—— ВИМИХОТОФ ——

УДК 541.143.144.8+541.17

МЕХАНИЗМ ВЗАИМОДЕЙСТВИЯ НИТРОСОЕДИНЕНИЙ С ОЛЕФИНАМИ В АЦЕТОНИТРИЛЕ

© 2023 г. С. Д. Плехович^{а,} *, С. В. Зеленцов^а, И. Т. Гримова^а

^а ΦГАОУ ВО "Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского", пр. Гагарина, 23, Нижний Новгород, 603950 Россия

**E*-mail: senvpl@mail.ru Поступила в редакцию 29.05.2023 г. После доработки 09.07.2023 г. Принята к публикации 14.07.2023 г.

Методами квантовой химии выполнено моделирование взаимодействия 4-фтор-стирола с 4-СМ-PhNO₂ в присутствии различных растворителей. Предложен механизм реакции и активационные барьеры его стадий. Для проведения расчетов применен программный комплекс Gaussian03. Использованы методы DFT/WB97XD/DGDZVP2 для получения оптимальных геометрических параметров исследуемых структур, методы TD-SCF/DFT/WB97XD/DGDZVP2 и TD-SCF/DFT/ PBEPBE/6-311g++(3d2f.3p2d) для расчета возбужденных синглетных и триплетных состояний и модель IEFPCM для учета влияния растворителей. Расчет переходных состояний выполнялся методом TS с применением метода DFT/PBEPBE/6-311g++(3d2f,3p2d).

Ключевые слова: квантовая химия, триплетное состояние, олефины, нитросоединения, DFT, фотоокисление, переходное состояние, растворители

DOI: 10.31857/S0023119323060141, EDN: RVSKPQ

ВВЕДЕНИЕ

В 1956 г. Бучи и Айер [2] сообщили о том, что при облучении смеси нитробензола и 2-метил-2бутена УФ светом образуется несколько продуктов с малыми выходами. Последующее установление их строения показало, что взаимодействие идет именно по этиленовой связи. Эти авторы предположили, что в качестве промежуточных веществ образуется 1,3,2-диоксазолидин. В работе авторов [3], выполненной методами квантовой химии, в качестве промежуточного соединения – выступает также диоксазилидин, причем образование его происходит путем взаимодействия триплетного нитросоединения с двойной связью олефина. Энергия активации таких реакций от 1 до 3 ккал/моль. В 2022 г. Вайс [4] предположил, что нитросоединения могут взаимодействовать по двойным связям с образованием продуктов реакции согласно схеме (1).

Согласно работе Талипова и др. [5] образование альдегидов происходило при взаимодействии олефинов с нитрозооксидами, являющимися изомерами нитросоединений. При облучении УФ светом подобная реакция протекала [6] между PhNOO и

стиролом, а продуктами реакции являлись альдегид и нитрозосоединение.

Таким образом, в ходе реакций НС с олефинами, возможно получение диоксазиридина. Однако дальнейший путь превращения этого соединения неизвестен. Неизвестно, в каком состоянии в синглетном или триплетном, протекает реакция, кроме того, неясна структура переходных состояний изучаемых реакций, а также величины энергий активации всех стадий процессов.

Целью нашей работы явилось квантово-химическое моделирование взаимодействия 4-фторстирола с 4-CN-PhNO₂ с учетом растворителя по механизму, предложенному в работе [4] и сопоставление его с ранее известными механизмами. Для этого необходимо проведение расчета энергий активации, изменения энергий Гиббса, энтальпий реакции для каждой стадии изучаемого механизма.

МЕТОДИКА ЭКСПЕРИМЕНТА

Для проведения расчетов использован программный комплекс Gaussian03 [1]. Использованы методы DFT/WB97XD/DGDZVP2 для оптимизации геометрии исследуемых структур, TD-SCF/ DFT/WB97XD/DGDZVP2 и TD-SCF/DFT/ РВЕРВЕ/6-311g++(3d2f,3p2d) для расчета воз-

Рис. 1. Рассчитанный УФ-спектр 4-CN-PhNO₂ с учетом растворителя метанола.

бужденных синглетных и триплетных состояний

и модель IEFPCM для учета влияния растворителей. Расчет переходных состояний выполнялся методом TS с применением DFT/WB97XD/DGDZVP2. Вышеприведенные методы с достаточно высокой точностью могут применяться для исследования систем, содержащих нитрогруппы. Подобные методы применяли авторы работы [7] для исследования систем, содержащих в своем составе нитрогруппы и бензольные кольца. Применение метода DFT с функционалом РВЕРВЕ для оптимизации структур по минимуму энергии, а также временно-зависимого TD-DFT метода с учетом полной РВЕ корреляции позволяет получить энергии возбужденных состояний, а также величины энергии вертикальных переходов для синглетного и триплетного состояний [8].

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Согласно работе [4] переход нитросоединения из синглетного состояния в триплетное происходит по схеме (2).

В соответствии с экспериментальными данными [9] для соединения 4-CN-PhNO₂ в метаноле наблюдаются полосы поглощения при значениях длин волн вблизи 260 и 200 нм, что согласуется с расчетами, выполненными методом TD-SCF/DFT/WB97XD/DGDZVP2 (рис. 1).

При данных величинах длин волн возможен переход из основного синглетного состояния – S_0 в возбужденные – S_1 , S_2 , S_3 состояния, также рассчитаны энергии триплетных состояний для молекулы 4-CN–PhNO₂ в триплетном состоянии.

Значения энергии и длины волн для синглетных и триплетных состояний приведены в табл. 1.

Известно [10], что переход из синглетного состояния в триплетное запрещен, однако, запрет частично снимается, если разница в энергиях между двумя соседними уровнями запрещенного перехода мала и в том числе если достигает значения около 0.96 эВ [11].

Также установлено, что нитросоединения относительно легко могут переходить из возбужденного синглетного в триплетное состояние.

Таблица 1. Эг	нергии переходов и длины волн для м	олекулы 4-CN—PhNO ₂
---------------	-------------------------------------	--------------------------------

Уровень	Энергия у	ровня, эВ	Длина волны λ, нм	Сила осциллятора
S ₀	-14392.645	0		
S_1	-14387.805	4.83	256	0.49
S_2	-14386.286	6.36	195	0.13
S_3	-14385.798	6.85	181	0.57
S_4	-14385.539	7.11	175	0.45
T_1	-14390.152	2.49		
T_2	-14385.680	6.96	277	0.16
T_3	-14385.531	7.11	268	0.54
T_4	-14383.422	9.22	184	0.18

Рис. 2. Рассчитанный УФ-спектр смеси 4-CN-PhNO₂ и 4-фторстирола в ацетонитриле.

Квантовый выход такого перехода необычайно высок и достигает 0.3–0.6 [12]. В соответствии с данными табл. 1 переход для 4-CN–PhNO₂ из синглетного в триплетное состояние возможен для состояний ($S_4 - T_2$) или ($S_4 - T_3$) при длине волны в 175 нм, что соответствует одному из максимумов поглощения на рис. 1.

Таким образом, согласно схеме (1), молекула 4-CN-PhNO $_2$ при облучении УФ светом способна находится в триплетном состоянии.

В работах [4, 13] облучение смеси нитросоединений с олефинами происходило при длине волны в 390 нм, что не соответствует переходам, приведенным согласно табл. 1. Однако при добавлении к 4-CN–PhNO₂ 4-фторстирола или стирола, происходит батохромный сдвиг полос поглощения в соответствии с [4] до 450 нм. В расчетах обнаружен сдвиг до значений в 450 нм в соответствии с рис. 2 и табл. 2.

Выявлено, что в смеси, содержащей 4-CN– PhNO₂ и 4-фторстирол возможен переход с уровня S_0 на уровень S_1 при облучении светом длиной волны в 384 (390) нм, что соответствует [4]. Однако сила осциллятора такого перехода мала (0.01). Переход с уровня S_0 на уровень S_2 или S_3 при облучении светом длиной волны в 352 или 270 нм имеет большую силу осциллятора, а, следовательно, проходил бы с большей вероятностью. В соответствии с расчетами (табл. 2) обнаружено, что в смеси возможна ИКК между состояниями S_1 и T_2 , поскольку запрет частично снимается из-за близости расположения уровней. Разница в энергиях составляет $\Delta E = 0.5$ эВ.

После ИКК идет взаимодействие 4-CN— PhNO₂ в триплетном состоянии с молекулой 4-фторстирола в соответствии со схемой (2) и (3), и образуется продукт в триплетном состоянии.

Таблица 2. Энергия переходов и длина волны для молекулы 4-CN-PhNO2 в смеси с 4-фторстиролом

Уровень	Энергия у	ровня, эВ	Длина волны λ, нм	Сила осциллятора
S_0	-25493.16	0		
S_1	-25489.94	3.20	384	0.01
S_2	-25489.64	3.52	352	0.25
S_3	-25488.57	4.59	270	0.28
T_1	-25491.39	1.77		
T_2	-25490.46	2.70	1321	0.13
T_3	-25489.12	4.05	545	0.05
T_4	-25488,99	4.17	515	0.02
T_6	-25487.89	5.28	354	0.4

ХИМИЯ ВЫСОКИХ ЭНЕРГИЙ том 57 № 6 2023

Стадия	$E_{\rm a}$, ккал/моль	$\Delta_r H^0$, ккал/моль	$\Delta_r G^0$, ккал/моль
2	_	-33.4	_
3	0.4	-14.7	-13.2
4a	—	-19.8	-17.2
4b	9.6	-0.8	-3.6
5a	24.9	8.1	2.8
5b	23.2	7.1	-1.3
ба	9.6	-30.2	-21.7
6b	6.8	-0.8	-5.6
7	20.7	-56.2	-56.1

Таблица 3. Энергия активации, энтальпия реакции и изменение функции Гиббса исследуемых реакций

В продуктах согласно схеме (3), нитросоединение представляет собою бирадикал со спиновой плотностью. сосредоточенной в основном на атомах кислорода (0.476 и 0.515) и на атоме азота (0.214), принадлежащих к нитрогруппе. После присоединения бирадикала по двойной связи, образуется еще одно соединение – продукт 1 согласно схеме (4). Оно представляет собою также бирадикал со спиновой плотностью, сосредоточенной на атомах кислорода (0.369) и углерода (0.697). Энергия активации согласно табл. 3 составляет 0.4 ккал/моль, энтальпия реакции —14.7 ккал/моль, изменение энергии Гиббса – 13.2 ккал/моль. Расчеты выполнены при стандартных условиях. Таким образом, реакция согласно схеме (4) протекает в сторону образования соединения 1.

После получения соединения 1 в соответствии со схемами (5а) и (5b) возможны два пути реакции, одним из которых является путь (5а) ИКК соединения 1 с образованием циклического продукта 2 – диоксазиридина или второй путь – (5b) распад на окись и нитрозосоединение. Подробно протекание реакции по пути (b) изучено в работах авторов [14] в случае подобных реагентов и продуктов. В данной работе реакция по пути (5b) протекает с энергией активации 9.6 ккал/моль, энтальпией реакции -0.8 ккал/моль и изменением энергии Гиббса – 3.6 ккал/моль. Следует отметить, что протекание реакции по пути (5а) является безактивационным по сравнением с протеканием по пути (5b). Таким образом, дальнейший ход превращения идет преимущественно по пути (5а) с получением диоксазиридина.

 $R = C_6 H_4 F$

Диоксазиридин в соответствии со схемами (6а) и (6b) распадается на ионы с последующим присоединением и образованием продукта 3. Вероятнее

всего, распад происходит по пути (6b). Энергия активации распада составляет 23.2 ккал/моль, энтальпия реакции 7.1 ккал/моль, изменение энергии Гиббса —1.3 ккал/моль. Распад по пути (6а) невозможен в сторону образования продуктов реакции, поскольку изменение энергии Гиббса 2.8 ккал/моль $(\Delta_r G > 0)$. Более того, энергия активации больше, чем для распада по пути (6b): 24.9 ккал/моль против 23.2 ккал/моль.

На стадии (6b) получается продукт реакции – альдегид и соединение – 3. В соединении 3 на атоме кислорода наблюдается заряд +0.246, а на азоте — 0.419. Затем на стадии (7а) и (7b) происходит дальнейшее взаимодействие.

На стадии (8) образуется еще один продукт реакции – 5. Энергия активации и изменение энергии Гиббса приведены в табл. 3.

ЗАКЛЮЧЕНИЕ

Установлено, что взаимодействие 4-фтор-стирола с 4-CN-PhONO₂ в ацетонитриле протекает с получением альдегидов. Возбуждение 4-CN-PhNO₂ при облучении УФ светом в 390 нм приводит к его переходу в состояние S_1 , а затем к ИКК его в состояние T_2 . Отмечено, что при облучении светом в 352 нм соединения 4-CN-PhNO₂ интенсивность поглощения увеличивается и переход возможен в состояние S_2 . Установлено, что распад

ХИМИЯ ВЫСОКИХ ЭНЕРГИЙ том 57 № 6 2023

диоксазилидина по пути (6а) приводит к положительному $\Delta_r G^0$ и напротив по пути (6b) к отрицательному $\Delta_r G^0$.

СПИСОК ЛИТЕРАТУРЫ

- Gaussian R.A., Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A. et al. // Gaussian. Inc., Wallingford CT. 2003.
- Buchi G., Ayer D. E. // J. Am. Chem. Soc. 1956. V. 78. № 3. P. 689.
- 3. *Plekovich S.D., Zelentsov S.V., Minasyan Y.V., Grimova I.T.* // High Energy Chemistry. 2022. V. 56. № 1. P. 32.
- Wise E., Gogarnoiu E., Duke A., Paolillo J., Vacala T., Hussain W., Parasram M. // J. Am. Chem. Soc. 2022. V. 144. № 34. P. 15437.
- Talipov M.R., Khursan S.L., Safiullin R.L. // Russ. J. Phys. Chem. 2011. V. 85. p. 364.

- Ishikawa S., Tsuji S., Sawaki Y. // J. Amer. Chem. Soc. 1991. V. 113. p. 4282.
- Tang L., Fang C. // J. Phys. Chem. B. 2019. V. 123. № 23. p. 4915.
- Issa Y., Abdel-Latif S., El-Ansary A., Hassib H. // New J. Chem. 2021. V. 45. P. 1482.
- Wiley & Sons, Inc. SpectraBase; SpectraBase Compound ID=AZU8Yr4NC7o SpectraBase Spectrum ID=8nNbPlotVFS https://spectrabase.com/spectrum/8nNbPlotVFS (ac-

cess 16.05.2023).

- Veeman W.S., van der Waals J.H. // Mol. Phys. 1970.
 V. 18. № 1. P. 63.
- 11. Xiong J.Yi., Cheng Y.K., Li M, Chu G., Pu X., Xu T. // Scientific Reports. 2016. V. 6. P. 19364.
- 12. *Harley R., Tesla A.C.* // J. Am. Chem. Soc. 1968. V. 90. p. 1949.
- Buchi G., Ayer D. E. // J. Am. Chem. Soc. 1956. V. 78. P. 689.
- Plekhovich S.D., Zelentsov S.V., Minasyan Y.V., Degtyarenko A.I. // High Energy Chemistry. 2018. V. 52. № 6. p. 469.