ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ И ПОЛЯ =

РАСПАД $K^0 \rightarrow K^+ e^- \bar{\nu}_e$

© 2019 г. Н. Н. Шишов*

HUЦ "Kypчamoвcкий институт" — UTЭФ, Mocква, Poccus Поступила в редакцию 20.07.2018 г.; после доработки 20.07.2018 г.; принята к публикации 20.07.2018 г.

Вычислена ширина распада нейтрального K-мезона на заряженный K^+ -мезон, электрон и антинейтрино. Получены значения относительных вероятностей распада для K_L - и K_S -мезонов на $K^+e^-\bar{\nu}$: $\approx 4 \times 10^{-9}\,$ и $\approx 10^{-11}\,$ соответственно. Приведенные вычисления справедливы и для нейтральных антикаонов, распадающихся на заряженный K^- -мезон, позитрон и нейтрино.

DOI: 10.1134/S0044002719010173

Все существующие распады K^0 -мезонов идут с изменением странности за счет взаимодействия кваркового тока (us) с лептонными токами $(e\nu)$ и $(\mu\nu)$ [1]. Но для K^0 -мезонов существует единственная возможность распада без изменения странности благодаря взаимодействию тока (ud) и лептонного тока $(e\nu)$. Этот распад подобен β -распаду нейтрона и распадам заряженных пионов $\pi^\pm \to \pi^0 e^\pm \nu$, и его вероятность была оценена Окунем в ~ 0.1 с $^{-1}$ [2]. Он изображается кварковой диаграммой (рис. 1), и его амплитуда имеет вид

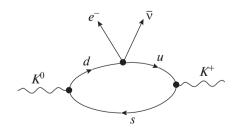
$$M = \frac{G}{\sqrt{2}}(\cos \vartheta)V_{\alpha}L^{\alpha},$$

где $L_{\alpha} = \bar{\nu}\gamma_{\alpha}(1+\gamma_5)e$, $V_{\alpha} = (f_+p_{\alpha}+f_-q_{\alpha})\varphi_2\varphi_1$. Здесь $arphi_1$ и $arphi_2$ — волновые функции K^0 - и K^+ мезонов, p_1 и p_2 - их 4-импульсы, $p=p_1+p_2$, q= $=p_{1}-p_{2},\;f_{+}$ и f_{-} — безразмерные формфакторы, являющиеся функциями q^2 . В случае малого энерговыделения в распаде $K^0 \to K^+ e^- \bar{\nu}_e$ можно считать, что во всей физической области q^2 функции f_{+} и f_{-} постоянны: $f_{+}(q^{2}) \approx f_{+}(0)$ и $f_{-}(q^{2}) pprox f_{-}(0)$. Так как векторный ток сохраняется — $q^{\alpha}V_{\alpha}=0$. Это равенство должно выполняться в пределе строгой изотопической инвариантности при выключенном электромагнитном взаимодействии [3]. При этом $qp=m_{K^0}^2-m_{K^+}^2=0$ и условие поперечности имеет вид $q^2f_-(q^2)=0$ и, следовательно, $f_{-}=0$. Величина f_{+} определяется тем, что векторный (ud)-ток входит в один триплет с изовекторным электромагнитным током и является слабым векторным зарядом. Его величина в

переходе $K^0 \to K^+$ равна:

$$\sqrt{T(T+1) - T_3(T_3+1)} = 1,$$

где T и T_3 — изоспин K^0 -мезона и его проекция. Амплитуда распада $K^0 o K^+ e ar{
u}_e$


$$M = \frac{G}{\sqrt{2}}(\cos \vartheta)\varphi_1\varphi_2 P^{\alpha}\bar{\nu}\gamma_{\alpha}(1+\gamma_5)e.$$

Возводя амплитуду в квадрат и рассчитав фазовый объем, получим ширину Γ распада $K^0 \to K^+ e^- \bar{\nu}_e$:

$$\Gamma = \frac{G^2 \cos^2 \vartheta}{60\pi^3} \Delta^5 \left(1 - \frac{5m_e^2}{\Delta^2} - \frac{3}{2} \frac{\Delta}{m_k} \right),$$

здесь $\cos\theta$ — косинус угла Кабиббо, $\cos\theta\approx0.97$; Δ — разница масс нейтрального и заряженного каонов, равная 3.9 МэВ. При расчете фазового объема пренебрегалось более высокими степенями отношений m_e/Δ и Δ/m_K . В результате получим значение ширины $\Gamma=5.8\times10^{-17}$ эВ.

Используя времена жизни K_L - и K_S -мезонов [1] и ширину Γ , получим относительные вероятности их распадов на $K^+e^-\bar{\nu}$: $\approx \!\! 4 \times 10^{-9}$ и $\approx \! 10^{-11}$ соответственно. Очевидно, что расчет верен и для распада $\bar{K}^0 \to K^-e^+\nu_e$, поскольку все частицы

Рис. 1. Кварковая диаграмма распада $K^0 o K^+ e^- \bar{\nu}_e$

^{*}E-mail: shishov@itep.ru

в нем являются античастицами по отношению к частицам в распаде K^0 . Учет распадов $K^\pm e^\mp \nu_e$ важен при изучении редких распадов нейтральных K-мезонов, в том числе и запрещенных стандартной моделью.

Я благодарен М.И. Высоцкому за поддержку и обсуждение работы, А.Г. Долголенко за критические замечания и обсуждения, В.В. Бармину и В.С. Сопову за помощь.

СПИСОК ЛИТЕРАТУРЫ

- 1. K. A. Olive *et al.* (Particle Data Group), Chin. Phys. C **38**, 090001 (2014).
- 2. Л. Б. Окунь, Слабое взаимодействие элементарных частиц (ГИФМЛ, Москва, 1963).
- 3. Л. Б. Окунь, *Лептоны и кварки*, 3 изд. (УРСС, Москва, 2005).

THE DECAY OF $K^0 \to K^+ e^- \bar{\nu}_e$

N. N. Shishov

National Research Centre "Kurchatov Institute" — ITEP, Moscow, Russia

The decay width of the neutral K meson into the charged K^+ meson, electron and antineutrino is calculated. The values of branching rathios for K_L and K_S mesons into $K^+e^-\bar{\nu}$: $\approx 4 \times 10^{-9}$ and $\approx 10^{-11}$, respectively, are obtained. The above calculations are also valid for neutral anti-K-mesons that decay into a negative K meson, positron and neutrino.