———— ФОТОНИКА ——

УДК 544.174.2;544.5

ЗАРЯДОВЫЕ ХАРАКТЕРИСТИКИ ТИТАНОЦЕНА ДИКАРБОРАНИЛА ПО МЕТОДУ МАЛЛИКЕНА

© 2023 г. Г. В. Лукова^{а,} *, А. А. Милов^b

^а Федеральное государственное бюджетное учреждение науки Федеральный исследовательский центр проблем химической физики и медицинской химии Российской академии наук, проспект Академика Семенова, 1, Черноголовка, Московская обл., 142432 Россия

^b Федеральное государственное бюджетное учреждение науки Федеральный исследовательский центр Южный научный центр Российской академии наук, проспект Чехова, 41, Ростов-на-Дону, 344006 Россия

*E-mail: gloukova@mail.ru

Поступила в редакцию 11.06.2023 г. После доработки 08.07.2023 г. Принята к публикации 14.07.2023 г.

Впервые систематически — 124 методами разного уровня теории — оценены зарядовые характеристики металлоорганического комплекса, обладающего излучательным состоянием ПЗЛМ (на примере Ti($\eta^5:\eta^1$ -CpCMe₂CB₁₀H₁₀C)₂), и сделан вывод о достоверности результатов расчета в приближении Малликена.

Ключевые слова: титаноцен, карборанил, популяционный анализ Малликена, перенос заряда с лиганда на металл, теория функционала плотности, метод Хартри—Фока **DOI:** 10.31857/S0023119323060104, **EDN:** RUVRII

Металлоценовые комплексы 4Б группы являются перспективными прекурсорами в катализаторах органических синтезов [1], для фотолюминофоров и электролюминофоров, фотохимических сенсоров, фосфоресцентных и полифункциональных материалов [2]. Это класс металлоорганических соединений, обладающий самыми редкими и наименее изученными электронно-возбужденными состояниями с переносом заряда с лиганда на металл (ПЗЛМ), в том числе уникальными фосфоресцентными [2–9].

Определение заселенностей молекулярных орбиталей и зарядовых характеристик иона(ов) металла и лигандов в координационных соединениях — неотъемлемая задача в фотонике состояний с переносом заряда, в частности, ПЗЛМ, которая не может быть решена только экспериментально. Моделирование электронно-структурных свойств металлоорганических комплексов является сложной, порой нерешаемой задачей. В последнее время нами продемонстрирована [10, 11] возможность моделирования спектров ПЗЛМ и геометрии структурно сложного d^0 -металлоцена на примере титаноцена с карборанильными σ-лигандами $C_2B_{10}H_{10}$: Ti(η^5 : η^1 -CpCMe₂CB₁₀H₁₀C)₂ (Cp = C_5H_5 – циклопентадиенил). В настоящей работе впервые систематически – 124 методами разного уровня теории – оценены зарядовые характеристики металлоорганического комплекса, обладающего излучательным состоянием ПЗЛМ (на примере $Ti(\eta^5:\eta^1-CpCMe_2CB_{10}H_{10}C)_2$, рис. 1) и сделан вывод о достоверности результатов расчета в приближении Малликена.

В случае переходных металлов 4 группы максимальным набором квантово-химических методов могут быть рассчитаны именно соединения титана. Выбор базисного набора и выбор квантово-механического гамильтониана представляют собой две существенных проблемы. В настоящей работе расчеты проводились методами ab initio Хартри-Фока (HF) и теории функционала плотности (DFT) с использованием функционалов, ранее показавших высокую эффективность [2, 8-13], при помощи программных комплексов GAUSSIAN 09 [14] и GAUSSIAN 16 [15]. Использованы следующие функционалы: ВЗЦҮР, САМ-B3LYP, PBE0, TPSSh, LC-ωPBE, M06, M06-L, M06-2X, M06-HF, M11, M11-L, N12 – и базисные наборы: 6-311++G**. 6-311G**, OZVP. 6-31++G**. 6-31+G(3df, 3pd), 6-31+G*. 6-31G(3df, 3pd), 6-31G(3df,p), 6-31G**, 3-21G (3-21G*), aug-ccpVTZ, cc-pVTZ, cc-pVDZ, TZVP, DGDZVP, CEP-121G, SDD и LANL2DZ. Все результаты получены для структур, соответствующих минимумам на поверхностях потенциальной энергии.

В табл. 1 продемонстрированы электрические дипольные моменты, а также зарядовые характеристики титаноцена (заряды оценены в прибли-

Рис. 1. Оптимизированная структура титаноцена дикарборанила в S_0 -состоянии (B3LTP/QZVP).

жении Малликена [16]). Величины электрического дипольного момента, полученные разными квантово-химическими методами, хорошо согласуются между собой и, в основном, лежат в диапазоне 10-11 Дебай, что соответствует весьма полярной молекуле и не характерно для металлоорганических комплексов [17]. При этом анализ Малликена с использованием этих же 124 методов показывает большую вариацию величин зарядов на ионе титана и лигандах (циклопентадиенилах и карборанилах) как в положительном, так и отрицательном диапазоне при изменении базиса (преимущественно) или гамильтониана. Между тем (в т.ч. согласно электрохимическим данным [2, 3, 5]), заряд на металле в металлоценовых комплексах 4 группы лежит в диапазоне от +1 до +2.5, и лиганды имеют отрицательный заряд ≥-1.

Анализ заселенностей орбиталей по Малликену проводится при выдаче результатов любого расчета по основным квантово-химическим программам (в т.ч. [14, 15]). Согласно данным табл. 1, подход Малликена дает очень приближенную оценку распределения зарядов по металлоорганической молекуле: получаемые значения очень сильно зависят от используемого при расчете метода и, главным образом, базисного набора. Недостатки малликеновского анализа заселенностей проявились, в частности, при использовании популярных базисных наборов с добавленными диффузными волновыми функциями: корреляционно-согласованного базиса Даннинга aug-сс-рVT и базисов Попла: 6-311++G**, 6-31++G**, 6-31+G(3df,3pd), 6-31+G*. Кроме того, недостоверные результаты получены методами с базисными наборами, не содержашими диффузные функции: корреляционно-согласованным базисом Даннинга сс-рVDZ, а также TZVP, DGDZVP и всеми базисами, где внутренние орбитали учитываются в виде определенного псевдопотенциала (CEP-121G, SDD и LANL2DZ). Использование этих базисных наборов приводит к очень существенному занижению заряда на металле (вплоть до отрицательных значений), а также к завыщению заряда на лигандах-циклопентадиенилах (вплоть до значительных положительных значений), что противоречит представлениям о координационных соединениях и делает три четверти из 124 популярных методов непригодными для анализа по Малликену.

Все использованные HF и DFT-методы на основе базисных наборов: QZVP (за исключением LC- ω PBE/QZVP, M06/QZVP и M11/QZVP) и Попла 6-311G** и 3-21G (3-21G*) – предоставили относительно достоверную зарядовую характеристику: заряд на катионе титана варьируется от +1.1 до +2.2 и отрицательные заряды на лигандах >-1 (30 методов, табл. 1). Примечательно, что HF и DFT-методы, использующие малый базис

	2				
Метод	μ _g , Дебай	<i>q</i> (M)	q(Cp)	q(Carb)	<i>q</i> (>CMe ₂)
HF/QZVP	11.796	+1.430	-0.403	-0.186	-0.125
B3LYP/QZVP	10.523	+1.921	-0.743	-0.021	-0.194
CAM-B3LYP/QZVP	10.882	+1.538	-0.632	+0.103	-0.241
PBE0/QZVP	10.485	+1.409	-0.400	-0.088	-0.218
LC-wPBE/QZVP	11.038	+0.880	-0.123	-0.104	-0.213
TPSSh/QZVP	10.187	+1.063	-0.096	-0.347	-0.088
M06/QZVP	10.609	-0.117	+0.343	-0.071	-0.214
M11/QZVP	10.635	+0.132	+0.984	-0.931	-0.116
HF/6-311++G**	11.837	+0.404	-0.091	-0.725	+0.614
B3LYP/6-311++G**	10.541	-0.281	+0.254	-0.480	+0.365
PBE0/6-311++G**	10.497	+0.490	+0.167	-0.795	+0.381
HF/6-311G(3df,3pd)	11.855	+1.665	-0.038	+0.102	-0.898
HF/6-311G**	11.766	+1.641	-0.110	-0.758	+0.046
B3LYP/6-311G**	10.535	+1.315	-0.076	-0.663	+0.082
CAM-B3LYP/6-311G**	10.827	+1.323	-0.069	-0.701	+0.109
PBE0/6-311G**	10.457	+1.293	-0.026	-0.675	+0.054
TPSSh/6-311G**	10.179	+1.255	-0.035	-0.695	+0.102
M06/6-311G**	10.482	+1.284	-0.025	-0.684	+0.066
M06-L/6-311G**	10.004	+1.356	-0.057	-0.641	+0.020
M06-2X/6-311G**	10.479	+1.445	-0.099	-0.684	+0.062
M06-HF/6-311G**	9.977	+1.511	-0.179	-0.811	+0.235
M11/6-311G**	10.377	+1.472	-0.116	-0.733	+0.115
N12/6-311G**	9.904	+1.109	+0.005	-0.618	+0.060
HF/6-31++G**	11.886	-2.229	+0.548	+0.350	+0.218
B3LYP/6-31++G**	10.749	-0.950	+0.706	-0.167	-0.063
CAM-B3LYP/6-31++G**	11.014	-1.032	+0.752	+0.024	-0.260
HF/6-31+G*	11.915	-2.291	+0.430	+0.748	-0.033
B3LYP/6-31+G*	10.805	-1.117	+0.506	+0.041	+0.013
CAM-B3LYP/6-31+G*	11.064	-1.337	+0.630	+0.082	-0.043
HF/6-31G**	11.864	+1.073	-0.026	-0.680	+0.171
B3LYP/6-31G**	10.741	+0.604	+0.077	-0.474	+0.095
CAM-B3LYP/6-31G**	10.980	+0.527	+0.104	-0.477	+0.110
PBE0/6-31G**	10.700	+0.656	+0.078	-0.520	+0.115
TPSSh/6-31G**	10.529	+0.657	+0.079	-0.541	+0.132
M06/6-31G**	10.812	+0.625	+0.084	-0.514	+0.117
M11/6-31G**	10.499	+0.703	+0.029	-0.505	+0.124
N12/6-31G**	9.945	+0.419	+0.136	-0.459	+0.113
HF/aug-cc-pVTZ	11.802	-0.765	+0.190	-0.467	-0.275
B3LYP/aug-cc-pVTZ	10.527	+1.351	-0.688	+0.386	-0.373
PBE0/aug-cc-pVTZ	10.492	+0.333	-0.297	+0.153	-0.023
TPSSh/aug-cc-pVTZ	10.201	-0.417	+0.046	+0.330	-0.169
HF/cc-pVTZ	11.822	+0.531	+0.150	-0.536	+0.124
B3LYP/cc-pVTZ	10.667	+0.575	+0.102	-0.440	+0.050
CAM-B3LYP/cc-pVTZ	10.923	+0.413	+0.170	-0.447	+0.071

Таблица 1. Зарядовые характеристики (по Малликену) и электрический дипольный момент $Ti(\eta^5:\eta^1-CpCMe_2CB_{10}H_{10}C)_2$

Таблица 1. Продолжение

Метод	μ _g , Дебай	<i>q</i> (M)	q(Cp)	q(Carb)	<i>q</i> (>CMe ₂)
PBE0/cc-pVTZ	10.658	+0.239	+0.215	-0.390	+0.056
TPSSh/cc-pVTZ	10.456	+0.024	+0.255	-0.395	+0.127
HF/cc-pVDZ	11.946	+0.600	+0.191	-0.524	+0.031
B3LYP/cc-pVDZ	10.773	-0.244	+0.322	-0.219	+0.019
CAM-B3LYP/cc-pVDZ	11.036	-0.386	+0.371	-0.219	+0.039
PBE0/cc-pVDZ	10.728	-0.134	+0.331	-0.284	+0.019
TPSSh/cc-pVDZ	10.508	-0.181	+0.339	-0.292	+0.043
HF/TZVP	11.891	-0.059	+0.001	-0.927	+0.954
B3LYP/TZVP	10.567	-0.108	+0.114	-0.782	+0.722
CAM-B3LYP/TZVP	10.869	-0.135	+0.205	-0.780	+0.642
PBE0/TZVP	10.554	-0.239	+0.189	-0.899	+0.828
LC-@PBE/TZVP	11.080	-0.237	+0.347	-0.863	+0.634
TPSSh/TZVP	10.256	-0.187	+0.181	-0.959	+0.873
M06/TZVP	10.710	-0.394	+0.261	-0.765	+0.702
M06-L/TZVP	10.339	-0.054	-0.180	-1.099	+1.308
M06-2X/TZVP	10.616	+0.035	+0.196	-0.761	+0.548
M06-HF/TZVP	10.108	+0.595	+0.642	-0.653	-0.286
M11/TZVP	10.556	+0.216	+0.282	-0.673	+0.282
M11-L/TZVP	10.008	+0.054	-0.195	-1.163	+1.331
HF/DGDZVP	11.756	+0.737	+0.216	-0.570	-0.014
B3LYP/DGDZVP	10.667	+0.061	+0.401	-0.423	-0.010
CAM-B3LYP/DGDZVP	10.976	-0.044	+0.428	-0.423	+0.020
TPSSh/DGDZVP	10.337	+0.201	+0.393	-0.487	-0.007
PBE0/DGDZVP	10.570	+0.213	+0.403	-0.473	-0.036
LC-@PBE/DGDZVP	11.137	+0.000	+0.464	-0.478	+0.012
M06/DGDZVP	10.680	+0.199	+0.369	-0.423	-0.044
M06-HF/DGDZVP	10.385	-0.032	+0.248	-0.471	+0.239
M06-2X/DGDZVP	10.644	+0.271	+0.283	-0.456	+0.039
M06-L/DGDZVP	10.146	+0.706	+0.232	-0.448	-0.137
M11/DGDZVP	10.516	+0.241	+0.260	-0.421	+0.041
M11-L/DGDZVP	9.537	+1.037	+0.081	-0.506	+0.049
N12/DGDZVP	10.085	-0.167	+0.545	-0.481	+0.022
HF/3-21G	10.843	+2.072	-0.348	-0.749	+0.060
B3LYP/3-21G	10.179	+1.723	-0.261	-0.616	+0.014
B3LYP/3-21G*	10.221	+1.722	-0.263	-0.614	+0.015
CAM-B3LYP/3-21G	10.368	+1.684	-0.253	-0.619	+0.031
PBE0/3-21G	10.130	+1.848	-0.292	-0.655	+0.022
PBE0/3-21G*	10.171	+1.847	-0.291	-0.654	+0.022
LC-@PBE/3-21G*	10.425	+1.712	-0.252	-0.661	+0.058
TPSSh/3-21G	9.917	+1.820	-0.276	-0.664	+0.031
M06/3-21G	10.581	+1.863	-0.301	-0.669	+0.039
M06-L/3-21G*	10.202	+2.194	-0.364	-0.749	+0.017
M06-2X/3-21G*	10.070	+1.711	-0.278	-0.631	+0.053
M06-HF/3-21G*	9.320	+1.241	-0.189	-0.539	+0.107
M11/3-21G	9.891	+1.714	-0.264	-0.674	+0.080

ХИМИЯ ВЫСОКИХ ЭНЕРГИЙ том 57 № 6 2023

Таблица 1. Окончание

Метод	μ _g , Дебай	<i>q</i> (M)	q(Cp)	q(Carb)	<i>q</i> (>CMe ₂)
N12/3-21G	9.392	+1.706	-0.250	-0.618	+0.013
HF/CEP-121G	11.866	-0.374	+0.745	-0.865	+0.306
B3LYP/CEP-121G	10.821	-1.002	+0.787	-0.669	+0.382
CAM-B3LYP/CEP-121G	11.099	-1.188	+0.874	-0.684	+0.404
PBE0/CEP-121G	10.946	-0.914	+0.900	-0.789	+0.345
LC-wPBE/CEP-121G	11.416	-1.241	+0.995	-0.775	+0.401
TPSSh/CEP-121G	10.807	-1.053	+0.900	-0.748	+0.375
M06/CEP-121G	11.000	-0.979	+0.905	-0.837	+0.421
M06-2X/CEP-121G	10.875	-0.841	+0.797	-0.734	+0.359
M06-HF/CEP-121G	10.861	-1.525	+0.780	-0.411	+0.394
M06-L/CEP-121G	10.631	-0.628	+0.878	-0.950	+0.389
M06-2X/CEP-121G	10.875	-0.841	+0.797	-0.734	+0.359
M11/CEP-121G	10.798	-0.819	+0.790	-0.808	+0.428
M11-L/CEP-121G	10.401	+0.106	+0.644	-0.893	+0.195
N12/CEP-121G	10.625	-1.433	+1.000	-0.710	+0.425
HF/SDD	11.877	+0.502	+0.512	-0.825	+0.063
B3LYP/SDD	11.071	+0.094	+0.595	-0.789	+0.148
CAM-B3LYP/SDD	11.340	-0.108	+0.662	-0.782	+0.174
PBE0/SDD	11.153	+0.274	+0.637	-0.880	+0.105
TPSSh/SDD	10.996	+0.201	+0.625	-0,858	+0.133
M06/SDD	11.190	+0.309	+0.594	-0.894	+0.143
M06-2X/SDD	11.069	+0.207	+0.571	-0.843	+0.168
M06-HF/SDD	10.820	-0.584	+0.586	-0.557	+0.263
M06-L/SDD	10.805	+0.928	+0.479	-1.007	+0.064
M11/SDD	10.765	+0.141	+0.543	-0.813	+0.200
N12/SDD	10.701	+0.129	+0.724	-0.973	+0.184
HF/LANL2DZ	11.836	+0.317	+0.441	-0.701	+0.101
B3LYP/LANL2DZ	11.045	+0.282	+0.438	-0.713	+0.134
CAM-B3LYP/LANL2DZ	11.331	+0.109	+0.487	-0,704	+0.161
PBE0/LANL2DZ	11.103	+0.387	+0.487	-0.793	+0.112
LC-ωPBE/LANL2DZ	11.582	+0.113	+0.554	-0.767	+0.158
TPSSh/LANL2DZ	10.945	+0.367	+0.474	-0.795	+0.137
M06/LANL2DZ	11.131	+0.442	+0.454	-0.805	+0.130
M06-2X/LANL2DZ	11.003	+0.290	+0.425	-0.752	+0.179
M11/LANL2DZ	10.661	+0.319	+0.415	-0.768	+0.193

Carb — карборанил C₂B₁₀H₁₀. >CMe₂ — мостик между лигандами: Ср и C₂B₁₀H₁₀. В ряде случаев суммарный заряд молекулы отличается от нуля, что связано с округлением малликеновских зарядов на соответствующих молекулярных фрагментах.

3-21G, обеспечили достоверную зарядовую оценку в приближении Малликена.

Таким образом, в настоящей работе осуществлены сравнение различных квантово-химических методов для максимально широкого описания электронного распределения в сложном металлоорганическом соединении и оценка чувствительности рассчитанных зарядов к изменениям в (*i*) выборе метода анализа (в данном случае рассмотрен *подход Малликена* [16] *как исторически наиболее важный метод*); (*ii*) выборе базисного набора; (*iii*) выборе квантово-механического гамильтониана; (*iv*) молекулярной структуре (в случае иного металлокомплекса оптимальными могут оказаться другие методы расчета). Систематический анализ заселенностей орбиталей по Малликену дает очень противоречивые результаты в отношении металлоорганического комплекса, при этом добавление диффузных волновых функций в базисные наборы приводит к существенному ухудшению результатов. В серии из 124 популярных методов (HF, DFT) расчеты с использованием высокого базиса QZVP и базисов Попла 6-311G** и 3-21G (3-21G*) обеспечили приемлемый анализ зарядовых характеристик в рамках традиционного подхода Малликена. Целевой титаноцен дикарборанил в S_0 -состоянии имеет большой электрический дипольный момент, редкий для металлоорганических молекул.

ИСТОЧНИКИ ФИНАНСИРОВАНИЯ

Работа выполнена в соответствии с госзаданием 0089-2019-0003 (№ госрегистрации АААА-А19-119070790003-7), госзаданием ЮНЦ РАН 01201354239 и работами НОЦ по химии высоких энергий химического факультета МГУ.

СПИСОК ЛИТЕРАТУРЫ

- Metallocene Complexes as Catalysts for Olefin Polymerization, Ed. Alt H.G. // Coord. Chem. Rev. 2006. V. 250. № 1–2.
- Loukova G.V. // "Springer Handbook of Inorganic Photochemistry". Chapter 19 / Eds.: D. Bahnemann, A. O. T. Patrocinio. Springer Handbooks. 2022. P. 459.

- 3. *Loukova G.V.* // "Organometallic Compounds: Preparation, Structure and Properties". Chapter 4 / Ed.: *H.F. Chin.* N. Y.: Nova Sci. Pub. 2010. P. 159.
- Loukova G.V., Smirnov V.A. // Chem. Phys. Lett. 2000.
 V. 329. № 5-6. P. 437.
- Loukova G.V. // Chem. Phys. Lett. 2002. V. 353. № 3–4. P. 244.
- 6. Loukova G.V., Huhn W., Vasiliev V.P., Smirnov V.A. // J. Phys. Chem. A. 2007. V. 111. № 20. P. 4117.
- 7. Loukova G.V., Starodubova S.E., Smirnov V.A. // J. Phys. Chem. A. 2007. V. 111. № 43. P. 10928.
- Loukova G.V., Vasiliev V.P., Milov A.A., Smirnov V.A., Minkin V.I. // J. Photochem. Photobiol. A: Chem. 2016. V. 327. P. 6.
- 9. Loukova G.V., Milov A.A., Vasiliev V.P., Minkin V.I. // Phys. Chem. Chem. Phys. 2016. V. 18. P. 17822.
- 10. Лукова Г.В., Милов А.А., Васильев В.П., Минкин В.И. // Изв. АН. Сер. хим. 2020. С. 218.
- 11. *Лукова Г.В., Милов А.А. //* Химия высоких энергий. 2022. Т. 56. С. 81.
- 12. Tsipis A.C. // Coord. Chem. Rev. 2014. V. 272. P. 1.
- 13. Korth M. // Angew. Chem. Int. Ed. 2017. V. 56. P. 5396.
- Frisch M.J., Trucks G.W., Schlegel H.B. et al. // GAUSSIAN 09, Revision D.01; Gaussian Inc., Wallingford CT, 2013.
- Frisch M.J., Trucks G.W., Schlegel H.B. et al. // GAUSSIAN 16, Revision C.01, Gaussian Inc., Wallingford CT, 2016.
- 16. Mulliken R.S. // J. Chem. Phys. 1955. V. 23. P. 1833.
- 17. Гарновский А.Д., Осипов О.А., Минкин В.И. // Успехи химии. 1968. Т. XXXVII. № 10. С. 1782.