= ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ И ПОЛЯ =

ДВУХПЕТЛЕВЫЕ РАДИАЦИОННЫЕ ПОПРАВКИ КОНЕЧНОГО СОСТОЯНИЯ К ПРОЦЕССУ ДРЕЛЛА—ЯНА НА LHC В МЯГКОФОТОННОМ ПРИБЛИЖЕНИИ

© 2019 г. В. А. Зыкунов*

Объединенный институт ядерных исследований, Дубна, Россия; Гомельский государственный университет им. Ф. Скорины, Беларусь Поступила в редакцию 05.06.2018 г.; после доработки 09.07.2018 г.; принята к публикации 09.07.2018 г.

В мягкофотонном приближении в рамках схемы перенормировки на массовой поверхности получены компактные формулы для двухпетлевых электромагнитных радиационных поправок конечного состояния к четырехфермионному процессу в s-канале. Предложена схема эффективной численной оценки радиационных эффектов конечного состояния в применении к процессу Дрелла—Яна для экспериментов на LHC при больших инвариантных массах.

DOI: 10.1134/S0044002719010215

1. ВВЕДЕНИЕ

Экспериментальными данными групп ATLAS и CMS на LHC [1], согласованными между собой, а к настоящему моменту также подтвержденными данными CDF и D0 с коллайдера Tevatron [2], установлено существование фундаментального скалярного бозона, отвечающего за нарушение электрослабой калибровочной симметрии и, как следствие, за существование у частиц массы. Таким образом был утвержден статус стандартной модели (CM) как согласованной и полностью экспериментально подтвержденной теории.

Тем не менее существуют модели "новой" физики (НФ), такие, как расширенные калибровочные теории типа теории великого объединения, модели композитности калибровочных бозонов [3, 4], композитность фермионов [5], сценарии с дополнительными размерностями [6], дополнительными нейтральными калибровочными бозонами [7] и т.д., которые предсказывают существенное отклонение от СМ в энергетической области выше 1 ТэВ. Соответственно освоение этого (пока нового) энергетического масштаба становится одной из главных задач современной физики.

С этой точки зрения перспективным представляется исследование наблюдаемых величин (сечений и асимметрии вперед-назад) процесса Дрелла—Яна [8]:

$$pp \to \gamma, Z \to l^+ l^- X,$$
 (1)

при больших (выше 1 ТэВ) инвариантных массах M лептонной пары l^+l^- . На партонном уровне процесс обусловлен кварк-антикварковой (и антикварк-кварковой) аннигиляцией в лептонную пару. Далее для определенности рассматриваем подпроцесс

$$q(p_1) + \bar{q}(p_2) \to l^+(k_1) + l^-(k_2),$$
 (2)

соответствующая ему диаграмма Фейнмана приведена на рис. 1a. В скобках в (2) указаны: p_1-4 -импульс первого (анти)кварка с ароматом q и массой m_q ; p_2-4 -импульс второго (анти)кварка (с теми же ароматом и массой); $k_1(k_2)-4$ -импульс конечного лептона $l^+(l^-)$ с массой m. Инвариантная масса дилептонной пары определяется так: $M=\sqrt{(k_1+k_2)^2}$. Используется стандартный набор инвариантов Мандельстама для упругого партонного рассеяния:

$$s = (p_1 + p_2)^2, \quad t = (p_1 - k_1)^2,$$
 (3)
 $u = (k_1 - p_2)^2$

и инвариант $S=(P_A+P_B)^2$ для адронного рассеяния, где $P_A(P_B)$ — 4-импульс первого (второго) адрона.

Эксперименты по изучению процесса Дрелла—Яна (1) в настоящий момент идут на LHC полным ходом. Пока что измеренные дифференциальные сечения $\frac{d\sigma}{dM}$, дважды дифференциальные сечения $\frac{d^2\sigma}{dMdy}$ (здесь y — быстрота пары) и асимметрия вперед-назад $A_{\rm FB}$ находятся в полном соответствии с предсказаниями CM: при полной энергии реакции $\sqrt{S}=8$ ТэВ и набранной светимости

^{*}E-mail: zykunov@cern.ch

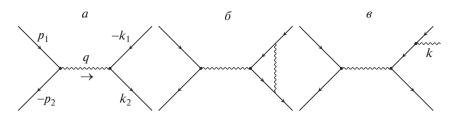


Рис. 1. Фейнмановские диаграммы для борновского (a) и однопетлевого (b) вкладов в процесс (1) на кварковом уровне, b — вклад тормозного излучения.

19.7 фбн $^{-1}$ для $M \le 2$ ТэВ, а при $\sqrt{S} = 13$ ТэВ и 85 фбн $^{-1}$ для $M \le 3$ ТэВ. Последние опубликованные результаты физического анализа (PAS, Physics Analysis Summaries) зафиксированы, например, в работах CMS PAS-SMP-16-009 и CMS PAS-SMP-17-001.

Изучение эффектов НФ невозможно без точного знания предсказаний СМ, включая радиационные поправки: электрослабые (ЭСП) и КХДпоправки. В процессе (1) как первые, так и вторые превосходно изучены на однопетлевом уровне. Начиналась эта деятельность с работ по однопетлевым КЭД-поправкам Мосолова, Сороко и Шумейко [9], по однопетлевым ЭСП [10] группы ZGRAD и по однопетлевым КХД-поправкам [11]. Двухпетлевые КХД-поправки впервые рассчитаны в работе [12]. К настоящему моменту имеется большое количество разнообразных, взаимодополняющих друг друга программ и компьютерных кодов, посвященных этой проблеме. Перечислим (в алфавитном порядке) некоторые из них с указанием основных авторов: DYNNLO (S. Catani, L. Cieri, G. Ferrera и др.), FEWZ (R. Gavin, Y. Li, K. Melnikov, F. Petriello, S. Quackenbush и др.), HORACE (C. Carloni Calame, G. Montagna, O. Nicrosini и др.), LPPG (Е. Дыдышко), MC@NLO (S. Frixione, F. Stoeckli, P. Torrielli и др.), PHOTOS (N. Davidson, T. Przedzinski, Z. Was и др.), POWHEG (L. Barze, G. Montagna, P. Nason и др.), RADY (S. Dittmaier, A. Huss, C. Schwinn и др.), READY (автор настоящей работы), SANC (А. Арбузов, Д. Бардин, Л. Калиновская и др.), WINHAC (W. Placzek, S. Jadach, M.W. Krasny и др.), WZGRAD (U. Baur, W. Hollik, D. Wackeroth и др.). Между различными программами достигнуто хорошее согласие, см., например, [13]. В качестве программы учета радиационных эффектов (однопетлевых ЭСП и однои двухпетлевых КХД-поправок) в современных экспериментах на LHC используется FEWZ 3.1.

Не вполне разработанным сектором является учет двухпетлевых ЭСП к процессу (1). Вероятно, более других здесь продвинулись авторы кода FEWZ. Тем не менее, из-за сложности задачи актуальными являются альтернативные расчеты,

важно получение компактных, физически адекватных результатов в ясном математическом виде и разработка новых методов оценки многопетлевых эффектов. Актуальность данной работы обусловлена именно этими факторами: в ней в простой форме выведены выражения для двухпетлевых КЭД-поправок конечного состояния к процессу (1), показано, как сокращается инфракрасная расходимость (ИКР) и старшие степени коллинеарных логарифмов (КЛ) во второй петле. Кроме этого, в работе предложена схема эффективной численной оценки этих радиационных эффектов, сделан численный анализ для современной ситуации на СМЅ LHC.

2. ОДНОПЕТЛЕВОЙ УРОВЕНЬ

Для того чтобы получить полный результат для радиационных поправок на одно- или двухпетлевом уровне к процессу (1), нужно рассчитать:

- 1. излучение из конечного состояния (final state radiation, FSR), тут присутствуют только электрослабые диаграммы,
- 2. излучение из начального состояния (initial state radiation, ISR), здесь есть как электрослабые, так и КХД диаграммы,
 - 3. все возможные интерференционные вклады,
- 4. все возможные инверсные вклады, когда фотон/глюон происходит из начального протона.

Можно сказать, что в вышеприведенном перечислении до третьего пункта сложности с расчетом нарастают.

Простейший, но важный с точки зрения решения таких принципиальных вопросов, как процедура (порядок выполнения, методически правильное использование обозначений и т.д.) сокращения ИКР, доказательство независимости от параметра, разделяющего области мягких и жестких фотонов и, наконец, выяснение точной формы коэффициентов при старших степенях КЛ (которая принципиально важна при адсорбции коллинеарных логарифмов в функции партонных распределений для решения проблемы кварковой массовой сингулярности), в том числе сокращение старших

(нефизичных) степеней КЛ, — это вклад конечного состояния в электромагнитные поправки.

На однопетлевом уровне КЭД-поправки конечного состояния складываются из двух частей:

- 1. вклад от диаграмм с наличием виртуальной частицы (см. рис. 16),
- 2. вклад однофотонного излучения из конечного состояния (мягкого и жесткого), см. рис. 1 ε .

Сечение, соответственно, состоит из двух слагаемых:

$$\sigma_{\text{NLO}} = \sigma_V + \sigma_R.$$
 (4)

В мягкофотонном приближении сечения вкладов пропорциональны борновскому и выглядят так:

$$\sigma_V = 2 \operatorname{Re} F^{(1)}(s) \sigma_0, \quad \sigma_R = \delta_1^S \sigma_0.$$
 (5)

Для записи сечений используется сокращенное обозначение $\sigma \equiv d\sigma/dt$. Борновское сечение выглядит как

$$\sigma_0 = \sigma_0^{q\bar{q}} =$$

$$= \frac{2\pi\alpha^2}{s^2} \sum_{i,j=\alpha,Z} D^i D^{j*} (b_+^{i,j} t^2 + b_-^{i,j} u^2),$$
(6)

где α — постоянная тонкой структуры. Для того чтобы найти выражения для $\bar{q}q$ -случая, необходимо сделать очевидную замену переменных Мандельстама: $t \leftrightarrow u$.

Пропагатор j-бозона

$$D^{js} = \frac{1}{s - m_j^2 + i m_j \Gamma_j} \tag{7}$$

содержит m_j (массу) и Γ_j (ширину) j-бозона. Удобно пользоваться комбинациями констант связи для f-го фермиона с i- и j-бозонами

$$\lambda_{f_+}^{i,j} = v_f^i v_f^j + a_f^i a_f^j, \quad \lambda_{f_-}^{i,j} = v_f^i a_f^j + a_f^i v_f^j, \quad (8)$$

где

$$v_f^{\gamma} = -Q_f, \quad a_f^{\gamma} = 0,$$
 (9)
 $v_f^Z = \frac{I_f^3 - 2s_W^2 Q_f}{2s_W c_W}, \quad a_f^Z = \frac{I_f^3}{2s_W c_W},$

 Q_f — заряд фермиона $f,\ I_f^3$ — третья компонента изоспина фермиона $f,\$ и $s_{\mathrm{W}}(c_{\mathrm{W}})$ — это (ко)синус угла Вайнберга

$$c_{\rm W} = m_W/m_Z, \quad s_{\rm W} = \sqrt{1 - c_{\rm W}^2}.$$
 (10)

Константы связи собираются в комбинации:

$$b_{\pm}^{n,k} = \lambda_{q+}^{n,k} \lambda_{l+}^{n,k} \pm \lambda_{q-}^{n,k} \lambda_{l-}^{n,k}. \tag{11}$$

Результаты для отдельных вкладов в мягкофотонном приближении хорошо известны и приведены, например, в работе [14]. Приведем их здесь в

несколько измененных обозначениях для полноты изложения.

Действительная часть однопетлевого s-канального формфактора выглядит так:

$$\operatorname{Re}F^{(1)}(s) = \frac{\alpha}{\pi} \left[-\frac{1}{4}L^2 + \frac{1}{2}L_{\lambda}L + + \frac{3}{4}L - \frac{1}{2}L_{\lambda} - 1 + \frac{\pi^2}{3} \right].$$
 (12)

В сечении излучения мягкого фотона факторизуется поправка:

$$\delta_1^S = \frac{\alpha}{\pi} \left[\frac{1}{2} L^2 - L_{\lambda} L + + 2L_{\omega} L + L_{\lambda} - 2L_{\omega} - \frac{\pi^2}{3} \right].$$
 (13)

Как на однопетлевом, так и на двухпетлевом уровне все значимые результаты выражаются через три логарифма: коллинеарный L, инфракрасный L_{λ} и мягкий L_{ω} :

$$L = \ln \frac{s}{m^2}, \quad L_{\lambda} = \ln \frac{\lambda^2}{m^2}, \quad L_{\omega} = \ln \frac{2\omega}{\sqrt{s}}, \quad (14)$$

где λ — инфинитезимальная масса фотона, ω — максимальная энергия мягкого тормозного фотона. Легко заметить, что вклад с излучением мягкого фотона можно преобразовать к виду

$$\delta_1^S = \frac{\alpha}{\pi} \left[A \ln \frac{\omega}{\lambda} - B \right],\tag{15}$$

где

$$A = 2(L-1),$$

$$B = \frac{1}{2}L^2 - L + \frac{\pi^2}{3} - 2(L-1)\ln 2.$$
(16)

Из (15) видно, что зависимость от λ "вымирает" при стремлении $\omega \to \lambda$, это свойство нам пригодится в дальнейшем.

Складывая сечения в формуле, легко заметить сокращение старших степеней КЛ (второй степени в первой петле) и сокращение ИКР (логарифмы L_{λ} взаимно уничтожаются). В результате получим известный результат:

$$\sigma_{\text{NLO}} = \frac{\alpha}{\pi} \left[\frac{3}{2} L + 2(L-1)L_{\omega} - 2 + \frac{\pi^2}{3} \right] \sigma_0.$$
 (17)

Одна из задач настоящей работы — получить подобный результат для второй петли.

3. ДВУХПЕТЛЕВОЙ УРОВЕНЬ

Чтобы оценить сечение на двухпетлевом уровне, нужно рассчитать:

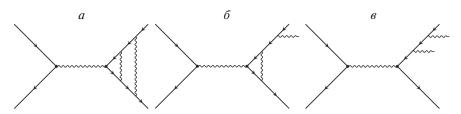


Рис. 2. Фейнмановские диаграммы для описания основных классов двухпетлевых вкладов в процесс (1) на кварковом уровне: a-T-вклад, b-O-вклад, b-D-вклад.

Q-часть: квадратичный (Quadratic) вклад, т.е. квадрат однопетлевых NLO FSR поправок, см. рис. 16,

T-часть: двухпетлевой (Two-loop) вклад (рис. 2a),

O-часть: однофотонное (One-photon) излучение из диаграмм с одним виртуальным фотоном (мягкое и жесткое) (рис. 2δ),

D-часть: двухфотонное (Double-photon) излучение (мягкое и жесткое) (рис. 2s).

Если действовать в приближении мягких фотонов, то, кроме этого, нужно учесть тот факт, что сечение процесса с излучением двух мягких фотонов, каждый с энергией меньшей ω (это как раз D-часть согласно нашей терминологии), отличается от сечения процесса с излучением двух мягких фотонов с суммарной энергией, меньшей ω . Разницу будем называть K-частью (обозначим ее σ_K) и во втором случае (с ограничением на суммарную энергию), который, вообще говоря, и соответствует экспериментальной постановке, ее нужно вычесть из сечения, соответствующего первому случаю.

С учетом вышесказанного, чтобы получить требуемое сечение на двухпетлевом уровне, нужно суммировать Q-, T-, O-, D-части и вычесть K-часть:

$$\sigma_{\text{NNLO}} = \sigma_Q + \sigma_T + \sigma_O + \sigma_D - \sigma_K.$$

Приведем все требуемые формулы.

Q-часть получается при квадрировании однопетлевой виртуальной амплитуды

$$\sigma_Q = |F^{(1)}(s)|^2 \sigma_0. \tag{18}$$

Замечаем, что здесь принципально требуется учет мнимой части вершинного формфактора, приведем его:

$$\operatorname{Im} F^{(1)}(s) = \frac{\alpha}{\pi} \cdot \frac{\pi}{2} \left[L - L_{\lambda} - \frac{3}{2} \right].$$
 (19)

Как видно, мнимая часть содержит ИКР (а при квадрировании и ведущую степень КЛ) и не может быть проигнорирована.

T-часть имеет вид

$$\sigma_T = 2\operatorname{Re}F^{(2)}(s)\sigma_0. \tag{20}$$

Эта часть сечения вычислена в рамках схемы перенормировки на массовой поверхности в работе [14] и в наших обозначениях выглядит так:

$$\operatorname{Re}F^{(2)}(s) = \left(\frac{\alpha}{\pi}\right)^{2} \left[\frac{1}{32}L^{4} - \frac{3}{16}L^{3} + \left(\frac{17}{32} - \frac{5}{4}\zeta_{2}\right)L^{2} + \left(-\frac{21}{32} + 3\zeta_{2} + \frac{3}{2}\zeta_{3}\right)L + \left(\frac{2}{5}\zeta_{2}^{2} - \frac{9}{4}\zeta_{3} - 3\zeta_{2}\ln 2 - \frac{1}{2}\zeta_{2} + \frac{405}{216} + L_{\lambda}^{2}\left(\frac{1}{8}L^{2} - \frac{1}{4}L + \frac{1}{8} - \frac{3}{4}\zeta_{2}\right) + L_{\lambda}\left(-\frac{1}{8}L^{3} + \frac{1}{2}L^{2} + \left(-\frac{7}{8} + \frac{5}{2}\zeta_{2}\right)L + \frac{1}{2} - \frac{13}{4}\zeta_{2}\right)\right].$$

Видно, что это выражение содержит нефизические степени КЛ (четвертую и третью), которым предстоит сократиться, и значения дзета-функции Римана $\zeta_2 = \pi^2/6$, $\zeta_3 \approx 1.202057$.

 $O ext{-}$ и $D ext{-}$ части имеют интуитивно понятный и известный из литературы вид:

$$\sigma_O = \delta_1^S \cdot 2 \operatorname{Re} F^{(1)}(s) \sigma_0, \tag{21}$$

$$\sigma_D = \frac{1}{2} (\delta_1^S)^2 \sigma_0. \tag{22}$$

Множитель $\frac{1}{2}$ обусловлен тождественностью фотонов. Отметим, что сечение σ_D имеет минимум в точке $\omega = \lambda e^{B/A}$ (при $\omega < \lambda e^{B/A}$ сечение падает), поэтому для численной оценки следует пользоваться значениями $\omega > \lambda e^{B/A}$, что, например, при $q^2 = 10^7$ ГэВ, $m = m_\mu$ дает $\omega > 72.33~\lambda$.

Наконец, K-часть имеет вид

$$\sigma_K = \frac{1}{2} \left(\frac{\alpha}{\pi}\right)^2 \frac{2}{3} \pi^2 (L - 1)^2 \sigma_0. \tag{23}$$

Точный вывод этой формулы приведен в Приложении.

Суммируя все вклады, получаем компактный результат, который не содержит ИКР и старших

Таблица 1. Структура по различным вкладам и зависимость от массы фотона относительных двухпетлевых поправок конечного состояния к дифференциальному сечению по инвариантной массе процесса (1) при M=2 ТэВ и $\omega=\omega_{\rm eff}=0.069 M$

λ, ГэВ	Q	T	0	D	K	NNLO
10^{-12}	1.7221	1.5956	-6.3766	3.0640	0.0062	-0.0011
10^{-11}	1.4666	1.3564	-5.4073	2.5894	0.0062	-0.0011
10^{-10}	1.2314	1.1364	-4.5170	2.1543	0.0062	-0.0011
10^{-9}	1.0168	0.9359	-3.7067	1.7592	0.0062	-0.0011
10^{-8}	0.8227	0.7548	-2.9764	1.4040	0.0062	-0.0011
10^{-7}	0.6492	0.5931	-2.3262	1.0889	0.0062	-0.0011
10^{-6}	0.4962	0.4507	-1.7558	0.8136	0.0062	-0.0011
10^{-5}	0.3638	0.3279	-1.2653	0.5786	0.0062	-0.0011
10^{-4}	0.2520	0.2245	-0.8548	0.3833	0.0062	-0.0011
10^{-3}	0.1607	0.1406	-0.5245	0.2282	0.0062	-0.0011
10^{-2}	0.0900	0.0761	-0.2741	0.1132	0.0062	-0.0011
10^{-1}	0.0398	0.0310	-0.1037	0.0380	0.0062	-0.0011
10^{0}	0.0103	0.0054	-0.0133	0.0029	0.0062	-0.0011
10^{1}	0.0012	-0.0009	-0.0030	0.0077	0.0062	-0.0011
10^{2}	0.0128	0.0124	-0.0726	0.0526	0.0062	-0.0011

нефизичных степеней КЛ:

$$\sigma_{\text{NNLO}} = \left(\frac{\alpha}{\pi}\right)^2 \left[c_2 L^2 + c_1 L + c_0\right] \sigma_0, \qquad (24)$$

где коэффициенты при степенях КЛ имеют вид:

$$c_2 = 2L_{\omega}^2 + 3L_{\omega} - 2\zeta_2 + \frac{9}{8},$$

$$c_1 = -4L_{\omega}^2 + L_{\omega}(4\zeta_2 - 7) + \frac{11}{2}\zeta_2 + 3\zeta_3 - \frac{45}{16},$$

$$c_0 = 2L_{\omega}^2 + 4L_{\omega}(1 - \zeta_2) - \frac{6}{5}\zeta_2^2 + \frac{3}{8}\zeta_2 - \frac{6}{5}\zeta_2 + \frac{19}{4}.$$

4. ЧИСЛЕННАЯ ОЦЕНКА И ВЫВОДЫ

Для всех численных оценок работы принимается следующий набор предписаний, вложенный в программу READY (версия 5.7):

исследуемая реакция (1) с конечной димюонной парой ($m=m_{\mu}$) и с энергией LHC $\sqrt{S}=13$ ТэВ;

электрослабые параметры CM и лептонные массы соответствуют работе [15];

учитываем все ароматы валентных и "морских" кварков в протоне кроме t;

MRST2004QED-набор функций кварковых распределений [16] (относительные поправки практически не зависят от выбора распределений);

накладываются следующие стандартные экспериментальные ограничения на косинус угла детектируемого лептона в с.ц.м. протонов $-\zeta^* \leq \zeta \leq \zeta^*$ или на его быстроту $|y(l)| \leq y(l)^*$; для детектора CMS значения ζ^* и $y(l)^*$:

$$y(l)^* = -\ln \operatorname{tg} \frac{\theta^*}{2} = 2.5,$$
 (25)
 $\zeta^* = \cos \theta^* \approx 0.986614,$

также используется второе ограничение CMS: $p_T(l) \ge 20 \text{ FpB};$

применяем так называемую чистую схему ("bare" setup) требований идентификации лептонов: не принимается во внимание "размазывание" (smearing) и не учитываются условия рекомбинации детектируемого лептона и радиационного фотона.

Структура и зависимость от массы фотона всех рассмотренных вкладов в относительную двухпетлевую поправку к сечению $d\sigma/dM$ при M=2 ТэВ в случае $l=\mu$ и использования эффективного значения $\omega_{\rm eff}=0.069M$ (см. ниже) приведены в табл. 1. Видно, что в сумме зависимость от λ отсутствует, масштаб каждого рассмотренного вклада весьма

Таблица 2. Структура и зависимость от ω относительных двухпетлевых поправок конечного состояния к дифференциальному сечению по инвариантной массе процесса (1) при M=2 ТэВ и массе фотона $\lambda=10^{-4}$ ГэВ

ω, ГэВ	Q	T	0	D	K	NNLO
10^{-3}	0.2519	0.2245	0.1486	0.0116	0.0062	0.6304
10^{-2}	0.2519	0.2246	-0.0466	0.0011	0.0062	0.4248
10^{-1}	0.2519	0.2246	-0.2418	0.0307	0.0062	0.2592
10^{0}	0.2519	0.2246	-0.4370	0.1002	0.0062	0.1335
10^{1}	0.2519	0.2246	-0.6323	0.2098	0.0062	0.0478
10^{2}	0.2520	0.2246	-0.8275	0.3594	0.0062	0.0021
10^{3}	0.2520	0.2246	-1.0228	0.5489	0.0062	-0.0035

велик и растет с уменьшением λ и только в сумме имеет величину, характерную для двухпетлевых эффектов.

Далее, в табл. 2 показана структура по вкладам и зависимость от параметра ω относительных двух-петлевых поправок конечного состояния к дифференциальному сечению по инвариантной массе процесса (1) при M=2 ТэВ и массе фотона $\lambda=10^{-4}$ ГэВ (напомним, что полный результат от λ не зависит).

Для точного учета двухпетлевых поправок требуется вычисление по фазовому объему как мягких, так и жестких тормозных фотонов с учетом возможностей детектора. Далее под термином "точный" учет понимаем именно такой подход. Тем не менее, граница между мягкими и жесткими фотонами вполне условная, можно ее вовсе не вводить в расчет, как это сделать, объясняется в [17] (так называемый G/N-метод). Точный расчет (с учетом жесткого излучения) и его сравнение с эффективной оценкой будет нашей следующей задачей.

Таблица 3. Зависимость относительных двухпетлевых поправок конечного состояния к дифференциальному сечению по инвариантной массе процесса (1) от M

М, ТэВ	$\delta_{ m NLO,FSR}$	$\omega_{ ext{eff}}/M$	$\delta_{ m NNLO,FSR}$
0.5	-0.0628	0.093	-0.0025
1.0	-0.0773	0.083	-0.0022
1.5	-0.0895	0.076	-0.0018
2.0	-0.1017	0.069	-0.0011
2.5	-0.1104	0.063	-0.0002
3.0	-0.1222	0.057	+0.0008

В настоящей работе численный расчет полученного результата в мягкофотонном приближении принципиально требует выбора значения ω . Чтобы получить приблизительную оценку величины двухпетлевых эффектов конечного состояния, поступим так:

- 1. точно рассчитаем однопетлевую радиационную поправку конечного состояния (обозначим ее $\delta_{
 m NLO.\,FSR}$),
- 2. подбираем эффективное значение максимальной энергии $\omega_{\rm eff}$, которое воспроизводит точный результат,
- 3. используем значение ω_{eff} для того, чтобы получить двухпетлевую поправку $\delta_{\mathrm{NNLO,\,FSR}}$.

Результат для относительных поправок к дифференциальному сечению по инвариантной массе

$$\delta_{\text{NNLO}} = \frac{d\sigma_{\text{NNLO}}/dM}{d\sigma_0/dM}$$
 (26)

приведен в табл. 3. Масштаб получившейся относительной поправки невелик, наблюдается близкая к линейной зависимость от M и изменение знака эффекта в районе $M=2.5~{\rm T}{\rm pB}$.

В работе в ясной форме выведены выражения для двухпетлевых КЭД-поправок конечного состояния к процессу (1). Понятно, что такую же форму будут иметь и двухпетлевые КЭД-поправки начального состояния. Пользуясь разработанной процедурой, можно сформировать также двухпетлевые КХД-поправки (как синглетный, так и несинглетный вклад). Также в работе предложена схема эффективной численной оценки рассмотренных радиационных эффектов, данная оценка является приблизительной, очевидно, что необходим точный учет жесткого тормозного излучения.

Автор признателен коллегам по группе RDMS CMS, а также A.Б. Арбузову и $\Theta.M.$ Быстрицкому за обсуждение.

Приложение

ВЫВОД ВЫРАЖЕНИЯ ДЛЯ σ_K

Сечение процесса с одним мягким фотоном имеет вид

$$\sigma_R = \sigma_0 \frac{\alpha}{\pi} L(\lambda, \omega), \qquad (\Pi.1)$$

$$L(\lambda, \omega) = -\frac{1}{4\pi} \int_{k_0 < \omega} \frac{d^3 \mathbf{k}}{k_0} T^{\alpha}(k) T_{\alpha}(k).$$

Для излучения из конечного состояния характерна комбинация

$$T^{\alpha}(k) = \frac{k_1^{\alpha}}{k_1 k} - \frac{k_2^{\alpha}}{k_2 k},\tag{\Pi.2}$$

где k — 4-импульс тормозного фотона.

Общее выражение для сечения процесса с двумя мягкими фотонами по области A имеет вид

$$\sigma_A^{\gamma\gamma} = \sigma_0 \left(\frac{\alpha}{\pi}\right)^2 \frac{1}{2} \left(\frac{1}{4\pi}\right)^2 \times (\Pi.3)$$

$$\times \int_A \frac{d^3 \mathbf{k}}{k_0} \frac{d^3 \mathbf{p}}{p_0} T^{\alpha}(p) T_{\alpha}(p) T^{\beta}(k) T_{\beta}(k).$$

Согласно введенным обозначениям очевидно, что

$$\sigma_D = \sigma_{k_0 < \omega, p_0 < \omega}^{\gamma \gamma}. \tag{\Pi.4}$$

Видно также, что

$$\sigma_K = \sigma_{k_0 < \omega, p_0 < \omega}^{\gamma \gamma} - \sigma_{k_0 + p_0 < \omega}^{\gamma \gamma}. \tag{\Pi.5}$$

Рассчитаем σ_K точно, для этого введем обозначение

$$I(a_{1}, a_{2}; b_{1}, b_{2}) = (\Pi.6)$$

$$= \left(\frac{1}{4\pi}\right)^{2} \int_{a_{1} < k_{0} < a_{2}, b_{1} < p_{0} < b_{2}} \frac{d^{3}\mathbf{k}}{k_{0}} \frac{d^{3}\mathbf{p}}{p_{0}} \times T^{\alpha}(p) T_{\alpha}(p) T^{\beta}(k) T_{\beta}(k).$$

Очевидно, что если $\lambda \ll a, b$, то выполняется условие

$$I(0,a;0,b) = L(\lambda,a)L(\lambda,b). \tag{\Pi.7}$$

Далее, если $da, db \ll a, b$, из простых геометрических соображений следует

$$I(a, a + da; b, b + db) =$$

$$= I(0, a + da; 0, b + db) + I(0, a; 0, b) -$$

$$- I(0, a; 0, b + db) - I(0, a + da; 0, b).$$

Упрощая с помощью (П.7) и явного вида $L(\lambda,\omega)=$ $=2(L-1)\ln\frac{2\omega}{\lambda}+...$ (см. формулу (15)), получим

$$I(a, a + da; b, b + db) = (\Pi.8)$$

$$= 4(L-1)^2 \ln \frac{a+da}{a} \ln \frac{b+db}{b} \approx$$
$$\approx 4(L-1)^2 \frac{da}{a} \frac{db}{b}.$$

Наконец, находим искомую разницу в сечениях:

$$\sigma_K = \sigma_0 \left(\frac{\alpha}{\pi}\right)^2 \frac{1}{2} \sum_{\Omega} I(a, a + da; b, b + db) =$$

$$= \sigma_0 \left(\frac{\alpha}{\pi}\right)^2 \frac{1}{2} 4(L - 1)^2 \int_0^{\omega} \frac{da}{a} \int_{\omega - a}^{\omega} \frac{db}{b} =$$

$$= \sigma_0 \left(\frac{\alpha}{\pi}\right)^2 \frac{1}{2} 4(L - 1)^2 \text{Li}_2 \left(\frac{a}{\omega}\right) \Big|_0^{\omega} =$$

$$= \sigma_0 \left(\frac{\alpha}{\pi}\right)^2 \frac{1}{2} \frac{2\pi^2}{3} (L - 1)^2,$$

где $\Omega=\{a<\omega\}\cap\{b<\omega\}\cap\{a+b>\omega\}$, а Li_2 означает дилогарифм Спенса.

СПИСОК ЛИТЕРАТУРЫ

- 1. ATLAS Collab., Phys. Lett. B **716**, 1 (2012) [arXiv:1207.7214 [hep-ex]]; CMS Collab., Phys. Lett. B **716**, 30 (2012) [arXiv:1207.7235 [hep-ex]].
- 2. CDF and D0 Collab., Phys. Rev. Lett. **109**, 071804 (2012) [arXiv:1207.6436 [hep-ex]].
- 3. M. Cvetič and S. Godfrey, hep-ph/9504216; J. L. Hewett and T. G. Rizzo, Phys. Rept. **183**, 193 (1989).
- 4. T. G. Rizzo, in *Proceedings of the 1996 DPF/DPB Summer Study on New Directions for High Energy Physics*, "Snowmass 96", Snowmass, CO, 25 June—12 July 1996 [hep-ph/9612440].
- 5. D. Bourilkov, hep-ph/0305125; CERN-CMS-NOTE-2006-085.
- Nima Arkani-Hamed, Savas Dimopoulos, and Gia Dvali, Phys. Lett. B 429, 263 (1998) [hep-ph/9803315]; I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, Phys. Lett. B 436, 257 (1998) [hep-ph/9804398]; L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 3370, 4690 (1999) [hep-ph/9905221, hep-th/9906064]; C. Kokorelis, Nucl. Phys. B 677, 115 (2004) [hep-th/0207234].
- 7. A. Leike, Phys. Rept. **317**, 143 (1999) [hep-ph/9805494].
- 8. В. А. Матвеев, Р. М. Мурадян, А. Н. Тавхелидзе, Препринт № Р2-4543, ОИЯИ (Дубна, 1969); S. D. Drell and T. M. Yan, SLAC-PUB-0755 (June, 1970), Phys. Rev. Lett. **25**, 316, 902 (Erratum) (1970).
- 9. V. A. Mosolov and N. M. Shumeiko, Nucl. Phys. B **186**, 397 (1981); A. Сороко, H. Шумейко, ЯФ **52**, 514 (1990) [Sov. J. Nucl. Phys. **52**, 329 (1990)].
- 10. U. Baur *et al.* (ZGRAD), Phys. Rev. D **65**, 033007 (2002) [hep-ph/0108274].

- H. Baer, J. Ohnemus, and J. F. Owens, Phys. Rev. D 40, 2844 (1989); 42, 61 (1990); W. T. Giele and E. W. N. Glover, Phys. Rev. D 46, 1980 (1992).
- 12. R. Hamberg, W. L. van Neerven, and T. Matsuura, Nucl. Phys. B **359**, 343 (1991).
- 13. Е. В. Дыдышко, В. Л. Ермольчик, В. А. Зыкунов, Х. Г. Суарес, С. В. Шматов, ЭЧАЯ **49**, 1267 (2018) [Phys. Part. Nucl. **49**, 722 (2018)].
- 14. F. A. Berends, W. L. van Neerven, and G. J. H. Burgers, Nucl. Phys. B **297**, 429 (1988).
- S. Alioli, A. B. Arbuzov, D. Yu. Bardin, *et al.*, Eur. Phys. J. C 77, 280 (2017) [arXiv:1606.02330 [hep-ph]].
- A. D. Martin, R. G. Roberts, W. J. Stirling, and R. S. Thorne, Eur. Phys. J. C 39, 155 (2005) [hepph/0411040].
- 17. В. А. Зыкунов, ЯФ **80**, 388 (2017) [Phys. Atom. Nucl. **80**, 699 (2017)].

TWO-LOOP CORRECTIONS OF FINAL STATE RADIATION TO THE DRELL—YAN PROCESS AT LHC IN SOFT-PHOTON APPROXIMATION

V. A. Zykunov

Joint Institute for Nuclear Research, Dubna, Russia; Francisk Skorina Gomel State University, Belarus

Using the soft-photon approximation and on-mass-shell renormalization the compact formulas for the two-loop electromagnetic corrections of final state radiation to 4-fermionic process in the s-channel are obtained. The scheme of effective numerical estimation of radiative effects of the final state for the Drell—Yan process experiments at LHC with large invariant mass is proposed.