Cox R.A. et al. // J. Phys. Chem. Ref. Data. 1997. V. 26. P. 1329.
- Laufer A.H., Fahr A. // Chem. Rev. 2004. V. 104. P. 2813–2832.
- Baulch D.L., Cobos C.J., Cox R.A. et al. // J. Phys. Chem. Ref. Data. 1992. V. 21. P. 411.