—— ПЛАЗМОХИМИЯ ——

УДК 544.43

ЦЕПНОЕ ОКИСЛЕНИЕ ГИДРОХИНОНА ВОДОЙ, АКТИВИРОВАННОЙ ИМПУЛЬСНЫМ ИЗЛУЧЕНИЕМ ГОРЯЧЕЙ ПЛАЗМЫ

© 2023 г. И. М. Пискарев*

Научно-исследовательский институт ядерной физики им. Д.В. Скобельцына, Московский государственный университет им. М.В. Ломоносова (НИИЯФ МГУ), Ленинские горы, 1, стр. 2, ГСП-1, Москва, 119234 Россия

**E-mail: i.m.piskarev@gmail.com* Поступила в редакцию 02.02.2023 г. После доработки 07.07.2023 г. Принята к публикации 14.07.2023 г.

Исследовано взаимодействие гидрохинона с водой, активированной импульсным излучением горячей плазмы. В реакциях гидрохинона с продуктами, накопившимися в воде за время облучения (азотистая и пероксиазотистая кислота), происходит цепное окисление гидрохинона до бензохинона. Анализируется механизм цепного окисления. Исследовалось разложение гидрохинона холодной плазмой коронного электрического разряда (радикалами OH[•]). Под действием коронного разряда бензохинон не образуется, гидрохинон сразу разлагается на низкомолекулярные продукты. Рассмотренный процесс окисления гидрохинона может быть использован для создания водородных элементов на основе пары гидрохинон ↔ бензохинон.

Ключевые слова: гидрохинон, бензохинон, активированная плазмой вода, азотистая кислота, окисление, пероксиазотистая кислота

DOI: 10.31857/S002311932306013X, EDN: SFMXOM

введение

Горячая плазма при контакте с обрабатываемым объектом повреждает его, поэтому воздействовать путем инициирования химических реакций можно только дистанционно, через излучение. Под действием импульсного излучения горячей плазмы в водном растворе генерируются химически активные частицы [1]. Вода, активированная плазмой (АПВ), может быть использована как в научных, так и в прикладных исследованиях.

Исследованные нами ранее фенол и тирозин при действии импульсного излучения искрового разряда подвергаются нитрованию, и превращаются в 4-нитрофенол и 3-нитротирозин [2, 3]. Известно, что 1,4 пара-гидрохинон (H2Q) вступает в реакцию окисления, превращаясь в 1,4 пара-бензохинон (BQ), и не подвергается нитрованию в реакциях с нитросоединениями. Представляет интерес сравнить механизм реакций 1,4 пара-гидрохинона с активными частицами, образующимися в воде под действием импульсного излучения горячей плазмы, и гидроксильными радикалами, генерируемыми холодной плазмой коронного электрического разряда.

Продукт окисления 1,4 пара-гидрохинона (H2Q), 1,4 пара-бензохинон (BQ), играет большую

роль в природе. Химия и биохимия BQ рассмотрена в обзоре [5]. Окислительно-восстановительная пара H2Q \leftrightarrow BQ рассматривается как потенциальный кандидат на создание ячейки, накапливающей энергию [6]. Сам BQ восстанавливается до H2Q, поглощая водород, H2Q окисляется до BQ, отдавая водород [7, 8]. Для окисления H2Q необходим катализатор, принимающий электроны. В качестве катализатора может быть использован металл переменной валентности [9, 10]. Окисление перекисью водорода невозможно без катализатора [11]. Роль катализатора может играть NaNO₂ в кислой среде [12]. При использовании катализатора возникает задача отделения катализатора от продукта реакции.

Работа посвящена исследованию взаимодействия 1,4 пара-гидрохинона с активными частицами, образующимися в водном растворе под действием импульсного излучения горячей плазмы искрового разряда, и холодной плазмы коронного электрического разряда.

МАТЕРИАЛЫ И МЕТОДЫ

Источником импульсного излучения горячей плазмы, с помощью которого обрабатывались пробные растворы и получалась активированая

Рис. 1. Оптическая плотность А, относительные единицы, (absorbance) пробных растворов. 1 -спектр поглощения раствора гидрохинона концентрацией 40 мг/л; 2 - спектр раствора гидрохинона H2Q концентрацией 40 мг/л; 2 - спектр раствора гидрохинона H2Q концентрацией 40 мг/л сразу после обработки импульсным излучением генератора ИР10 дозой 2100 Дж; 3, 4 - спектры смеси растворов H2Q (40 мг/л, 10 мл) + + АПВ (10 мл), обработанной излучением генератора ИР10 дозами: 3 - 2100 Дж и 4 - 350 Дж на второй день после смешивания.

плазмой вода (АПВ), служил генератор искрового разряда ИР10 [1, 3]. Мощность дозы излучения составляла 0.59 Дж/с на 10 мл жидкости. Длительность импульса 100 µс, частота повторения импульсов 10 Гц. Обработка проб жидкости осуществлялась в чашке Петри диаметром 4 см, объем пробы 10 мл. Активными частицами, образующимися в жидкости под действием импульсного излучения горячей плазмы, являются радикалы

 HO'_{2} , перекись водорода, азотистая кислота и комплекс ...ONOOH/ONOO⁻... [1].

Для сравнения использовался генератор холодной плазмы коронного электрического разряда [3]. Объем обрабатываемой жидкости 50 мл, мощность дозы 1 Дж/с на 10 мл раствора. Активными частицами были гидроксильные радикалы, перекись водорода и озон.

Концентрацию продуктов определяли по спектрам поглощения: 1,4 пара-гидрохинон (H2Q): $\lambda = 288$ нм, $\varepsilon = 3453$ л(моль см)⁻¹; 1,4 парабензохинон (BQ): $\lambda = 244$ нм, $\varepsilon = 19204$ л(моль см)⁻¹; Fe³⁺ : $\lambda = 304$ нм, $\varepsilon = 2100$ л(моль см)⁻¹. Характеристики спектров определяли по калибровочным растворам. Спектры поглощения растворов измеряли спектрофотометром СФ-102 фирмы Аквилон, Россия. Использовались химически чистые реактивы и дистиллированная вода рН 6.5.

РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТА

Окисление гидрохинона продуктами, образующимися в воде под действием импульсного излучения горячей плазмы

В состав активных частиц, образующихся в воде под действием импульсного излучения горячей

плазмы, входят короткоживущие радикалы HO_2' и долгоживущие реакционноспособные продукты, обеспечивающие сохранение активности воды после прекращения действия излучения. К долгоживущим реакционноспособным продуктам относятся: азотистая кислота, время жизни которой порядка двух суток, и комплекс ...ONOOH/ONOO⁻..., распадающийся за время до 14 суток на пероксинитрит и пероксиазотистую кислоту [4]. Концентрация перекиси водорода мала, и она не играет заметной роли. Порядка 90% комплекса распадается за два дня. Корот-

коживущие радикалы HO_2 могут взаимодействовать с веществами, растворенными в воде, только в момент действия излучения. Долгоживущие соединения накапливаются в АПВ и взаимодействуют с растворенными веществами уже после окончания действия излучения.

Чтобы оценить роль радикалов HO₂ в реакции с гидрохиноном, проба раствора гидрохинона концентрацией 40 мг/л обрабатывалась непосредственно излучением плазмы генератора ИР10, и измерения спектра поглощения раствора H2Q осуществляли сразу после обработки. Спектр поглощения при дозе облучения 2100 Дж представлен на рис. 1 (кривая 2). Видно, что основной пик гидрохинона 288 нм уменьшился, появился небольшой пик бензохинона 244 нм.

Так как время жизни активных частиц составляло около двух суток и реакция с продуктами медленная [3, 4], то спектр продуктов, образовавшихся в смеси АПВ с раствором гидрохинона, измеряли через два дня после обработки. Причиной малой скорости взаимодействия является механизм реакции, связанный с образованием промежуточного состояния и преодолением энергетического барьера [3], и малая скорость распада комплекса ...ОNOOH/ONOO⁻, являющегося одним из источников активных частиц.

Отдельно сравнивались спектры поглощения растворов H2Q, непосредственно подвергавшихся обработке, и спектры смеси H2Q с АПВ, активированной той же дозой. Спектры оказались одинаковыми в пределах точности приготовления растворов и с учетом разбавления. Поэтому в дальнейшем все результаты приводятся для смеси H2Q с АПВ.

Из рис. 1, кривая 4 видно, что в реакции с АПВ 1,4 пара-гидрохинон при дозе 350 Дж окисляется до 1,4 пара-бензохинона (пропадает линия 288 нм

ПИСКАРЕВ

474

Таблица 1. Концентрации продуктов, образующихся в водном растворе гидрохинона [H2Q], смешанном с водой, активированной импульсным излучением горячей плазмы генератора ИР10: [BQ] — бензохинон, ионы [NO₃] и [H⁺]

Доза, Дж	Концентрации, ммоль/л				
	[H2Q]	[BQ]	[NO ₃ ⁻]	[H ⁺]	
0	0.21 ± 0.02	0	0	0.0016 ± 0.0001	
35	0.17 ± 0.02	0	0.044 ± 0.005	0.021 ± 0.0005	
70	0.15 ± 0.02	0.0027 ± 0.0002	0.2 ± 0.03	0.11 ± 0.007	
110	0.065 ± 0.008	0.072 ± 0.008	0.5 ± 0.06	0.3 ± 0.02	
180	0	0.21 ± 0.02	0.9 ± 0.1	0.48 ± 0.04	
350	0	0.12 ± 0.015	1 ± 0.1	0.7 ± 0.06	
710	0	0.065 ± 0.007	2.1 ± 0.2	0.8 ± 0.07	
1060	0	0.047 ± 0.005	3.1 ± 0.25	1.2 ± 0.1	
1400	0	0.024 ± 0.003	4.2 ± 0.4	2.1 ± 0.2	
1770	0	0.01 ± 0.001	5.1 ± 0.6	2.4 ± 0.3	
2100	0	0.0036 ± 0.0006	5.5 ± 0.6	2.6 ± 0.4	

и появляется 244 нм), а с увеличением дозы до 2100 Дж бензохинон разрушается. Появляется линия поглощения 310—320 нм, связанная с ионами NO_3^- . В азотной кислоте без примеси других соединений, когда $[H^+] = [NO_3^-]$, линия поглощения ионов NO_3^- находится при длине волны 301 нм. Эта линия смещается в сторону более длинных волн при уменьшении концентрации $[H^+]$, когда $[H^+] < [NO_3^-]$, и с появлением низкомолекулярных продуктов распада гидрохинона и бензо-хинона.

Концентрации продуктов, образующихся в растворе гидрохинона при смешивании с АПВ, в зависимости от дозы облучения представлены в табл. 1. Концентрации получены для смеси на основании оптических плотностей пиков поглощения. Видно, что гидрохинон окисляется до бензохинона, и при дозе 180 Дж концентрация гидрохинона равна нулю, а концентрация бензохинона равна исходной концентрации гидрохинона. Бензохинон разрушается на низкомолекулярные продукты, и при дозе 2100 Дж его концентрация уменьшается

более, чем в 100 раз. Стабильные продукты NO_3^- и H^+ образуются при распаде азотистой кислоты и комплекса ... ONOOH/ONOO⁻....

Далее выполнен эксперимент, позволяющий оценить вклад цепной реакции в окисление гидрохинона. Исследовалась зависимость концентрации образовавшегося бензохинона от концентрации исходного гидрохинона в растворе при постоянной дозе облучения 350 Дж. При такой дозе концентрация активных частиц, образующихся в воде, составляет 1 ммоль/л [3]. Результаты представлены на рис. 2. Видно, что [BQ] линейно растет с концентрацией [H2Q] и во всем диапазоне [BQ] = [H2Q]. Когда [H2Q] < 1 ммоль/л, все активные частицы расходуются на окисление. При концентрации [H2Q] > 1 ммоль/л (больше концентрации активных частиц) на одну активную частицу приходится больше одного акта окисления H2Q. Выход окисления на 100 эВ энергии излучения растет с ростом концентрации H2Q. Это свидетельствует о протекании цепной реакции.

Рис. 2. Зависимость концентрации образующегося в реакции бензохинона [BQ], ммоль/л, и выхода окисления гидрохинона, G, 1/100 эВ, от концентрации гидрохинона [H2Q], ммоль/л, при дозе облучения 350 Дж. Концентрация активных частиц, образующихся в дистиллированной воде при такой дозе, равна 1 ммоль/л.

Рис. 3. Оптическая плотность A (отн. ед) раствора гидрохинона концентрацией 22 мг/л после обработки холодной плазмой коронного электрического разряда. *1* – исходный раствор, *2* – доза 600 Дж, *3* – 900 Дж, *4* – 1500 Дж, все дозы на 10 мл раствора.

Деградация гидрохинона под действием холодной плазмы коронного электрического разряда

Под действием холодной плазмы коронного электрического разряда, в котором основными активными частицами являются гидроксильные радикалы, перекись водорода и озон, гидрохинон разрушается. Результаты обработки раствора гидрохинона коронным электрическим разрядом представлены на рис. 3. Видно, что гидрохинон разрушается с образованием низкомолекулярных продуктов, продукт окисления гидрохинона – бензохинон (пик 244 нм) и ионы NO_3^- (пик 310–320 нм) не образуются. Все изменения спектра происходят сразу после обработки, при выдержке растворов в течение двух суток и более никакие новые изменения не наблюдаются.

Окисление гидрохинона азотистой кислотой

Раствор NaNO₂ концентрацией (5.8 \pm 0.2) × × 10⁻⁴ моль/л смешивался с раствором гидрохинона: 10 мл (NaNO₂) + 10 мл (H2Q). Концентрации гидрохинона приведены в табл. 2. После смешивания в раствор вводили 1 мл 0.4М серной кислоты.

Рис. 4. Оптическая плотность A (отн. ед.) для исходного раствора гидрохинона концентрацией 22 мг/л (кривая *1*) и через 2 дня после введения азотистой кислоты, смесь $H2Q + NaNO_2 + H_2SO_4$ (кривая 2).

Азотистая кислота образовывалась в реакции:

$$NaNO_2 + H_2SO_4 \rightarrow HNO_2 + Na_2SO_4.$$
(1)

На рис. 4 представлен спектр раствора $H2Q + NaNO_2 + H_2SO_4$ через два дня после смешивания реактивов.

Видно, что при взаимодействии с азотистой кислотой гидрохинон полностью превратился в бензохинон и появляется пик 310-320 нм, свя-

занный с ионами NO₃⁻. Соотношения между концентрациями исходных реагентов (азотистой кислоты и гидрохинона) и продукта реакции – бензохинона с учетом разбавления представлены в табл. 2. Имеют место два случая.

Случай 1: концентрация азотистой кислоты, т.е. активных частиц, инициирующих реакцию, больше концентрации гидрохинона. Концентрация образовавшегося продукта (BQ) в пределах ошибок равна концентрации исходного вещества (H2Q), весь гидрохинон окисляется.

Случай 2: концентрация азотистой кислоты меньше концентрации гидрохинона. Концентрация образовавшегося продукта (BQ) также оказывается равна концентрации исходного вещества (H2Q). В этом случае имеет место цепная реак-

Таблица 2. Концентрации реагентов в реакции $NaNO_2(HNO_2) + H2Q \rightarrow BQ$

	Концентрация реагентов, моль/л			Отношение концентраций	
	[HNO ₂]	Исходный [H2Q]	Продукт [BQ]	[BQ] [HNO ₂]	[BQ] [H2Q]
1	$(2.9 \pm 0.2) \times 10^{-4}$	$(1.94 \pm 0.05) \times 10^{-4}$	$(1.89 \pm 0.05) \times 10^{-4}$	0.65	0.97
2	$(2.9 \pm 0.2) \times 10^{-4}$	$(2.61 \pm 0.05) \times 10^{-3}$	$(2.76 \pm 0.05) \times 10^{-3}$	9.5	10.5

ция. Одна активная частица инициирует примерно 10 актов реакции окисления $H2Q \rightarrow BQ$.

ОБСУЖДЕНИЕ

Механизм окисления гидрохинона

Возможность окисления гидрохинона гидроксильными радикалами

Характерной реакцией гидроксильного радикала является отрыв атома водорода (H-abstraction):

$$RH + OH' \rightarrow R' + H_2O$$
 (2)

Энергия, выделяющаяся в реакции (2), 115 ккал/моль, расходуется на отрыв атома водорода от соединения — мишени [13]. В случае гидрохинона, этой энергии хватит, чтобы оторвать атом водорода из любого положения в бензольном кольце. При отрыве от группы — ОН возможно окисление до бензохинона, при отрыве из других положений будет происходить деградация гидрохинона до уровня низкомолекулярных соединений.

Рассмотрим случай отрыва гидроксильным радикалом атома водорода от группы – ОН:

$$H2Q + 2OH' \rightarrow 2H_2O + O' - Q - O'$$
(3)

Образовавшийся бирадикал О[•]-Q-O[•] может превратиться в бензохинон, если отдаст два электрона. Если отдавать электроны некуда, бирадикал снова будет взаимодействовать с гидроксильным радикалом:

$$O'-Q-O' + 2OH' \rightarrow H2Q + O_2$$
 (4)

В реакции (4) обратно образуется гидрохинон. То есть если в растворе нет вещества, способного принять электроны, окисление гидроксильными радикалами H2Q \rightarrow BQ невозможно. Будет происходить разрушение бензольного кольца, при этом пик 288 нм, связанный с гидрохиноном, пропадает, появляются низкомолекулярные соединения, поглощающие в области $\lambda < 230$ нм (см. рис. 3).

При окислении гидрохинона гидроксильными радикалами, образующимися в реакции Фентона

$$\operatorname{Fe}^{2+} + \operatorname{H}_2\operatorname{O}_2 \to \operatorname{Fe}^{3+} + \operatorname{OH}^{-} + \operatorname{OH}^{-}$$
(5)

образующееся трехвалентное железо при взаимодействии с бирадикалом будет принимать электрон, восстанавливаясь до Fe²⁺.

$$\mathrm{Fe}^{3+} + \mathrm{e} \to \mathrm{Fe}^{2+} \tag{6}$$

В реакции Фентона с увеличением концентрации H2Q концентрация оставшегося Fe³⁺ уменьшается при постоянной концентрации двухвалентного железа в исходной пробе. Это явление экспериментально наблюдалось. Трехвалентное железо в этом процессе играет роль катализатора. Таким образом, окисление гидрохинона гидроксильными радикалами до уровня бензохинона возможно только при условии, что есть катализатор, способный принимать электроны.

Окисление гидрохинона азотистой кислотой

Для азотистой кислоты в водном растворе существует равновесие:

$$2HNO_2 \leftrightarrow NO' + NO_2' + H_2O \tag{7}$$

Радикал NO₂ может взаимодействовать с гидрохиноном:

$$H2Q + NO_2 \rightarrow HQ' + HNO_2$$
 (8)

$$HQ' + NO'_2 \rightarrow Q' + HNO_2$$
(9)

В этом процессе регенерируется азотистая кислота и образуется бирадикал 'Q'. Для того, чтобы завершить окисление $H2Q \rightarrow BQ$, бирадикал 'Q' должен отдать два электрона. Электроны может принять радикал NO', образующийся при распаде азотистой кислоты:

$$4NO' + 2e \rightarrow 2N_2O + O_2 \tag{10}$$

Так как азотистая кислота регенерируется, то процесс окисления гидрохинона в бензохинон является цепным. Цепной характер реакции под-тверждается экспериментом, см. рис. 2 и табл. 2.

В случае образования комплекса ...ONOOH/ ONOO⁻..., при его распаде в кислой среде, которая создается в водном растворе во время действия излучения, образуется пероксиазотистая кислота. При ее распаде образуется диоксид азота и азотистая кислота [14].

$$ONOOH + H^{+} + e \rightarrow NO_{2}^{\cdot} + H_{2}O \qquad (11)$$

$$ONOOH + 2H^{+} + 2e \rightarrow HNO_{2} + H_{2}O \qquad (12)$$

Поэтому механизм, рассмотренный выше (реакции (8)–(10)) также будет действовать для пероксиазотистой кислоты.

Таким образом, окисление гидрохинона до бензохинона азотистой и пероксиазотистой кислотой возможно, и этот процесс является цепной реакций. В случае обработки импульсным излучением горячей плазмы применение дополнительного катализатора не требуется.

выводы

При взаимодействии 1,4 пара-гидрохинона с водой, активированной импульсным излучением горячей плазмы искрового электрического разряда, происходит окисление до 1.4 пара-бензохинона. Окисление H2Q → BQ продуктами, накопившимися в воде под действием импульсного излучения го-

ХИМИЯ ВЫСОКИХ ЭНЕРГИЙ том 57 № 6 2023

477

рячей плазмы (азотистая кислота и комплекс ...ONOOH/ONOO⁻...), является цепной реакцией. Реакция медленная, продолжается два дня.

Цепное окисление 1,4 пара-гидрохинона может быть использовано в накопителе энергии на основе пары H2Q \leftrightarrow BQ.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Piskarev I.M., Ivanova I.P.* // Plasma Source Sci. Technol. 2019. V. 28. 065008 (10 p).
- 2. *Ivanova I.P., Piskarev I.M.* // IEEE Transactions on Plasma Science. 2022. V. 50(11). 4667.
- 3. *Иванова И.П., Пискарев И.М.* // Химия высоких энергий. 2022. Т. 56. № 5. С. 339.
- Пискарев И.М. // Химия высоких энергий. 2019 Т. 53 № 1. С. 71.
- Abraham I., Joshi R., Pardasani P., Pardasani R. // J. Braz. Chem. Soc. 2011. V. 22. № 3 . P. 385.

- 6. Nawar S., Huskinson B., Aziz M. // Mater. Res. Soc. Symp. Proc. 2012. P. 1491.
- 7. Wilke T., Schneider M., Kleinerman K. // Open J. of Physical Chemistry. 2013. V. 3. P. 97.
- Fonagy O., Szabo-Bardos E., Horvath O. // Journal of Photochemistry and Photobiology. A. Chemistry. 2021. V. 407. 113057.
- Cheng C.-Y., Chan Y.-T., Tzon Y.-M. et al. // J. of Spectroscopy. 2016. V. 2016. Article ID 7958351. https://doi.org/10.1155/2016/7958351
- Maurya M., Sikarwar S. // J. of Molecular Catalysis. A. Chemistry. 2007. V. 263. P. 175.
- 11. Derikvand F, Bigi F, Maggi R. et al. // J. of Catalysis. 2010. V. 271. P. 99.
- 12. Gambarotti C., Melone L., Punta C., Shisodia S.U. // Current Organic Chemistry. 2013. V. 17. P. 1108.
- 13. *Ivanova I.P., Piskarev I.M., Trofimova S.V.* // American Journal of Physical Chemistry. 2013. V. 2. № 2. P. 44.
- 14. Лобачев В.Л., Рудаков Е.С. // Успехи химии. 2006. Т. 75. № 5. С. 422.