ОБЩИЕ ВОПРОСЫ

УДК 541.6+539.189.2

О НЕКОТОРЫХ ОСОБЕННОСТЯХ ПОЗИТРОННОГО И СОРБЦИОННОГО МЕТОДОВ ПРИ ИССЛЕДОВАНИИ МИКРОПОРИСТОСТИ ПОЛИМЕРОВ

© 2023 г. В. П. Шантарович^{а, *}, В. Г. Бекешев^а, И. Б. Кевдина^а, В. В. Густов^а, Э. В. Белоусова^а

^а Исследовательский центр химической физики им. Н.Н. Семенова РАН, ул. Косыгина 4, Москва, 119991 Россия *E-mail: shant@chph.ras.ru

Поступила в редакцию 03.02.2023 г. После доработки 14.03.2023 г. Принята к публикации 15.03.2023 г.

Для ряда полимеров с аморфной (полиэфиримиды PEI) и аморфно-кристаллической (полифениленоксиды PPO) структурой сравниваются данные о микропористости (распределения микропор по размерам) в диапазоне от нескольких ангстрем до нескольких нанометров, полученные путем измерений времени жизни позитронов (методика PALS) и путем измерений сорбции CO₂ (низкотемпературная сорбция газа LTGS). Оценки микропористости по данным аннигиляции позитронов и сорбции CO₂ сопоставлены с литературными данными о проницаемости этих материалов, полученными как из эксперимента, так и методом групповых вкладов. Обсуждаются найденные расхождения и их возможные причины.

Ключевые слова: позитрон, позитроний, аннигиляция, время локализации, нанопора, свободный объем, удельная поверхность, проницаемость, адсорбция, распределение по размерам, допплеровское уширение, аннигиляционная линия

DOI: 10.31857/S0023119323040137, EDN: QOBJRE

введение

Микропористость (распределение микропор по размерам) является важнейшей структурной характеристикой, определяющей проницаемость и селективность полимерных мембранных материалов [1]. Однако в настоящее время в науке нет экспериментальных методов, кроме аннигиляции позитронов (PALS) и низкотемпературной сорбции газов N₂, CO₂ (LTGS), из данных которых можно было бы извлечь эту информацию для аморфных полимерных материалов [2-6]. Использование этих методов имеет свои трудности, и состоят они в том, что данные обоих методов не являются прямыми. В случае аннигиляции позитронов исходной информацией для восстановления распределения пор по размерам является распределение во времени аннигиляционного излучения позитронов в исследуемом веществе, а в случае сорбции распределение пор восстанавливается по изотерме сорбции газа с помощью одной из теоретических моделей [4-6].

Сравнение результатов восстановления распределения пор по размерам из экспериментальных данных двух видов служит верификации процедуры восстановления и выявляет особенности каждого из методов. В данной работе мы сопоставляем результаты PALS и LTGS по аморфнокристаллическому поли(2,6-диметилфенилен оксид-1,4) РРО [7–9], а также результаты для ряда полиэфиримидов (PEI) [10], в данном случае на основе диаминов.

ИССЛЕДОВАННЫЕ МАТЕРИАЛЫ

Методом дифракции рентгеновских лучей показано [7, 8], что строение пленок и порошков РРО можно представить, как полимер-полимерный нанокомпозит, являющийся высококонцентрированной дисперсией низкоплотных кристаллитов размером не более 7 нм в более плотной аморфной фазе. Структурную формулу элемента полимерной цепи РРО (на вставке) вместе с результатами сорбционных экспериментов (изотермы адсорбции СО2 при 273 К и распределения пор по размерам PSD) для аморфизованного и одного из аморфно-кристаллических образцов (PPO-2) демонстрируют рис. 1, 2.

Структура изученных PEI показана на рис. 3. Причем в верхней части приводится основной элемент (6FQDTBDA), а ниже– структурные элементы вставки "Ar", соответственно: 6FDA, OPDA, BTDA, BPADA. Таким образом, один из исследованных в работе образцов, например, будет обозначен как 6FQDTBDA-BTDA. На рис. 3 показана также структура одного из PEI, "Каптона".

Рис. 1. Изотермы адсорбции СО₂ для пленок РРО.

Рис. 2. Распределение микропор по размерам (ширина d, нм) в исходной и аморфизованной пленках РРО-2.

МЕТОДИКА ЭКСПЕРИМЕНТА

Аннигиляционный спектрометр времени жизни позитронов (PALS)

Детали позитронных экспериментов и особенности методики описаны в литературе [2, 3, 11, 12]. Использовался аннигиляционный спектрометр EG&G ORTEC (USA) с радиоактивным источником позитронов ⁴⁴Ti, являющийся удобной альтернативой известному изотопу ²²Na, и буферным устройством ORTEC-TRUMP-PCI-2K. Разрешающая способность спектрометра (FWHM), полная ширина на полувысоте кривой мгновенных совпадений гамма-квантов от радиоактивного источника ⁶⁰Co, составляла 300 пс. Протяженность диапазона измерений времен жизни позитронов составляла 100 нс при цене одного канала 0.05 или 0.1 нс/канал. Суммарная по каналам ста-

Рис. 3. Структурные элементы исследованных полиэфиримидов (РЕІ).

тистика событий аннигиляции (совпадений ядерного и одного из аннигиляционных квантов) в одном эксперименте составляла 106. Результат измерений (времена жизни в распределении событий аннигиляции и их интенсивности) определяли как средние по результатам нескольких экспериментов. Для математической обработки использовали программу PATFIT [3]. Времена жизни орто-позитрония (τ_3 , τ_4 , интенсивности I_3 , I_4) в исследуемом веществе использовались для определения эффективного размера нанопор ($d_3 = 2R_3, d_4 = 2R_4$) по известной формуле Тао-Элдрупа [3]. Важно отметить, что имеются случаи, когда удовлетворительное описание достигается при использовании трех компонент (из них одна орто-позитрониевая компонента τ_3 , I_3). Это соответствует унираспределению модальному микропор по размерам.

Низкотемпературная сорбция паров газа (LTGS)

Низкотемпературная сорбция паров газов (N₂, CO₂) широко используется для исследования пористости материалов, для получения распределения пор по размерам (PSD) [4–6]. При исследовании микропор предпочтительнее использовать сорбцию СО₂. Давление насыщенных паров СО₂ при нулевой температуре (P₀) очень высоко (26141 Торр). Поэтому низкие относительные давления *Р*/*P*₀, необходимые для анализа микропор, достижимы при умеренных абсолютных значениях давления (1-760 Торр). При этом молекулы CO₂ легче достигают микропор, чем N₂ при 77.4 К, хотя размеры молекул практически совпадают. Таким образом, измерения могут быть выполнены без повышенных требований к вакуумному оборудованию и за менее продолжительное время, чем в случае N₂. В наших измерениях использовалась установка NOVA Series 1200e Quantachrome (USA) с интервалом относительных давлений по азоту $P/P_0 = 0.005 - 0.999$. В наших экспериментах с СО2 доступный диапазон значений P/P_0 составлял 3 × 10⁻⁵-3 × 10⁻².

Расчет PSD проводили с помощью методов GCMC или NLDFT [13]. Оба метода используют фундаментальные молекулярные параметры, характеризующие взаимодействие газ-газ и газтвердое тело в адсорбционной системе. Затем экспериментальные изотермы сорбции описывают набором теоретических изотерм, что позволяет по-

Образец	<i>С</i> _{кр} , %	τ ₃ , нс	<i>R</i> ₃ , Å	<i>I</i> ₃ , %	τ_4 , HC	<i>R</i> ₄ , Å	$I_4, \%$	Р(О ₂), Б [7, 9]
РРО-2 аморф	0	2.5 ± 0.02	3.28	27.78 ± 0.10	_	_	—	14.3
PPO-2	57.9	2.42 ± 0.11	3.21	20.35 ± 1.30	5.30 ± 0.33	4.89	9.87 ± 1.47	26
PPO-1	62.4	2.17 ± 0.07	3.01	12.43 ± 0.38	6.10 ± 0.14	5.23	10.67 ± 0.48	44
PPO-4	69.2	1.85 ± 0.09	2.71	8.74 ± 0.28	6.06 ± 0.07	5.22	18.29 ± 0.39	59

Таблица 1. Параметры спектров времен жизни *орто*-позитрония в образцах РРО, соответствующие радиусы пор R_i , степень кристалличности $C_{\kappa p}$ и проницаемость (*P*, Баррер) по кислороду

Таблица 2. Сравнение позитронных данных для PEI (ширины пор D_3 , D_4) с данными по проницаемости, измеренными $P(O_2)_{изм}$ и полученными $(P(O_2)_{оценка})$ [7, 9] метом модифицированных групповых вкладов

Образец РЕІ	τ ₃ , нс	$I_{3}, \%$	τ ₄ , нс	$I_4, \%$	<i>D</i> ₃ , нм	<i>D</i> ₄ , нм	$ au_4 imes I_4$	Р(О ₂) _{изм} , Баррер	Р(О ₂) _{оцен} , Баррер
6FODT-ODPA	1.6	6.2	5.7	1.4	0.50	1.04	7.8	3.4	8.89
-BTDA	2.0	3.0	_	_	0.58	_	_	3.0	7.71
-6FDA	1.0	4.1	2.7	4.7	0.32	0.70	12.6	12.0	21.6
-BPADA	1.2	7.7	2.6	17.5	0.40	0.68	45	3.9	6.62
"Каптон"	_	_	_	_	_	0.69		0.825	
						сорб			
PIM-1*	1.2	8.2	6.3	17.8	0.40	1.08	112	530-	-590

Данные для известного мембранного материала PIM-1 даны для сравнения.

лучить распределение пор по размерам. Однако такое применение к полимерным мембранным материалам описано ранее, по нашим данным, лишь в работах Вебера [14] и Эльмехальми [15].

ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ

Результаты экспериментов по образцам пленок полифениленоксидов РРО представлены в табл. 1 и на рис. 1, 2. Данные по степени кристалличности ($C_{\rm kp}$), проницаемости $P(O_2)$ и аннигиляционные характеристики (т₄, *I*₄) явно коррелируют. Аморфизованная пленка (PPO-2)_{аморф} с $I_4 = 0$ отличается от всех остальных. Она меньше всех сорбирует и, следовательно, обладает наименьшей пористостью. Проницаемость растет с ростом степени кристалличности. Это – специфическая, уникальная особенность РРО, выявляемая позитронным и сорбционным методами, т.к. обычно аморфные материалы обладают большей пористостью, чем аморфно-кристаллические [7]. Разница данных PALS и LTGS состоит в том, что в аморфизованном образце полностью отсутствует вторая *орто*-позитрониевая компонента (τ_4 , I_4) (табл. 1), в то время как по сорбционным данным распределение все же остается бимодальным (рис. 2).

Результаты позитронных и сорбционных измерений для PEI на основе диаминов (формулы на рис. 3) приведены в табл. 2 и на рис. 4. В таблицу включены также данные по проницаемости соответствующих мембран, полученные авторами [7, 9] в результате соответствующих измерений и путем расчета по теории групповых вкладов. Как видно из отмеченных цифр (табл. 2), теория и эксперимент (максимум проницаемости для 6ODT-6FDA) хорошо согласуются друг с другом. В то же время позитронные и сорбционные данные с ними не согласуются.

Наконец, к этому нужно прибавить результат по еще одному полиимиду, а именно "Каптону", в котором методом аннигиляции позитронов поры вообще не наблюдаются. Это видно из полного отсутствия долгоживущих компонент в этом образце (І₃ и І₄ равны нулю). Полученный результат в аннигиляции позитронов не является новым. Именно поэтому из пленки "Каптона" иногда делают покрытия для радиоактивных источников позитронов. Однако новым является сопоставление с сорбционными данными для СО2, согласно которым микропоры в "Каптоне" присутствуют. Причем, МС и DFT методы обработки дают объем пор 0.038 см³/г. Удельная поверхность 107.21 м²/г, ширина пор 0.686 нм. Проницаемость "Каптона" по кислороду наименьшая для исследованных нами материалов: 0.825 Баррер. Впервые для МС метода распределение оказывается унимодальным (рис. 5).

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Несомненным результатом данного исследования является наблюдение для большинства РРО и РЕІ образцов мультимодального (в данном

Рис. 4. Распределение свободного объема по размерам пор (ширина *d*, нм) по методу низкотемпературной сорбции диоксида углерода для PEI на основе диамина 6FQDTBDA (-ODPA, -6FDA, -BPADA). D₃- и D₄-положения пиков (ширины пор) распределения по позитронным данным.

Рис. 5. Распределение пор по размерам в "Каптоне" по модели Монте-Карло. Объем пор = $0.038 \text{ см}^3/\text{г}$; удельная поверхность 107.207 м²/г; ширина пор 0.686 нм; проницаемость по кислороду 0.825 Баррер.

случае бимодального) распределения микропор по размерам как по позитронным, так и по сорбционным данным. Это можно рассматривать в качестве подтверждения представлений о гетерогенности и "локальной жесткости" структуры [1, 18] изученных полимеров. В некоторых случаях есть разногласия по числу компонент. Например, в (PPO-2)_{аморф} и 6FODT-BTDA (табл. 1, 2) по данным PALS распределение унимодально (наблюдается одно *орто*-позитрониевое время жизни τ_3 , соответствующее одному среднему радиусу пор R_3). В то же время по данным LTGS распределение бимодально (рис. 4). Такое несоответствие можно понять, если учесть, что локализация ато-

Рис. 6. Отношение CDB спектров "Каптон"/полиэтилен – кривая (1), PEI 304/PE – (2), PE/PE – (3) [16].

ма позитрония (нелокализованный атом "квазипозитрония" [6]) в поре требует конечного времени, тем большего, чем меньше концентрация пор. При этом увеличивается вероятность аннигиляции в нелокализованном состоянии или в порах меньшего размера. При этом позитроний "не видит" поры второй группы. Это обстоятельство рассмотрено в работе [6], где диффузионная длина нелокализованного позитрония L_{Ps} сравнивается со средними расстояниями между порами, отнесенными к первой и второй *орто*-позитрониевым компонентам (I_3 , τ_3 и I_4 , τ_4). Тогда можно записать условие наблюдения методом PALS только одной компоненты I_3 , τ_3 при наличии двух сорбционных пиков:

$$\left[v_3 / (\rho V_3) \right]^{1/3} < L_{P_s} < \left[v_4 / (\rho V_4) \right]^{1/3}, \tag{1}$$

где ρ — плотность полимера, V_3 и V_4 можно определить из перегиба кривой кумулятивного свободного объема [6] по сорбционным данным. Величины v_3 и v_4 — средние объемы отдельных пор первой и второй группы, найденные по положениям пиков распределений, подобных показанным на рис. 4. В работе [6] на примере полинорборненов показано, что соотношение (1) вполне может быть удовлетворено при характерных для коэффициентов диффузии нелокализованного позитрония значениях 10^{-5} — 10^{-4} см²/с.

Есть еще одно обстоятельство, которое влияет на представление о пористости ряда полимеров по позитронным данным. Оно проявляется на примере полиимидов, в особенности в "Каптоне", по допплеровскому *уширению* аннигиляционной линии, и состоит в конкурирующем с образованием позитрония эффекте аннигиляции позитронов на электроотрицательных атомах кислорода, сопряженных с ароматическими циклами или в пятичленном цикле "Каптона" (рис. 3). В результате в последнем случае позитроний вообще отсутствует (I_3 , $I_4 = 0$), хотя проницаемость "Каптона" по кислороду $P(O_2)^{Capt} = 0.825$ Баррер существенно выше, чем, например, для полиметилметакрилата ($P(O_2)^{PMMA} = 0.1$ Баррер), где интенсивность образования *орто*-позитрония $I_3 = 25\%$.

Величина уширения определяется характерным импульсом P_L валентных электронов атомов, на которых происходит аннигиляция. Уширение выявляется методом совпадения сигналов от двух допплеровских детекторов аннигиляционной линии (Coincidence Doppler Broadening Spectrum CDBS) по отношению спектра CDB исследуемого вещества к спектру CDB некоторого стандарта, в состав молекулы которого кислород не входит. Так на рис. 6 показано отношение спектров CDB "Каптона" и полиимида PI304 [16, 19] к полиэтилену. Аннигиляция на электронах кислорода проявляется по интенсивному вкладу отношения CDB в области значений импульса $P_L = (10-25) \times 10^{-3} m_0 c$, где m_0 — масса электрона.

В результате (табл. 2) получается расхождение в выборе образца PEI с максимальной пористостью (проницаемостью) по позитронным данным (параметр $\tau_4 \times I_4$, -DPADA) с одной стороны и из непосредственных измерений проницаемости ($P(O_2)_{изм} = 12$ Баррер, -6FDA) – с другой.

Наконец, очевидно, что сорбционный метод (LTGS) свободен от характерных для позитронного метода PALS осложняющих побочных эффектов ингибирования образования позитрония и возможной аннигиляции до локализации в поре. В этом смысле LTGS оказывается более чувствительным. Например, в "Каптоне" PALS не чувствует пор вообще, тогда как LTGS методом они наблюдаются (рис. 5).

Однако в LTGS не все ясно с количественной обработкой данных. Использование методов Монте-Карло (GCMC) и функционала плотности (NLDFT) из комплекса программного обеспечения [13] для микропор приводит к неоднозначным результатам. Первый вариант впервые дает унимодальное распределение (рис. 5), в то время как в случае NLDFT распределение для "Каптона" бимодально (подобно рис. 4). Здесь необходимы дальнейшие исследования.

выводы

1. В работе методами PALS и LTGS (CO₂) исследовано распределение микропор по размерам в аморфнокристаллическом полифенилен оксиде (PPO) и в аморфных полиэфиримидах (PEI).

2. Для PPO оба метода выявляют необычный эффект — более рыхлую микроструктуру (более крупные свободные микрообъемы) кристаллической фазы по сравнению с аморфной фазой и ее влияние на проницаемость материала.

3. Общей особенностью распределения микропор по размерам в исследованных материалах по данным PALS и LTGS является мультимодальность (бимодальность) распределения пор по размерам, что соответствует представлениям о "локальной жесткости" (микрогетерогенности) мембранных материалов.

4. Каждый из методов имеет определенные особенности, которые могут влиять на оценки пористости. В случае PALS это конечное время, необходимое для локализации атома позитрония в поре, а также возможное подавление образования атома позитрония полярными группами в полимерной цепи ("Каптон"). В случае LTGSприближенный характер описания изотерм сорбции в полимерах наборами стандартных изотерм в методах функционала плотности (NLDFT) и Монте-Карло (GCMC). Комбинация методов полезна для выявления корректного описания распределения.

СПИСОК ЛИТЕРАТУРЫ

- 1. Budd P.M., McKeown N.B., Fritsch D., Yampolskii Yu.P., Shantarovich V.P. In: Membrane Gas Separation. Ed. by Y. Yampolskii and B. Freeman. 2010. P. 29.
- Mogensen O.E. 1995. Positron Annihilation in Chemistry. Eds: V.I. Goldanskii, E.P. Schaeffer. (Berlin-Heidelberg-New York: Springer-Verlag) 66.
- Rudel M., Krause J., Ratzke K., Faupel M., Yampolskii Yu., Shantarovich V., Dlubek G. // Macromolecules. 2008. V. 41. P. 788.
- Gun'ko V.M., Leboda R., Skubiszewska-Zieba, Gawdzik B., Charmas B. // Applied Surface Science. 2005. V. 252. P. 612.
- 5. Шантарович В.П., Бекешев В.Г., Бермешев М.В., Алентьев Д.А., Густов В.В., Белоусова Э.В., Кевдина И.Б., Новиков Ю.А. // Химия высоких энергий. 2019. Т. 53. № 4. С. 267-273.
- 6. Шантарович В.П., Бекешев В.Г., Кевдина И.Б., Бермешев М.В., Возняк А.И. // Химия высоких энергий. 2021. Т. 55. № 1. С. 81-87.
- Alentiev A. Yu., Levin I.S., Buzin V.I., Belov N.A., Nikiforov R.Yu., Chirkov S.V., Blagodatskikh I.V., Kechekyan A.S., Bekeshev V.G., Ryzhikh V.E., Yampolskii Yu.P. // Polymer. 2021. V. 226. 123804.
- 8. Alentiev A.Yu., Levin I.S., Belov N.A., Nikiforov R.Y., Chirkov S.V., Bezgin D.A., Ryzhikh V.E., Kostina J.V., Shantarovich V.P., Grunin L.Y. // Polymer. 2022. V. 14. № 1.
- 9. Auriemma F., Daniel C., Golla M., Nagedra B., Rizzo P., Tarallo O., Guerra G. // Polymer. 2022. 258. 125290.
- Алентьев А.Ю., Ямпольский Ю.П., Русанов А.Л., Лихачев Д.Ю., Лазаков Г.В., Комарова Л.Г., Пригожина М.П. // Высок. омол. соед. Сер. А. 2003. Т. 45. № 9. С. 1566.
- Weber M.H., Lynn K.G. Positron Porosimetry. In: Principles and Applications of Positron and Positronium Chemistry. Eds. Jean Y.C., Mallon P.E., Schrader D.M. New Jersey-London-Singapore–Hong ader D.M. New Jersey Kong: World Scientific, 2003. P. 167–211.
- Shantarovich V.P. // J. Polym. Sci. Part B: Polym. Phys. 2008. V. 46. P. 2485.
- 13. NOVAWIN2 V. 2. 1. Operating Manual / Quantachrome Instruments. 2004.
- Weber J., Najying Du, Guiver M.D. // Macromolecules. 2011. V. 44. P. 1763–1767.
- 15. Elmehalmey W.A., Azzam R.A., Hassan Y.S., Alkordi M.H., Madkour T.M. // ACS OMEGA 2018. V. 3. P. 2757.
- Shantarovich V.P., Suzuki T., He C., Gustov V.W. // Radiation Physics and Chemistry. 2003. V. 67. P. 15–23.
- Nagai Y., Nonaka T., Hasegava M., Kobayashi Y., Wang C.L., Zheng W., Zhang C. // Phys. Rev. B. 1999.
 V. 60. № 17. P. 11863.
- Токарев А.В., Бондаренко Г.Н., Ямпольский Ю.П. // Высокомолек. соед. Сер. А. 2007. Т. 49. С. 1510– 1523.
- Shantarovich V.P., Suzuki T., He C., Ito Y., Yampolskii Yu.P., Alentiev A.Yu. // Rad. Phys. and Chem. 2005. V. 73. № 1. P. 45–53.