= ЯДРА =

О СВОЙСТВАХ НЕЙТРОНОИЗБЫТОЧНОГО НЕЧЕТНО-НЕЧЕТНОГО ЯДРА ¹³⁰In

© 2019 г. В. И. Исаков^{*}

НИЦ "Курчатовский институт" — Петербургский институт ядерной физики, Гатчина, Россия Поступила в редакцию 09.08.2018 г.; после доработки 09.08.2018 г.; принята к публикации 09.08.2018 г.

В рамках метода хаотической фазы проведен расчет свойств нечетно-нечетного ядра ¹³⁰In, расположенного вблизи дважды магического ядра ¹³²Sn. Проведены детальные расчеты спектра, электрических квадрупольных и магнитных дипольных моментов уровней и γ -распадных характеристик ¹³⁰In, вычислена вероятность β -перехода в это ядро из основного состояния ¹³⁰Cd.

DOI: 10.1134/S0044002719010082

В наших предыдущих работах [1-5] в рамках метода хаотической фазы были подробно исследованы нечетно-нечетные ядра ¹³²Sb, ¹³⁴Sb и ¹³²In, непосредственно прилегающие к дважды магическому нейтроноизбыточному нуклиду ¹³²Sn. В последнее время появились экспериментальные данные [6, 7], касающиеся характеристик нечетнонечетного ядра ¹³⁰In, также расположенного в непосредственной близости от ¹³²Sn. В литературе имеются также очень немногочисленные отрывочные данные о свойствах более тяжелых изотопов In с четными значениями A, чем упомянутые выше. В настоящей работе мы в рамках метода хаотической фазы (квазибозонного приближения, RPA) проведем детальный расчет спектра уровней и электромагнитных характеристик ядра ¹³⁰In и сопоставим результаты расчета с имеющимися экспериментальными данными.

Уравнения метода хаотической фазы для ядер типа "магическое $\pm p \pm n$ " могут быть получены с использованием операторной алгебры либо с использованием метода функций Грина. В последнем случае энергии состояний соответствуют полюсам ω -образа двухвременной частично-частичной функции Грина, когда в качестве неприводимого блока в частично-частичном канале используется эффективное взаимодействие ("лестничное" приближение).

В обоих случаях спектр уровней ядра типа "магическое $\pm p \pm n$ " определяется решением системы уравнений

$$\begin{vmatrix} A & B \\ B & C \end{vmatrix} \begin{pmatrix} X \\ Y \end{pmatrix} = \omega \begin{pmatrix} X \\ -Y \end{pmatrix}, \quad (1)$$

где физический смысл входящих в систему уравнений величин X_{ab} и $Y_{a'b'}$ таков:

$$\begin{aligned} X_{ab}^{J}(\omega_{n}^{+}) &= \langle JM(\omega_{n}^{+}) | \left[a_{a}^{+} a_{b}^{+} \right]^{JM} | \tilde{0} \rangle, \qquad (2) \\ Y_{a'b'}^{J}(\omega_{n}^{+}) &= \langle JM(\omega_{n}^{+}) \left[a_{a'}^{+} a_{b'}^{+} \right]^{JM} | \tilde{0} \rangle, \\ X_{ab}^{J}(\omega_{n}^{-}) &= \langle JM(\omega_{n}^{-}) | \left[a_{a} a_{b} \right]^{JM} | \tilde{0} \rangle, \\ Y_{a'b'}^{J}(\omega_{n}^{-}) &= \langle JM(\omega_{n}^{-}) \left[a_{a'} a_{b'} \right]^{JM} | \tilde{0} \rangle, \\ \left[a_{\alpha}^{+} a_{\beta}^{+} \right]^{JM} &= \sum_{m_{\alpha}, m_{\beta}} C_{j_{\alpha} m_{\alpha} j_{\beta} m_{\beta}}^{JM} a_{l_{\alpha} j_{\alpha} m_{\alpha}}^{+} a_{l_{\beta} j_{\beta} m_{\beta}}^{+}, \\ \left[a_{\alpha} a_{\beta} \right]^{JM} &= \sum_{m_{\alpha}, m_{\beta}} (-1)^{l_{\alpha} + j_{\alpha} - m_{\alpha} + l_{\beta} + j_{\beta} - m_{\beta}} \times \\ &\times C_{j_{\alpha} m_{\alpha} j_{\beta} m_{\beta}}^{JM} a_{l_{\alpha} j_{\alpha} - m_{\alpha}} a_{l_{\beta} j_{\beta} - m_{\beta}}^{JM}. \end{aligned}$$

Входящие в (1) подматрицы A, B и C имеют вид:

$$A_{\alpha\beta;\mu\nu} = (\varepsilon_{\alpha} + \varepsilon_{\beta})\delta_{\alpha\mu}\delta_{\beta\nu} + (3)$$
$$+ {}_{a}\langle j_{\alpha}j_{\beta}J|\hat{\vartheta}|j_{\mu}j_{\nu}J\rangle_{a},$$
$$B_{\alpha\beta;\mu\nu} = {}_{a}\langle j_{\alpha}j_{\beta}J|\hat{\vartheta}|j_{\mu}j_{\nu}J\rangle_{a},$$
$$C_{\alpha\beta;\mu\nu} = -(\varepsilon_{\alpha} + \varepsilon_{\beta})\delta_{\alpha\mu}\delta_{\beta\nu} + {}_{a}\langle j_{\alpha}j_{\beta}J|\hat{\vartheta}|j_{\mu}j_{\nu}J\rangle_{a}.$$

Здесь $\alpha, \beta = a, b$, либо a', b', причем штрихованные индексы относятся к состояниям ниже поверхности Ферми, а нештрихованные — к уровням выше поверхности Ферми. Величины ε представляют собой одночастичные энергии, причем $\varepsilon_a(p)$, $\varepsilon_b(n) > \varepsilon_F(p, n)$ и $\varepsilon_{a'}(p), \varepsilon_{b'}(n) < \varepsilon_F(p, n)$.

Решения ω системы уравнений (1) для ядер "магическое ± 2 нуклона" разделяются на две группы: "верхние" $\omega^{(+)}$ либо "нижние" $\omega^{(-)}$, для которых $\omega_k^{(+)} \sim \varepsilon_a + \varepsilon_b$ и $\omega_k^{(-)} \sim \varepsilon_{a'} + \varepsilon_{b'}$. В то же время собственные энергии $E_k^{(\pm)}$, отсчитываемые от экспериментальной энергии основного состояния ядра,

^{*}E-mail: visakov@thd.pnpi.spb.ru

_

+

$n\ell j$	ε (эксп.)	ε (reop.)	$n\ell j$	ε (эксп.)	ε (теор.)
$\nu 1 i_{13/2}$	0.29	0.16	$\pi 3s_{1/2}$	-	-6.64
$\nu 2f_{5/2}$	-0.40	0.22	$\pi 1h_{11/2}$	-6.88	-6.77
$\nu 1h_{9/2}$	-0.84	-0.47	$\pi 2d_{3/2}$	-7.23	-7.07
$\nu 3p_{1/2}$	-1.04	-0.55	$\pi 2d_{5/2}$	-8.71	-9.04
$\nu 3p_{3/2}$	-1.55	-1.42	$\pi 1g_{7/2}$	-9.67	-10.60
$\nu 2f_{7/2}$	-2.40	-2.84	$\pi 1 g_{9/2}$	-15.81	-14.57
$\nu 2d_{3/2}$	-7.35	-7.63	$\pi 2p_{1/2}$	-16.17	-16.14
$\nu 1h_{11/2}$	-7.42	-7.33	$\pi 2p_{3/2}$	-17.16	-17.15
$\nu 3s_{1/2}$	-7.68	-8.03	$\pi 1 f_{5/2}$	-18.56	-19.25
$\nu 2d_{5/2}$	-9.00	-9.98			
$\nu 1g_{7/2}$	-9.78	-9.51			

Таблица 1. Энергии одночастичных состояний в ядре ¹³²Sn

связаны в случае ядер "магическое ядро $\pm p \pm n$ " с решениями ω_k системы уравнений (1) соотношениями $E_k^{(\pm)} = \pm \omega_k^{(\pm)} + B(Z \pm 1, N \pm 1) - B(Z, N)$, где *В* представляют собой энергии связи основных состояний соответствующих ядер, причем (Z, N)относится к магическому ядру. Для "верхних" решений амплитуды X_{ab}^J большие, а амплитуды $Y_{a'b'}^J$ маленькие, и они обусловлены корреляциями в основном состоянии, в то время как для "нижних" решений наоборот. Определяемые формулой (2) амплитуды X и Y нормированы соотношением

$$\left|\sum_{a,b} X_{ab}^{J}(\omega_{n}) X_{ab}^{J}(\omega_{m}) - (4) - \sum_{a',b'} Y_{a'b'}^{J}(\omega_{n}) Y_{a'b'}^{J}(\omega_{m})\right| = \delta(\omega_{n},\omega_{m}).$$

В нашем приближении приведенные матричные элементы электромагнитного перехода между состояниями $|\omega_n, J\rangle$ и $|\omega_m, J'\rangle$ в случае ядра "магическое + 2 нуклона" имеют вид:

$$\langle \omega_m, J' || \hat{\mathcal{M}}(E, M\lambda) || \omega_n, J \rangle =$$

$$= [(2J+1)(2J'+1)]^{1/2} \times$$

$$\times \left[\sum_{\alpha, \beta, \mu} [X^J_{\alpha\beta}(\omega_n) X^{J'}_{\mu\beta}(\omega_m) - \right. \\ \left. - Y^J_{\alpha\beta}(\omega_n) Y^{J'}_{\mu\beta}(\omega_m) \right] W[\lambda j_\mu J j_\beta; j_\alpha J'] \times \\ \left. \times \langle j_\mu || \hat{\mathcal{M}}(E, M\lambda) || j_\alpha \rangle +$$

$$(5)$$

ЯДЕРНАЯ ФИЗИКА том 82 № 1 2019

$$+\sum_{\alpha,\beta,\nu} \left[X^{J}_{\alpha\beta}(\omega_{n}) X^{J'}_{\alpha\nu}(\omega_{m}) - Y^{J}_{\alpha\beta}(\omega_{n}) Y^{J'}_{\alpha\nu}(\omega_{m}) \right] \times \\ \times W[\lambda j_{\nu} J j_{\alpha}; j_{\beta} J'] \times \\ \times \langle j_{\nu} || \hat{\mathcal{M}}(E, M\lambda) || j_{\beta} \rangle (-1)^{j_{\beta}+j_{\nu}+J+J'+1} \right].$$

Здесь приведенные матричные элементы определяются соотношением

$$\langle J'M'|\hat{T}_{\lambda\mu}|JM\rangle =$$

$$(6)$$

$$+ (-1)^{J'-M'} \begin{pmatrix} J' & \lambda & J \\ -M' & \mu & M \end{pmatrix} \langle J'||\hat{T}_{\lambda}||J\rangle.$$

Для ядра "магическое -p - n" выражение (5) следует умножить на $(-1)^{\lambda}$.

Если мы представим эффективное взаимодействие между нуклонами $\hat{\vartheta}$ в виде

$$\hat{\vartheta}(1,2) = \hat{\vartheta}^{(0)} + \hat{\vartheta}^{(1)} \boldsymbol{\tau}_1 \boldsymbol{\tau}_2, \tag{7}$$

то для нейтрон-протонной системы в каналах частица-частица и дырка-дырка мы имеем

$$a\langle j_{\alpha}j_{\beta}J|\hat{\vartheta}|j_{\mu}j_{\nu}J\rangle_{a} =$$

$$= \langle j_{\alpha}j_{\beta}J|\hat{\vartheta}^{(0)} - \hat{\vartheta}^{(1)}|j_{\mu}j_{\nu}J\rangle +$$

$$(1)^{j_{\mu}+j_{\nu}+J+1}\langle j_{\alpha}j_{\beta}J|2\hat{\vartheta}^{(1)}|j_{\nu}j_{\mu}J\rangle.$$
(8)

Здесь мы используем эффективное взаимодействие вида

$$\hat{\vartheta} = \exp\left(-\frac{r^2}{r_0^2}\right) \left[V + V_{\sigma} \boldsymbol{\sigma}_1 \boldsymbol{\sigma}_2 + V_T S_{12} + (9) + \boldsymbol{\tau}_1 \boldsymbol{\tau}_2 \left(V_{\tau} + V_{\tau\sigma} \boldsymbol{\sigma}_1 \boldsymbol{\sigma}_2 + V_{\tau T} S_{12} \right) \right],$$

где V = -16.65, $V_{\sigma} = 2.33$, $V_T = -3.00$, $V_{\tau} = 3.35$, $V_{\tau\sigma} = 4.33$, $V_{\tau T} = 3.00$ (все величины в МэВ) и $r_0 = 1.75 \text{ Фм, см. } [4, 5].$

Величины " ε ", входящие в формулы (3), представлют собой одночастичные энергии, генерируемые одночастичным потенциалом вида

$$U(\mathbf{r}, \boldsymbol{\sigma}) = U \cdot f(r) + U_{\ell s} \cdot \frac{1}{r} \frac{df}{dr} \boldsymbol{\ell} \mathbf{s}, \qquad (10)$$
$$f(r) = \frac{1}{1 + \exp[(r - R)/a]},$$

где

$$U = V_0 \left(1 - \beta \frac{N - Z}{A} t_Z \right),$$
$$U_{\ell s} = V_{\ell s} \left(1 - \beta_{\ell s} \frac{N - Z}{A} t_Z \right), \quad R = r_0 A^{1/3}$$

 $t_Z = 1/2$, для нейтронов и $t_Z = -1/2$ для протонов. В случае протонов к выражению (10) добавляется

ИСАКОВ

Таблица 2. Расчетный спектр уровней отрицательной четности в ядре ¹³⁰In и их протон-нейтронный состав (в скобках указаны экспериментальные энергии, звездочкой отмечены экспериментальные уровни из работы [7], без звездочки — уровни из [6])

Уровень	Энергия, МэВ	Лидирующая конфигурация	Магнитный момент, μ_N	Квадрупольный момент, $ e \Phi$ м 2	
0_{1}^{-}	1.1190(1.016*)	$2p_{1/2} 3s_{1/2}$	—	—	
0_{2}^{-}	1.4953	$2p_{3/2} 2d_{3/2}$	—	—	
1_{1}^{-}	0.0000 (осн.сост.)	$1g_{9/2} \ 1h_{11/2}$	-0.3563E+01	0.7214E+01	
1_{2}^{-}	0.6860	$2p_{1/2} \ 2d_{3/2} + \dots$	0.1417E+01	0.6593E+00	
1_{3}^{-}	$1.0717(0.950^*[1^-, 2^-])$	$2p_{1/2} 3s_{1/2}$	-0.1038E+01	0.3700E+01	
1_{4}^{-}	1.7910(1.669)	$2p_{3/2} \ 2d3/2 + \dots$	0.2554E + 00	-0.9348E+01	
1_{5}^{-}	2.1952	$2p_{3/2} 3s_{1/2}$	0.2726E+01	0.7832E+01	
2_{1}^{-}	0.4681 (0.451*)	смеш.	-0.8192E+00	-0.7311E+01	
2^{-}_{2}	0.7219	смеш.	-0.3680E+00	0.7054E+01	
2^{-}_{3}	1.7404	смеш.	0.1399E+01	0.1633E+02	
2_{4}^{-}	2.1356	смеш.	0.2564E+01	-0.7262E+01	
2_{5}^{-}	2.5308	смеш.	0.1871E+00	0.1485E+02	
3_{1}^{-}	0.6518	$1g_{9/2} \ 1h11/2$	-0.3793E+00	-0.1530E+02	
3_{2}^{-}	1.5767	$2p_{3/2} \ 2d_{3/2}$	0.3550E+01	0.2484E+02	
3_{3}^{-}	2.3522	$2p_{1/2} \ 2d_{5/2}$	-0.1121E+01	0.2135E+02	
4_{1}^{-}	0.7911	$1g_{9/2} \ 1h_{11/2}$	0.6484E+00	-0.1456E+02	
5_{1}^{-}	0.8480	$1g_{9/2} \ 1h_{11/2}$	0.1545E+01	-0.9580E + 01	
6_{1}^{-}	0.8219	$1g_{9/2} \ 1h_{11/2}$	0.2361E+01	-0.1405E+01	
7^1	0.9232	$1g_{9/2} \ 1h_{11/2}$	0.3126E+01	0.9440E+01	
8^{-}_{1}	0.7317	$1g_{9/2} \ 1h_{11/2}$	0.3855E+01	0.2270E+02	
9^{-}_{1}	0.9574	$1g_{9/2} 1h_{11/2}$	0.4560E+01	0.3822E+02	
10^{-}_{1}	$0.0869(0.05\pm0.05)$	$1g_{9/2} 1h_{11/2}$	0.5246E+01	0.5593E+02	

потенциал равномерно заряженной сферы радиуса $R_c = r_c A^{1/3}$.

Потенциал (10) использовался нами в работах [4, 5, 8], и он обеспечивает хорошее описание одночастичных спектров в ядрах вблизи заполненных оболочек. В наших расчетах мы использовали следующие значения параметров, входящих в формулу (10): $V_0 = -51.6 \text{ МэВ}$, $V_{\ell s} = 32.4 \text{ МэВ } \Phi \text{м}^2$, $a(p) = 0.63 \Phi \text{м}$, $a(n) = 0.66 \Phi \text{м}$, $\beta = 1.31$, $\beta_{\ell s} = -0.6$, $r_0 = 1.27 \Phi \text{м}$, $r_c = 1.25 \Phi \text{м}$. В табл. 1 представлены расчетные и экспериментальные значения одночастичных энергий. Последние несколько отличаются от таковых, представленых нами ранее в работе [8]. Различие обусловлено появлением последних экспериментальных данных по энергиям связи ядер [9] и по энергиям одночастичных

возбуждений в нечетных ядрах, непосредственно примыкающих к магическим [10—14]. Расчеты указывают на чувствительность вычисленных спектров к значениям одночастичных энергий. Поэтому, несмотря на близость расчетных и экспериментальных одночастичных энергий, мы при решении системы уравнений (1) использовали экспериментальные значения величин ε , если эти значения известны.

Результаты расчетов энергий уровней, их структура, а также значения магнитных дипольных и электрических квадрупольных моментов уровней представлены в табл. 2 и 3. Отметим, что в обзоре [6] указано на существование в ¹³⁰In уровня с энергией 1.170 МэВ с характеристиками (0⁻-3⁻), который не наблюдался в более поздней работе [7].

Уровень	Энергия, МэВ	Лидирующая конфигурация	Магнитный момент, μ_N	Квадрупольный момент, $ e \Phi$ м 2	
1_{1}^{+}	2.2828 (2.120)	$1g_{9/2} 1g_{7/2}$	0.3455E+01	0.7709E+01	
2_{1}^{+}	1.9929	$1g_{9/2} 2d_{5/2}$	0.5702E+01	0.1990E+02	
2^{+}_{2}	2.7631	$1g_{9/2} 1g_{7/2}$	0.3621E+01	-0.4330E+01	
3_{1}^{+}	0.3960 (0.388)	$1g_{9/2} 2d_{3/2}$	0.4996E+01	0.3123E+02	
3^{+}_{2}	2.3787	$1g_{9/2} 2d_{5/2}$	0.4988E+01	0.5685E+01	
4_{1}^{+}	0.6288	$1g_{9/2} 2d_{3/2}$	0.6154E+01	0.2644E + 02	
4^{+}_{2}	1.1467	$1g_{9/2} 3s_{1/2}$	0.6596E+01	0.2354E+02	
4_{3}^{+}	1.9634	$2p_{3/2} \ 1h_{11/2}$	-0.3084E+01	0.2716E+02	
4_{4}^{+}	2.4702	$1g_{9/2} 2_{d5/2}$	0.4711E+01	0.3366E+01	
5_{1}^{+}	$0.5220(0.40\pm0.06)$	смеш.	0.3814E+01	0.3795E + 02	
5^{+}_{2}	1.0490	смеш.	0.5012E+01	0.1847E+02	
5^{+}_{3}	1.2355	смеш.	0.2171E+01	0.2980E+02	
5_{4}^{+}	2.2444	$2p_{3/2} \ 1h_{11/2}$	0.9184E+00	0.7746E+00	
6_{1}^{+}	0.5123	$1g_{9/2} 2d_{3/2}$	0.7099E+01	0.4467E + 02	
6_{2}^{+}	1.0594	$2p_{1/2} \ 1h_{11/2}$	-0.1320E+01	0.3132E+02	
6_{3}^{+}	2.3094	$2p_{3/2} \ 1h_{11/2}$	0.7479E+00	0.5656E+01	
7^+_1	1.5367	смеш.	0.3282E+01	0.4318E+02	
7^{+}_{2}	2.4411	смеш.	0.3927E+01	0.4363E+02	
8_{1}^{+}	2.3961	$1g_{9/2} 1g_{7/2}$	0.7070E+01	0.4966E+02	

Таблица 3. Уровни положительной четности в ядре ¹³⁰In (в скобках указаны экспериментальные значения энергий)

В то же время, в работе [7] при энергии 1.016 МэВ наблюдался уровень с $J^{\pi} = 0^{-}$, который мы сопоставляем с состоянием $\{\pi 2p_{1/2}\nu 3s_{1/2}; 0^{-}\}$. При вычислении электромагнитных характеристик мы использовали значения эффективных зарядов и гиромагнитных отношений нуклонов, определенные нами ранее в расчетах ядер вблизи ²⁰⁸Pb и ¹³²Sn [2–5, 15]: $e_{\lambda=2}^{p}(\text{eff}) = 1.6|e|$, $e_{\lambda=2}^{n}(\text{eff}) = 0.9|e|$, $g_{\ell}^{p}(\text{eff}) = 1.102$, $g_{\ell}^{n}(\text{eff}) = -0.005$, $g_{s}^{p}(\text{eff}) = 3.79$, $g_{s}^{n}(\text{eff}) = -2.04$.

Расчетные значения приведенных вероятностей E2- и M1-переходов указаны в табл. 4 и 5. Из данных табл. 4 следует, что $E2 \gamma$ -переходы между уровнями преимущественно конфигурации $\{\pi 1g_{9/2}\nu 1h_{11/2}; J\}$ с $\Delta J = 2$ усилены, в то время как переходы с $\Delta J = 1$ ослаблены. Отметим также большие расчетные значения величин B(M1) меж ду уровнями отрицательной четности, в то время как M1-переходы между состояниями положительной четности, как правило, подавлены.

Экспериментальные данные по электромагнитным характеристикам ¹³⁰In пока практически

ЯДЕРНАЯ ФИЗИКА том 82 № 1 2019

отсутствуют. Имеются, однако, данные по β распадным характеристикам некоторых близких ядер. Так, известен [6] период полураспада ядра ¹³⁰Cd (β -распад типа Гамова—Теллера на состояния ¹³⁰In), равный 162(7) мс, где 70% интенсивности перехода идет на состояние 1⁺ с энергией возбуждения 2.120 МэВ (парциальное значение $T_{1/2} = 231$ мс). Ниже мы детально проанализируем этот переход.

В рамках многочастичной модели оболочек β^- распад соответствует трансформации типа $|i\rangle \rightarrow$ $\rightarrow |f\rangle$, где индексы (1, 1') относятся к нейтронам, а (2, 2') — к протонам:

$$|i\rangle = |j_1^{n_1}(s_1\alpha_1J_1), j_2^{n_2}(s_2\alpha_2J_2); I_i\rangle;$$
(11)
$$|f\rangle = |j_1^{n_1-1}(s_1'\alpha_1'J_1'), j_2^{n_2+1}(s_2'\alpha_2'J_2'); I_f\rangle.$$

Приведенная вероятность β -перехода мультипольности λ имеет при этом вид [16]

$$B(\lambda; I_i \to I_f) = n_1(n_2 + 1)(2J_1 + 1) \times (12) \times (2J'_2 + 1)(2j_1 + 1)(2I_{f+1}) \times$$

 I_i

 6^{+}_{2}

 I_f

 6_{1}^{+}

 5^{+}_{3}

I_i	I_f	$B(E2; I_i \to I_f),$ $e^2 \Phi_{\rm M}{}^4$	$B(M1; I_i \to I_f), \\ \mu_N^2$
10^{-}_{1}	9^{-}_{1}	0.867E+01	0.155E+01
	8_{1}^{-}	0.123E+02	—
9^{-}_{1}	8_{1}^{-}	0.107E+02	0.293E+01
	7_{1}^{-}	0.327E+02	_
8_{1}^{-}	7^1	0.838E+01	0.413E+01
	6_{1}^{-}	0.575E+02	_
7_{1}^{-}	6_{1}^{-}	0.413E+01	0.515E+01
	5_{1}^{-}	0.829E+02	_
6_{1}^{-}	5_{1}^{-}	0.541E+00	0.595E+01
	4_{1}^{-}	0.105E+03	_
5_{1}^{-}	4_{1}^{-}	0.104E+01	0.650E+01
	3_{1}^{-}	0.120E+03	_
4_{1}^{-}	3_{1}^{-}	0.112E+02	0.672E+01
	2^{-}_{1}	0.813E+02	_
	2^{-}_{2}	0.411E+02	—
3_{1}^{-}	2_{1}^{-}	0.272E+02	0.417E+01
	2^{-}_{2}	0.162E+02	0.217E+01
	1_{1}^{-}	0.966E+02	_
2^{-}_{1}	1_{1}^{-}	0.110E+03	0.311E+01
2^{-}_{2}	1_{1}^{-}	0.348E+02	0.187E+01

Таблица 4. Приведенные вероятности *E*2- и *M*1переходов между уровнями отрицательной четности в ядре ¹³⁰In

Таблица 5.	Приведенные	вероятности	E2-	И	M1	-
переходов м ядре ¹³⁰ Іп	ежду уровнями	положительно	ой чет	гно	сти	В

$$\begin{split} B(E2;I_i \to I_f), \\ e^2 \; \Phi \mathbf{M}^4 \end{split}$$

0.241E+00

0.180E+01

 $\frac{B(M1; I_i \to I_f)}{\mu_N^2},$

0.799E-01

0.131E-01

	4_{1}^{-}	0.105E+03	_		4_{2}^{+}	0.126E + 02	
-	4_{1}^{-}	0.104E+01	0.650E+01		4_{1}^{+}	0.494E+02	
	3_{1}^{-}	0.120E+03	—	5^{+}_{3}	5^{+}_{2}	0.311E+01	
-	3_{1}^{-}	0.112E+02	0.672E+01		5_{1}^{+}	0.904E+01	
	2^{-}_{1}	0.813E+02	—		4_{2}^{+}	0.157E-01	
	2^{-}_{2}	0.411E+02	—		4_{1}^{+}	0.168E+02	
-	2^{-}_{1}	0.272E+02	0.417E+01		3_{1}^{+}	0.948E+01	
	2^{-}_{2}	0.162E+02	0.217E+01	5^{+}_{2}	5_{1}^{+}	0.322E+01	
	1_{1}^{-}	0.966E+02	—		4_{2}^{+}	0.563E+01	
-	1_{1}^{-}	0.110E+03	0.311E+01		4_{1}^{+}	0.513E+02	
-	1_{1}^{-}	0.348E+02	0.187E+01		3_{1}^{+}	0.126E+01	
				5_{1}^{+}	4_{2}^{+}	0.217E-02	
×	$\times \left[j_{1}^{n_{1}-1}(s_{1}'\alpha_{1}'J_{1}')j_{1}J_{1} \} j_{1}^{n_{1}}(s_{1}\alpha_{1}J_{1}) \right]^{2} \times$				4_{1}^{+}	0.912E-01	
				3_{1}^{+}	0.531E+02		
$\times \left[j_2^{n_2}(s_2\alpha_2J_2)j_2J_2' \} j_2^{n_2+1}(s_2'\alpha_2'J_2') \right] \times$			4_{2}^{+}	4_1^+	0.280E+02		
	ſ	$J_1 J_2 J_i$			3_{1}^{+}	0.284E + 02	
	ر پ	$\begin{bmatrix} u_1 & v_2 & u_i \\ u_i & u_i & v_i \end{bmatrix} = \begin{bmatrix} u_1 & v_1 \\ B & u_i \end{pmatrix} = \begin{bmatrix} u_1 & v_1 \\ B & u_i \end{bmatrix}$	$i_1 \rightarrow i_2$	4_1^+	3_1^+	0.633E+02	
	$ \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ \end{array} $						

Здесь [...|}...] — одночастичные генеалогическиие коэффициенты, причем

$$B(\lambda; I_i \to I_f) = \frac{\langle I_f || \hat{m}(\lambda) || I_i \rangle^2}{2I_i + 1}, \quad (13)$$
$$B_{sp}(\lambda; j_1 \to j_2) = \frac{\langle j_2 || \hat{m}(\lambda) || j_1 \rangle^2}{2j_1 + 1}.$$

Для перехода 130 Cd \rightarrow 130 In формула (12) упро-

 5^{+}_{2} 0.108E+01 0.229E-03 5^{+}_{1} 0.380E+01 0.137E-01 4_{2}^{+} 4_{1}^{+} 5_{3}^{+} 5_{2}^{+} 0.152E+01 0.154E - 02 6^+_1 0.368E+01 0.265E - 020.124E+01 0.189E+00 0.800E+01 0.815E-01 _ ____ 0.107E+01 0.136E+01 0.462E + 000.101E+00 _ 0.880E+00 0.905E-01 0.428E+00 _ 0.549E + 000.997E-03 _ 0.108E+00 0.101E+00 0.294E + 00

щается, так что мы имеем

$$B(\lambda; J_1 = J_2 = s_1 = s_2 = I_i = 0 \to J'_1 = j_1, \quad (14)$$
$$J'_2 = j_2, s'_1 = s'_2 = 1, I_f = \lambda) =$$
$$= \frac{n_1(2j_2 + 1 - n_2)}{(2j_2 + 1)} B_{sp}(\lambda; j_1 \to j_2).$$

В результате, для искомого перехода Гамова—Теллера мы имеем $B_{\rm GT}(0^+ \rightarrow 1^+) = \frac{16}{10} B_{\rm GT}(\nu 1 g_{7/2} \rightarrow \pi 1 g_{9/2}) = \frac{32}{9} = 3.56$, причем учет слабых спари-

вательных корреляций в протонной системе ядра ¹³⁰Cd практически не влияет на результат. Заметим, что матричный элемент рассматриваемого перехода можно более точно вычислить в методе RPA, если провести дополнительно аналогичный вышеизложенному для ¹³⁰In расчет также для ¹³⁰Cd (для пары сопряженных ядер ¹³⁰Cd—¹³⁴Te). При этом мы получаем значение $B_{\rm GT} = 2.87$, т.е. учет конфигурационного смешивания и корреляций в основном состоянии уменьшает значение $B_{\rm GT}$.

Вероятность переходов Гамова—Теллера определяется аксиально-векторной константой G_A :

$$f_0 T_{1/2} = \frac{D}{B_{\text{GT}} (G_A/G_V)^2}, \quad (15)$$
$$D = \frac{2\pi^3 \hbar^7 \ln 2}{G_V^2 m_e^5 c^4},$$
$$f_0 = \int_{1}^{E_0} F(Z, \varepsilon) (E_0 - \varepsilon)^2 \varepsilon \sqrt{\varepsilon^2 - 1} d\varepsilon.$$

Здесь D = 6145 с [17, 18], $E_0 = Q(\beta^-)/m_e c^2 + 1$, $Q(\beta^-)$ — энергия распада на выделенный уровень, f_0 представляет собой интегральную функцию Ферми для разрешенных переходов, а $F(Z, \varepsilon)$ — функция, учитывающая влияние кулоновского поля на β -электроны.

Взяв полученное нами значение $B_{\rm GT}(0^+_1 \rightarrow$ $\rightarrow 1_{1}^{+}$), можно из формул (15) определить значение $|G_A/G_V|$ в ядре, которое оказывается равным $|G_A/G_V| \approx 0.4$, что существенно меньше ранее полученных значений $|G_A/G_V| \approx 0.8$ из работы [19] и $|G_A/G_V| \approx 1.1$ из нашей недавней работы [5]. Очевидная причина расхождения заключается в том, что 1_1^+ -уровень дочернего ядра 130 In является высоковозбужденным (2.120 МэВ), и несколько выше него расположено множество наблюдающихся в эксперименте 1⁺-состояний, которые также заселяются в *β*-распаде с меньшей интенсивностью и которые вбирают в себя часть силы перехода. Природа этих (четырехквазичастичных) уровней более сложная, и они не описываются в рамках рассмотренных нами подходов. Поэтому полученное нами значение $|G_A/G_V|$ следует рассматривать как нижний предел указанной величины.

СПИСОК ЛИТЕРАТУРЫ

- H. Mach, D. Jerrestam, B. Fogelberg, M. Hellström, J. P. Omtvedt, K. I. Erokhiha, and V. I. Isakov, Phys. Rev. C 51, 500 (1995).
- В. И. Исаков, К. И. Ерохина, Г. Мах, Б. Фогельберг, А. Коргул, К. А. Мезилев, Э. Рамстрем, ЯФ 70, 852 (2007) [Phys. Atom. Nucl. 70, 818 (2007)].

ЯДЕРНАЯ ФИЗИКА том 82 № 1 2019

- 3. V. I. Isakov, in *Proceedings of the International Conference on Isomers, INIR 2011, Peterhoff, 2011* (JINR, Dubna, 2012), p. 41.
- В. И. Исаков, ЯФ 80, 214 (2017) [Phys. Atom. Nucl. 80, 431 (2017)].
- 5. В. И. Исаков, ЯФ **79**, 585 (2016) [Phys. Atom. Nucl. **79**, 811 (2016)].
- 6. Balraj Singh, Nucl. Data Sheets **93**, 33 (2001); https://www-nds.iaea.org, ENDS file.
- A. Jungelaus, H. Grawe, S. Nishimura, P. Doornenbal, G. Lorusso, G. S. Simpson, P. A. Söderström, T. Simikamura, J. Taprogge, Z. Y. Xu, H. Baba, F. Browne, N. Fukuda, R. Gernhäuser, G. Gey, N. Inabe, *et al.*, Phys. Rev. C 94, 024303 (2016).
- V. I. Isakov, K. I. Erokhina, H. Mach, M. Sanchez-Vega, and B. Fogelberg, Eur. Phys. J. A 14, 29 (2002).
- G. Audi, F. G. Kondev, M. Wang, W. J. Huang, and S. Naimi, Chin. Phys. C 41, 030001 (2017); https://www-nds.iaea.org/admc/
- 10. Yu. Khazov, I. Mitropolsky, and A. Rodionov, Nucl. Data Sheets **107**, 2715 (2006).
- 11. Yu. Khazov, A. Rodionov, and F. G. Kondev, Nucl. Data Sheets **112**, 855 (2011).
- J. Taprogge, A. Jungclaus, H. Grawe, I. N. Borzov, S. Nishimura, P. Doornenbal, G. Lorusso, G. S. Simpson, P.-A. Söderström, T. Sumikama, Z. Y. Xu, H. Baba, F. Browne, N. Fukuda, R. Gernhäuser, G. Gey, *et al.*, Eur. Phys. J. A 52, 347 (2016).
- K. L. Jones, A. S. Adekola, D. W. Bardayan, J. C. Blackmon, K. Y. Chae, K. A. Chipps, J. A. Cizewski, L. Erikson, C. Harlin, R. Hataric, R. Kapler, R. L. Kozub, J. F. Liang, R. Livesay, Z. Ma, B. H. Moasen, *et al.*, Nature **465**, 454 (2010).
- B. Fogelberg, H. Gausemel, K. A. Mezilev, P. Hoff, H. Mach, M. Sanchez-Vega, A. Lindorth, E. Ramström, J. Genevey, J. A. Pinston, and M. Reimund, Phys. Rev. C 70, 034312 (2004).
- С. А. Артамонов, В. И. Исаков, С. Г. Кадменский, И. А. Ломаченков, В. И. Фурман, ЯФ 36, 829 (1982) [Sov. J. Nucl. Phys. 36, 486 (1982)].
- В. И. Исаков, ЯФ 77, 603 (2014) [Phys. Atom. Nucl. 77, 569 (2014)].
- 17. J. C. Hardy and I. S. Towner, Phys. Rev. C **71**, 055501 (2005).
- J. C. Hardy and I. S. Towner, Phys. Rev. Lett. 94, 092502 (2005).
- G. D. Alkhazov, S. A. Artamonov, V. I. Isakov, K. A. Mezilev, and Yu. N. Novikov, Phys. Lett. B 198, 37 (1987).

ИСАКОВ

ON THE PROPERTIES OF THE NEUTRON-EXCESS ODD-ODD NUCLEUS ¹³⁰In

V. I. Isakov

National Research Centre "Kurchatov Institute" — Petersburg Nuclear Physics Institute, Gatchina, Russia

Properties of the odd–odd nucleus ¹³⁰In neighboring to the doubly-magical neutron-excess nucleus ¹³²Sn are considered in the random phase approximation. Detailed calculations of the spectrum of levels, γ -decay properties of ¹³⁰In, as well as electrical quadrupole and magnetic dipole moments of levels are performed. Beta-decay of the ground state of ¹³⁰Cd to 1⁺ (2.120 MeV) level of ¹³⁰In is also considered.