= ЯДРА =

ВЛИЯНИЕ ВЫСОКОЛЕЖАЩИХ РЕЗОНАНСОВ НА СЕЧЕНИЯ ЗАХВАТА СОЛНЕЧНЫХ НЕЙТРИНО ЯДРОМ ¹²⁷I

© 2020 г. Ю. С. Лютостанский^{1)*}, Г. А. Коротеев²⁾, Н. В. Клочкова¹⁾, А. П. Осипенко¹⁾, В. Н. Тихонов¹⁾, А. Н. Фазлиахметов^{2),3)}

Поступила в редакцию 16.10.2019 г.; после доработки 16.10.2019 г.; принята к публикации 16.10.2019 г.

Изучается резонансная структура зарядово-обменной силовой функции S(E) и ее влияние на сечения захвата солнечных нейтрино ядром ¹²⁷I. Три типа изобарических резонансов — гигантский гамовтеллеровский, аналоговый и расположенные ниже пигми-резонансы — исследуются в рамках самосогласованной теории конечных ферми-систем. Проведены расчеты сечений захвата $\sigma(E)$ солнечных нейтрино для ядра ¹²⁷I с учетом резонансной структуры силовой функции S(E) и проанализировано влияние каждого резонанса на энергетическую зависимость $\sigma(E)$. Показано, что при расчетах сечения $\sigma(E)$ необходимо учитывать все высоколежащие зарядово-обменные резонансы. Проанализирован вклад нейтрино различного происхождения в структуру сечения $\sigma(E)$, в том числе вклад энергичных нейтрино в отношение образующихся изотопов ¹²⁷Хе и ¹²⁶Хе. Получено, что отношение изотопов ¹²⁶Хе/¹²⁷Хе является индикатором жестких борных нейтрино в солнечном спектре.

DOI: 10.31857/S004400272002018X

1. ВВЕДЕНИЕ

В нейтринной физике и астрофизике большое значение имеет процесс взаимодействия нейтрино с веществом. В большинстве задач необходимо рассчитывать сечения захвата нейтрино $\sigma(E)$ и учитывать структуру зарядово-обменной силовой функции S(E), определяющей величину и энергетическую зависимость $\sigma(E)$. Зарядово-обменная силовая функция S(E) имеет резонансный характер, и ее резонансная структура влияет на сечения нейтринного захвата $\sigma(E)$. Особенно это важно учитывать при моделировании детекторов нейтрино, основанных на реакции ν -захвата:

$$\nu_e + A(N, Z) \to e^- + A(N - 1, Z + 1).$$
 (1)

Первым в качестве вещества детектора нейтрино было предложено использовать изотоп ³⁷Cl. Хлор-аргоновый радиохимический метод, предложенный в 1946 г. Б. М. Понтекорво [1], был позднее реализован Р. Дэвисом [2] в США. Однако большие космические фоны сильно мешали проведению измерений, и началась реализация галийгерманиевого метода для измерения солнечных нейтрино [3, 4]. Низкопороговый детектор реакции 71 Ga $(\nu, e^-)^{71}$ Ge был установлен в подземной лаборатории и был хорошо защищен от космических лучей (подробнее см. обзор О. Г. Ряжской [5]).

Еще одним методом детектирования нейтрино является йодно-ксеноновый радиохимический метод, основанный на реакции

$$\nu_e + {}^{127}\text{I} \to e^- + {}^{127}\text{Xe},$$
 (2)

который похож на хлор-аргоновый, но имеет более низкий порог регистрации Q = 662.3 кэВ (для 37 Cl Q = 813.87 кэВ [6]), что увеличивает сечение нейтринного захвата $\sigma(E)$. В 1988 г. В. Хакстон [7] обратил внимание на то, что сечение $\sigma(E)$ в реакции (2) на йоде должно быть существенно больше, чем на хлоре, и объем йодного детектора можно сделать во много раз большим, чем хлорного. Но расчетов сечения $\sigma(E)$ реакции (2) приведено не было, а были сделаны только оценки, и в следующем году с участием автора работы [8] были проведены расчеты с учетом резонансной структуры зарядовообменной силовой функции S(E) дочернего ядра ¹²⁷Хе. Позже в 1991 г. эти расчеты были уточнены [9] с учетом особенностей нормировки силовой функции S(E) и был учтен quenching-эффект (подробнее см. в [10]). Несколькими годами позже в 1999 г. силовая функция S(E) была измерена в реакции 127 I(p, n) 127 Xe [11], и наши прогнозы [8, 9] неплохо совпали с экспериментальными данными. Также необходимо отметить расчеты Енгеля,

¹⁾Национальный исследовательский центр "Курчатовский институт", Москва, Россия.

²⁾Московский физико-технический институт (национальный исследовательский университет), Москва, Россия.

³⁾Институт ядерных исследований Российской академии наук, Москва, Россия.

^{*}E-mail: lutostansky@yandex.ru

Рис. 1. Схема зарядово-обменных возбуждений ядра ¹²⁷Хе в реакции ¹²⁷I $(p, n)^{127}$ Хе с распадом высоколежащих возбуждений в стабильный изотоп ¹²⁶Хе с эмиссией нейтрона. Обозначены гигантский гамов-теллеровский (GTR), аналоговый (AR) и расположенные ниже три пигми-резонанса (PR); S_n — энергия отрыва нейтрона в ядре ¹²⁷Хе.

Питтеля и Вогеля (J. Engel, S. Pittel, P. Vogel) [12, 13], проведенные в то же время. Как было позже показано в [11], сравнение с экспериментальной зависимостью силовой функции S(E) показало, что лучшая предсказательная точность оказалась у расчетов [9].

В резонансной структуре зарядово-обменной силовой функции ¹²⁷Хе выделяются три типа изобарических резонансов (см. рис. 1): гигантский гамов-теллеровский (GTR), аналоговый (AR) и расположенные ниже пигми-резонансы (PR) [14]. Похожая резонансная структура наблюдается и в других нейтронно-избыточных ядрах [15]. Недавно было показано [10, 16], что при расчетах полного сечения нейтринного захвата $\sigma(E)$ нельзя пренебрегать ни одним типом резонансов и неучет даже высоколежащих резонансов, таких как GTR, приводит к недобору в сечении $\sigma(E)$, что может существенно повлиять и на интерпретацию экспериментальных данных. В расчетах сечений захвата солнечных нейтрино получен похожий результат [17], что при расчетах сечения $\sigma(E)$ необходимо учитывать все зарядово-обменные резонансы в силовой функции S(E).

2. СТРУКТУРА ВОЗБУЖДЕННЫХ СОСТОЯНИЙ ЯДРА ¹²⁷Хе

На рис. 1 схематически показаны возбужденные состояния ядра-изобары ¹²⁷Хе, различные участки

ЯДЕРНАЯ ФИЗИКА том 83 № 3 2020

спектра возбуждений и изотопы, образующиеся в результате нейтринных захватов ядром ¹²⁷I и последующих распадов. Экспериментальные данные были получены в реакции ¹²⁷I(p, n)¹²⁷Xe [11], и была представлена таблица значений матричных элементов B(GT) в зависимости от энергии E_x (с шагом 0.5 МэВ) в дочернем ядре ¹²⁷Xe вплоть до энергии 20 МэВ. Было получено, что полная сумма B(GT) до энергии 20 МэВ равна 53.54 ± \pm 0.22 единиц, а это ≈85% от значения 3(N - Z) = 63, которое дает правило сумм для GT-возбуждений ядра ¹²⁷I. Ниже мы обсудим причины такого недобора (*quenching*-эффект).

На рис. 1 также обозначены: пороговая энергия $Q_{\beta} = 662.3 \pm 2.0 ext{ кэВ}$ и энергия отрыва нейтрона в ядре ¹²⁷Xe, $S_n = 7246 \pm 5 ext{ кэB}$ [18]. Возбужденные состояния ядра ¹²⁷Xe с энергией, превышающей S_n , будут распадаться с эмиссией нейтрона в стабильный изотоп ¹²⁶Xe и, таким образом, в реакции захвата нейтрино ядром ¹²⁷I будут образовываться два изотопа ¹²⁷Xe и ¹²⁶Xe. Если распад будет происходить в возбужденные состояния ядра ¹²⁶Xe, то последующий распад приведет к эмиссии одного или нескольких гамма-квантов. Легкого стабильного изотопа ¹²⁶Xe будет образовываться значительно меньше, но он останется в ксеноновой фракции после длительной выдержки после распада изотопа ¹²⁷Xe ($T_{1/2} = 36.4$ сут). Таким

образом, изотоп ¹²⁶Хе будет являться индикатором энергичных борных нейтрино.

На рис. 2 представлены графики зарядовообменной силовой функции S(E) образующегося ядра ¹²⁷Хе, полученные из обработки экспериментальных данных по рассеянию протонов на ядрах йода в реакции 127 I $(p, n)^{127}$ Xe [11]. На этих графиках выделены гигантский гамовтеллеровский резонанс — GTR — и два пигмирезонанса — PR1 и PR2, аппроксимированные Гауссом (G) и Брейт-Вигнером (B-W). Также представлены суммарные зависимости S(E) == S(GTR) + S(PR1) + S(PR2) в двух аппроксимациях. Получены энергии E_{GTR} = 14.9 МэВ для G- и B-W-аппроксимаций и $E_{PR1} = 8.3$ МэВ в B-W и $E_{PR1} = 8.3$ МэВ в G-аппроксимациях. Данные из[11] $E_{\text{GTR}} = 14.5 \text{ МэВ}, E_{\text{PR1}} \approx 8.7 \text{ МэВ},$ $E_{\rm PR2} = 5-6$ МэВ и $E_{\rm PR3} = 3.08$ МэВ ближе к результатам аппроксимации по Брейту-Вигнеру.

3. МЕТОД РАСЧЕТА СИЛОВОЙ ФУНКЦИИ

Зарядово-обменные возбуждения ядер описываются в микроскопической теории конечных ферми-систем (ТКФС) системой уравнений для эффективного поля [19]:

$$V_{pn} = e_q V_{pn}^{\omega} + \sum_{p'n'} F_{np,n'p'}^{\omega} \rho_{p'n'}, \qquad (3)$$
$$V_p^h \sum_{p'n'} F_{p'n'}^{\omega} + e_p^h$$

$$V_{pn}^{h} = \sum_{p'n'} F_{np,n'p'}^{\omega} \rho_{p'n'}^{h},$$

где V_{pn} и V_{pn}^h — эффективные поля квазичастиц и дырок в ядре, V_{pn}^{ω} — внешнее зарядово-обменное поле. Система секулярных уравнений (3) решалась для разрешенных переходов с локальным нуклоннуклонным взаимодействием F^{ω} в форме Ландау— Мигдала [19]:

$$F^{\omega} = C_0 \left(f'_0 + g'_0 \left(\boldsymbol{\sigma}_1 \boldsymbol{\sigma}_2 \right) \right) \left(\boldsymbol{\tau}_1 \boldsymbol{\tau}_2 \right) \delta \left(\mathbf{r}_1 - \mathbf{r}_2 \right), \quad (4)$$

где $C_0 = (d\rho/d\varepsilon_F)^{-1} = 300$ МэВ фм³ (ρ — средняя плотность ядерной материи), f'_0 и g'_0 — параметры соответственно изоспин-изоспинового и спин-изоспинового взаимодействия квазичастиц. Эти константы взаимодействия являются феноменологическими параметрами и, в данном случае, подбираются из сравнения с экспериментальными данными и из соображений симметрии (см. ниже).

Учет членов, связанных с пионной модой, приводит к эффективной перенормировке константы g'_0 [20]:

$$g'_{0\flat\phi} = g'_0 - \Delta g'_\pi,\tag{5}$$

где $\Delta g'_{\pi}$ — поправка к g'_0 , учитывающая влияние пионной моды, связанной, в основном, с высоколежащей Δ -изобарой. Согласно расчетам с учетом пионной моды [20] эти эффекты оказывают влияние на состояния, лежащие существенно выше GTR. Ранее в [20] из сравнения рассчитанных и экспериментальных значений энергий GTR и AR было получено $f'_0 = 1.35$ и $g'_0 = 1.22$, однако проведенный недавно анализ [21] расчетных и экспериментальных данных по энергиям аналоговых (38 ядер) и гамов-теллеровских (20 ядер) резонансов показал небольшую коррекцию параметров локального взаимодействия [21]:

$$f_0' = 1.351 \pm 0.027$$
 и $g_0' = 1.214 \pm 0.048.$

Расчеты зарядово-обменных возбуждений изотопа ¹²⁷ I проводились с учетом этой коррекции. Рассчитывались энергии E_i и квадраты матричных элементов M_i^2 возбужденных изобарических состояний дочернего ядра ¹²⁷ Хе, образованных разрешенными переходами. Матричные элементы нормировались согласно правилу сумм для GT-переходов как в [9]:

$$\Sigma M_i^2 = q3(N-Z) = e_q^2 3(N-Z) \approx \qquad (6)$$
$$\approx \int_0^{E_{\text{max}}} S(E) dE = I(E_{\text{max}}).$$

Здесь *q* < 1 — параметр, определяющий quenching-эффект — недобор в правиле сумм. В ТКФС $q=e_q^2$, где e_q —эффективный заряд, S(E) — зарядово-обменная силовая функция. Здесь E_{max} — максимальная энергия, учитываемая в расчетах или в эксперименте. В настоящих расчетах использовалось значение $E_{\rm max} =$ = 20 МэВ, как в эксперименте [11]. В экспериментах сумма (6) редко доходит до величины q=0.70~(70%) от 3(N-Z) в основном из-за небольших значений энергий Е_{тах} и трудностей с выделением и вычитанием фонов при энергиях, бо́льших, чем EGTR. Поскольку спектр функции S(E) имеет непрерывный резонансный характер, то величины $M_i^2(E_i)$ уширялись по Брейт-Вигнеру как в [9]. Дискретная низколежащая часть спектра выделяется отдельно.

4. ЭНЕРГИИ РЕЗОНАНСОВ И ЗАРЯДОВО-ОБМЕННАЯ СИЛОВАЯ ФУНКЦИЯ ИЗОТОПА ¹²⁷Хе

Результаты расчетов зарядово-обменной силовой функции S(E) изотопа ¹²⁷Хе представлены на рис. З вместе с экспериментальными данными по $^{127}I(p,n)^{127}$ Хе реакции. Силовая функция S(E) имеет резонансный характер, связанный с коллективными возбуждениями материнского

Рис. 2. Графики зарядово-обменной силовой функции S(E) образующегося ядра ¹²⁷Xe, полученные из обработки экспериментальных данных по реакции ¹²⁷I(p, n)¹²⁷Xe[11]. Выделены: гигантский гамов-теллеровский резонанс GTR и два пигми-резонанса PR1 и PR2, аппроксимированные Гауссом (G) — штриховая кривая и Брейт–Вигнером (B–W) — сплошная. Представлены суммарные зависимости S(E) = S(GTR) + S(PR1) + S(PR2) в двух аппроксимациях — B–W (1) и G (2).

Рис. 3. Зарядово-обменная силовая функция S(E) изотопа ¹²⁷ Хе для GT-возбуждений ¹²⁷ I. Сплошные кривые: I — экспериментальные данные по реакции ¹²⁷ I $(p, n)^{127}$ Хе [11], 2 — наш расчет по ТКФС; штриховые — резонансы GTR, PR1, PR2 и PR3.

ядра, куда вносят вклад различные квазичастичные $(p\bar{n})$ -конфигурации. Основные из них определяются спин-орбитальными квазичастичными (n-p)-переходами с $\Delta j = -1 = j_+ - j_-$ (spinflip transitions — sft): $1h_{11/2} - 1h_{9/2}$ (h), $2d_{5/2} - 2d_{3/2}$ (d), $1g_{9/2} - 1g_{7/2}$ (g) и, в меньшей степени, переходами с $\Delta j = 0 = j - j$ (core polarisation states — cps): $1h_{11/2} - 1h_{11/2}$, $2d_{3/2} - 2d_{3/2}$, $2d_{5/2} - 2d_{5/2}$, $1g_{7/2} - 1g_{7/2}$, $3s_{1/2} - 3s_{1/2}$, а также квазича-

ЯДЕРНАЯ ФИЗИКА том 83 № 3 2020

стичные возбуждения с обратным поворотом спина с $\Delta j = +1 = j_- - j_+$ (back spin-flip states — bsfs): $2d_{3/2}-2d_{5/2}$, $1g_{7/2}-1g_{9/2}$.

В табл. 1 представлены вклады одночастичных (n-p)-переходов в структуру зарядово-обменных возбуждений ядра ¹²⁷Хе как экспериментальные данные [11] по энергиям из реакции ¹²⁷I $(p, n)^{127}$ Хе, так и результаты расчетов по ТКФС. Наиболее коллективное состояние — гамов-теллеровский резонанс (GTR) с энергией 14.6 МэВ (эксперимент

Тип возб.	<i>Е</i> , МэВ		Вклад в структуру возбуждений, $\%$					
	Эксп. [11]	Расч. ТКФС	$1h_{11/2} - 1h_{9/2}$	$2d_{5/2} - 2d_{3/2}$	$1g_{9/2} - 1g_{7/2}$	j-j	$j_{-}-j_{+}$	
GTR	14.5	14.6	29	12	44	12	3	
	9.5	9.1	70	5	22	3	—	
PR1	8.4	8.3	—	41	33	22	4	
PR2	5.5 - 6.5	6.3	—	—	—	94	6	
		6.0	—	4	—	93	3	
PR3	3.08	3.1	—	21	6	68	5	
	2.62	2.8	—	—	—	96	4	
		2.0	—	—	—	13	87	

Таблица 1. Вклад одночастичных (n-p)-переходов (в %) в структуру зарядово-обменных возбуждений ядра 127 Хе

[11] дает *E*_{GTR} = 14.5 МэВ). Основной вклад в структуру GTR дают квазичастичные переходы с $\Delta j = -1 = j_+ - j_-$ (в сумме 85%), ниже расположено возбуждение, образуемое, в основном, sft-переходами *h*-типа. Еще ниже расположен пигми-резонанс PR1, расчетная энергия которого близка к экспериментальному значению и структура определяется, в основном, sft-переходами d- и q-типов, а также cps-переходами j-j-типа (22%). Пигми-резонанс PR2 экспериментально не определен, а теоретически он интерпретируется двумя возбуждениями cps с $\Delta j = 0$ (j-j)типа, т.е. это расщепленное коллективное возбуждение типа ω_0 в терминологии [20]. Ниже расположено резонансное возбуждение — пигмирезонанс PR3 — определяемое sft-переходами dтипа и, в основном, cps-переходами с $\Delta j = 0$. В области энергий 2-3 МэВ согласно расчетам расположены два возбуждения одночастичного типа: состояние с энергией 2.8 МэВ, определяемое j-j-переходами типа срs: $1h_{11/2}-1h_{11/2}$ (87%), и состояние с энергией 2.0 МэВ, определяемое bsfs-переходами $2d_{3/2}-2d_{5/2}$ (87%). Состояния, расположенные ниже двух МэВ, являются, в основном, одночастичными, и в настоящей работе не рассматриваются.

Отдельный интерес представляет проблема правила сумм (6) и связанный с ней quenchingэффект, заключающийся в наблюдаемом недоборе в сумме (6) до максимального теоретического значения 3(N - Z) [22] при q = 1. Экспериментальное значение quenching-параметра может сильно меняться для различных ядер [10, 17], например от q = 0.67 или $67 \pm 8\%$ для ⁹⁸ Mo [23] до q = 0.85 или 85% в случае с ядром ¹²⁷ I [11]. На рис. 4 представлена зависимость величины интеграла $I(E_{\rm max})$ (6) от переменного значения энергии $E_{\rm max}$ для изотопа ¹²⁷ Xe. Как видно, экспериментальные данные лучше всего в данном случае описываются расчетами со значениями эффективого заряда $e_q = 0.9$ (q = 0.81). Однако для других ядер расчетные значения e_q отличаются от 0.9, в основном, в меньшую сторону [10, 17]. Это в бо́льшей части характерно для более легких, чем ¹²⁷I, ядер и частично связано с неучетом в эксперименте высоколежащих (выше GTR) возбуждений, сформированных одночастичными переходами с $\Delta n = 1, 2$.

5. СЕЧЕНИЯ ЗАХВАТА СОЛНЕЧНЫХ НЕЙТРИНО ЯДРОМ ¹²⁷I

Формула для сечения реакции (ν_e, e^-), зависящего от энергии налетающего нейтрино E_{ν} , имеет вид [9]

$$\sigma(E_{\nu}) = \frac{(G_{\rm F}g_A)^2}{\pi c^3 \hbar^4} \times$$

$$\times \int_{0}^{E_{\nu}-Q} E_e p_e F(Z, A, E_e) S(x) dx,$$

$$E_e = E_{\nu} - Q - x + m_e c^2,$$

$$cp_e = \sqrt{E_e^2 - (mc^2)^2},$$
(7)

где $F(Z, A, E_e)$ — функция Ферми, S(E) — силовая функция, $G_F/(\hbar c)^3 = 1.1663787(6) \times 10^{-5}$ ГэВ⁻² — фермиевская константа слабого взаимодействия, $g_A = -1.2723(23)$ — аксиально-векторная константа из [24].

Сечения нейтринного захвата $\sigma(E)$ ядром ¹²⁷I в реакции ¹²⁷I(ν_e, e^-)¹²⁷Xе рассчитаны с экспериментальными зарядово-обменными силовыми функциями S(E) (см. рис. 2, 3) и с силовыми функциями S(E), рассчитанными по ТКФС по методу [10] (см. рис. 5). Для анализа влияния зарядово-обменных резонансов на величину сечения $\sigma(E)$ были также проведены расчеты без учета GTR и без учета пигми-резонансов.

ЯДЕРНАЯ ФИЗИКА том 83 № 3 2020

Рис. 4. Зависимость величины интеграла $I(E_{\text{max}})$ (6) от переменного значения энергии E_{max} для изотопа ¹²⁷Хе. Ступеньки — экспериментальные данные [11], сплошная кривая — расчет $e_q = 0.9$, штриховая — расчет $e_q = 0.8$, горизонтальная линия — значение правила сумм 3(N - Z) = 63.

Максимальное расхождение полного сечения в 30–15% наблюдается в районе 1.5–2.5 МэВ, а при энергиях, бо́льших 6 МэВ, расхождения не превышают 10%. Неучет только двух резонансов GTR и PR1 уменьшает сечение $\sigma(E)$ на величину от ~25 до ~80% при изменении энергии нейтрино в интервале 2–12 МэВ. Точнее это видно на рис. 6, где представлены отношения расчетных сечений $\sigma_i(E)$ реакции ¹²⁷I(ν_e, e^-)¹²⁷Xe, нормированных на полное сечение $\sigma_{tot}(E)$ с силовыми функциями S(E), рассчитанными по ТКФС.

Для расчетов сечений захвата солнечных нейтрино и анализа влияния зарядово-обменных резонансов важно правильно смоделировать поток солнечных нейтрино. В настоящее время существует достаточно большое количество моделей Солнца. Они отличаются друг от друга относительной концентрацией гелия, элементов тяжелее гелия (металличностью) или могут отличаться концентрацией какого-то отдельного элемента в какой-либо части Солнца (в центре, на поверхности). Также в разных моделях возможны разные размеры конвективной зоны Солнца и параметры непрозрачности среды. Наиболее актуальные модели на сегодня BS05(OP), BS05(AGS, OP), BS05(AGS, OPAL), разработанные группой Бакала [25]. Также существуют более новые модели, разработанные другой группой, такие как B16-GS98, B16-AGSS09met и др. [26]. Несмотря на то, что модели В16 более новые, чем BS05(OP), и также достаточно хорошо согласуются с наблюдаемыми данными, в настоящей статье приведены данные BS05(OP) и, так как все модели отличаются только нормировкой потоков нейтрино от каждой ядерной реакции в

Солнце, то достаточно легко пересчитать данные для другой модели.

Скорость захвата нейтрино R (число поглощенных нейтрино за единицу времени) связана с потоком солнечных нейтрино и сечением поглощения следующей формулой:

$$R = \int_{0}^{E_{\text{max}}} \rho_{\text{solar}}(E_{\nu}) \sigma_{\text{total}}(E_{\nu}) dE_{\nu}, \qquad (8)$$

где для энергии $E_{\rm max}$ можно ограничиться hepнейтрино (реакция ³He + $p \rightarrow$ ⁴He + $e^+ + \nu_e$) с $E_{\rm max} \leq 18.79$ МэВ или борными нейтрино (реакция ⁸B \rightarrow ⁸Be + $e^+ + \nu_e$) с $E_{\rm max} \leq 16.36$ МэВ [25]. Скорость захвата солнечных нейтрино представлена в SNU — это стандартная солнечная единица, соответствующая количеству событий в секунду на 10^{36} ядер мишени.

Численные значения расчетных скоростей захвата солнечных нейтрино R в реакции 127 I(ν_e, e^-) 127 Xe представлены в табл. 2 (в SNU). Расчеты сечений, представленных в табл. 2, проводились как без учета энергии отрыва нейтрона, так и до энергии отрыва нейтрона в ядре 127 Xe, равной $S_n = 7246 \pm 5$ кэВ [18], так как возбужденные состояния с бо́льшими энергиями быстро распадаются с вылетом нейтронов и образованием изотопа 126 Xe. Это уменьшает сечения $\sigma_i(E)$ на 17.2% (total), в основном, за счет борных нейтрино. Отметим, что энергетический порог для 127 I равен Q = 662.3 кэВ [6] и наиболее интенсивные солнечные нейтрино (pp) отсекаются, что приводит к еще

Рис. 5. Сечение нейтринного захвата $\sigma(E)$ в реакции ¹²⁷ I(ν_e, e^-)¹²⁷ Хе. Точки — расчет с экспериментальной силовой функцией S(E) (см. рис. 2). Сплошные и штриховые кривые — расчеты с силовой функцией S(E), полученной в ТКФС-подходе (см. рис. 3): 1 — полное сечение, 2 — расчет без учета GTR, 3 — расчет без учета GTR, PR1 и PR2, 5 — расчет без учета GTR, PR1, PR2 и PR3.

Рис. 6. Отношения расчетных сечений $\sigma_i(E)$ реакции ¹²⁷I(ν_e, e^-)¹²⁷Xe, нормированных на полное сечение $\sigma_{tot}(E)$ по ТКФС: *I* — расчет без учета GTR, *2* — расчет без учета GTR и PR1, *3* — расчет без учета GTR, PR1 и PR2, *4* — расчет без учета GTR, PR1, PR2 и PR3.

бо́льшему влиянию высоколежащих резонансов в силовой функции S(E).

Как видно из табл. 2 (см. также рис. 5, 6), неучет даже GTR приводит к сильному сокращению сечения и скорости захвата ≈70% в обоих случаях расчетов (с учетом и без энергии отрыва нейтрона). Особенно сильное влияние неучет резонансов оказывает на энергичные борные нейтрино.

Таблица 2 показывает, что учет энергии отрыва нейтрона в ядре ¹²⁷Хе приводит к уменьшению скорости захвата R, особенно для борных и *hep*нейтрино. Таким образом, при энергиях солнечных нейтрино, больших S_n , образуются изотопы ¹²⁶Хе, относительное количество которых является индикатором жестких борных нейтрино в солнечном спектре. Как видно из табл. 2, согласно расчетам относительное количество изотопов 126 Хе к 127 Хе должно составлять $\approx 17\%$. Это представляется интересным для будущих экспериментов с йодным детектором, тем более что 126 Хе — стабильный изотоп, который будет выделяться в виде газа.

6. ЗАКЛЮЧЕНИЕ

Исследовано влияние высоколежащих резонансов в зарядово-обменной силовой функции S(E)на сечения захвата солнечных нейтрино ядром ¹²⁷ I.

Таблица 2. Скорости захвата R солнечных нейтрино (в SNU) на изотопе ¹²⁷I (указаны скорости захвата нейтрино с учетом (R-total) и без учета GTR и GTR + PR1; расчеты проводились с Ферми-функцией [27] без учета и с учетом энергии отрыва нейтрона в ядре ¹²⁷Xe); Total также учитывает рер- и Ве-нейтринные каналы

Скорость захвата нейтрино на 127 I без учета отрыва нейтрона в ядре $^{127}\mathrm{Xe}$										
	B-8	hep	N-13	O-15	F-17	Total				
R-total	26.298	0.161	0.006	0.061	0.002	26.675				
R без GTR	6.935	0.035	0.003	0.034	0.001	7.092				
R без GTR и PR1	3.757	0.012	0.002	0.021	0.001	3.848				
Скорость захвата нейтрино на ¹²⁷ I с учетом отрыва нейтрона в ядре ¹²⁷ Xe										
	B-8	hep	N-13	O-15	F-17	Total				
<i>R</i> -total	21.777	0.09	0.006	0.061	0.002	22.082				
R без GTR	5.679	0.021	0.003	0.034	0.001	5.882				
R без GTR и PR1	3.752	0.012	0.002	0.021	0.001	3.843				

Проведен анализ известных экспериментальных данных по силовой функции S(E), полученных в реакции 127 I $(p,n)^{127}$ Xe [11]. Новые значения энергий зарядово-обменных резонансов немного отличаются от полученных ранее.

В рамках самосогласованной теории конечных ферми-систем проведены расчеты силовой функции S(E) и в расчетах представлены гамовтеллеровский, аналоговый и расположенные ниже пигми-резонансы. Расчеты проводились с параметрами квазичастичного локального нуклоннуклонного взаимодействия, скорректированными недавно [21] из сравнения рассчитанных энергий зарядово-обменных резонансов с последними экспериментальными данными. Представлены расчеты структуры зарядово-обменных возбуждений ядра ¹²⁷Хе, и приведены вклады одночастичных (n-p)-переходов в резонансные состояния. Показано, что наиболее коллективным является гигантский гамов-теллеровский резонанс. Сравнение расчетов функции S(E) с экспериментальными данными демонстрирует хорошее согласие как по энергиям, так и по высотам резонансных пиков. Сумма рассчитанных квадратов матричных элементов возбужденных состояний соответствует теоретическому правилу сумм с эффективным зарядом $e_q = 0.9$ или q = 0.81, что соответствует наблюдаемому параметру quenching-эффекта недобору в правиле сумм.

Проведены расчеты сечений захвата $\sigma(E)$ для солнечных нейтрино и показано сильное влияние резонансной структуры на величины рассчитываемых $\sigma(E)$, особенно в области больших энергий. Проведены расчеты сечений захвата $\sigma(E)$ солнечных нейтрино с учетом резонансной структуры силовой функции S(E) и проанализировано влияние каждого резонанса на энергетическую зависимость $\sigma(E)$. Получено, что при расчетах сечения $\sigma(E)$

ЯДЕРНАЯ ФИЗИКА том 83 № 3 2020

необходимо учитывать все зарядово-обменные резонансы в силовой функции S(E). Неучет даже одного высоколежащего гамов-теллеровского резонанса приводит к существенному уменьшению скорости захвата солнечных нейтрино до $\approx 70\%$ для ¹²⁷I (с учетом энергии отрыва нейтрона в ядре ¹²⁷Xe), в основном, за счет энергичных борных нейтрино.

Проведены расчеты с учетом энергии отрыва нейтрона — S_n в ядре ¹²⁷Хе и показано, что учет энергии S_n приводит к уменьшению скорости захвата R, особенно для борных и *hep*-нейтрино. При энергиях солнечных нейтрино, больших S_n , образуются изотопы ¹²⁶Хе, относительное количество которых является индикатором жестких борных нейтрино в солнечном спектре. Получено, что относительное количество изотопов ¹²⁶Хе к ¹²⁷Хе не мало́ и должно составлять ~20%. Таким образом, отношение изотопов ¹²⁶Хе–¹²⁷Хе является индикатором жестких борных нейтрино в солнечном спектре. Это представляется интересным для будущих экспериментов с йодным детектором, тем более что ¹²⁶Хе — стабильный изотоп, который будет выделяться в виде газа.

В расчетах не учитывалось влияние осцилляций нейтрино. Нейтринные осцилляции уменьшают количество электронных нейтрино, которые долетают до Земли, из-за их превращения в другие типы нейтрино. Однако в нашем случае, когда анализируются относительные соотношения, демонстрирующие влияние резонансов, осцилляции нейтрино можно не учитывать.

Авторы благодарны А. Л. Барабанову, В. В. Хрущеву и А. Ю. Лютостанскому за стимулирующие дискуссии и помощь в работе.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований, грант № 18-02-00670.

СПИСОК ЛИТЕРАТУРЫ

- B. Pontecorvo, Report PD-205 (Chalk River Laboratory, 1946); J. N. Bahcall, *Neutrino Astrophysics* (Cambridge Univ. Press, 1989);
 Б. Понтекорво, *Избранные труды*, под общ. ред. С. М. Биленького (Наука, Москва, 1997), т. 1, с. 31.
- 2. R. Davis, Jr., Phys. Rev. Lett. 12, 303 (1964).
- В. А. Кузьмин, Препринт № 62, ФИАН (Москва, 1964).
- 4. V. A. Kuzmin, Phys. Lett. 17, 27 (1965).
- 5. О. Г. Ряжская, ЎФН 188, 1010 (2018) [Phys. Usp. 61, 912 (2018)].
- M. Wang, G. Audi, A. H. Wapstra, F. G. Kondev, M. MacCormic, X. Xu, and B. Pfeiffer, Chin. Phys. C 36, 1603 (2012).
- 7. W. C. Haxton, Phys. Rev. Lett. 60, 768 (1988).
- 8. Ю. С. Лютостанский, Н. Б. Шульгина, Препринт ИАЭ-4876/2, ЦНИИ атоминформ (Москва, 1989).
- 9. Yu. S. Lutostansky and N. B Shul'gina, Phys. Rev. Lett. **67**, 430 (1991).
- Ю. С. Лютостанский, В. Н. Тихонов, ЯФ 81, 515 (2018) [Phys. At. Nucl. 81, 540 (2018)].
- M. Palarczyk, J. Rapaport, C. Hautala, D. L. Prout, C. D. Goodman, I. J. van Heerden, J. Sowinski, G. Savopulos, X. Yang, H. M. Sages, R. Howes, R. Carr, M. Islam, E. Sugarbaker, D. C. Cooper, K. Lande, *et al.*, Phys. Rev. C 59, 500 (1999).
- 12. J. Engel, S. Pittel, and P. Vogel, Phys. Rev. Lett. 67, 426 (1991).
- 13. J. Engel, S. Pittel, and P. Vogel, Phys. Rev. C **50**, 1702 (1994).
- 14. Ю. С. Лютостанский, Письма в ЖЭТФ 106, 9 (2017) [JETP Lett. 106, 7 (2017)].

- 15. Yu. S. Lutostansky, EPJ Web Conf. **194**, 02009 (2018).
- Ю. С. Лютостанский, ЯФ 82, 440 (2019) [Phys. At. Nucl. 82, 528 (2019)].
- 17. Ю. С. Лютостанский, А. П. Осипенко, В. Н. Тихонов, Изв. РАН. Сер. физ. **83**, 539 (2019) [Bull. Russ. Acad. Sci. Phys. **83**, 488 (2019)].
- 18. https://www-nds.iaea.org
- А. Б. Мигдал, Теория конечных ферми-систем и свойства атомных ядер, 2-е изд. (Наука, Москва, 1983) [А. В. Migdal, Theory of Finite Fermi Systems and Applications to Atomic Nuclei (Intersci., New York, 1967, 1st ed.)].
- 20. Ю. С. Лютостанский, ЯФ 74, 1207 (2011) [Phys. At. Nucl. 74, 1176 (2011)].
- 21. Ю. С. Лютостанский, ЯФ **83**,34 (2020) [Phys. At. Nucl. **83**, № 1 (2020)].
- 22. A. Arima, Nucl. Phys. A 649, 260 (1999).
- J. Rapaport, P. Welch, J. Bahcall, E. Sugarbaker, T. N. Taddeucci, C. D. Goodman, C. F. Foster, D. Horen, C. Gaarde, J. Larsen, and T. Masterson, Phys. Rev. Lett. 54, 2325 (1985).
- 24. C. Patrignani *et al.* (Particle Data Group), Chin. Phys. C **40**, 100001 (2016).
- 25. J. N. Bahcall, A. M. Serenelli, and S. Basu, Astrophys. J. Lett. **621**, L85 (2005).
- N. Vinyoles, A. M. Serenelli, F. L. Villante, S. Basu, J. Bergström, M. C. Gonzalez-Garcia, M. Maltoni, C. Peña-Garay, and N. Song, Astrophys. J. 835, 202 (2017).
- 27. Ю. П. Суслов, Изв. АН СССР. Сер. физ. **32**, 213 (1968).

INFLUENCE OF HIGH-LYING RESONANCES ON CROSS SECTIONS OF SOLAR NEUTRINO CAPTURE OF ¹²⁷I NUCLEI

Yu. S. Lutostansky¹⁾, G. A. Koroteev²⁾, N. V. Klochkova¹⁾, A. P. Osipenko¹⁾, V. N. Tikhonov¹⁾, and A. N. Fazliakhmetov^{2),3)}

¹⁾ National Research Center "Kurchatov Institute", Moscow, Russia

²⁾ Moscow Institute of Physics and Technology (National Research University), Russia

³⁾ Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia

The resonance structure of the charge-exchange strength function S(E) and its effect on the cross sections for the capture of solar neutrinos by the nucleus ¹²⁷I have been studied. Three types of isobaric resonances: giant Gamow–Teller resonances, analog resonances, and lower-lying pygmy resonances are investigated in the framework of the self-consistent theory of finite Fermi systems. The capture cross sections $\sigma(E)$ of solar neutrinos for the ¹²⁷I nucleus were calculated taking into account the resonance structure of the strength function S(E) and the effect of each resonance on the energy dependence $\sigma(E)$ was analyzed. It is shown that, when calculating the cross section $\sigma(E)$, it is necessary to take into account all high-lying charge-exchange resonances. The contribution of neutrinos of various origins to the cross section structure $\sigma(E)$ is analyzed, including the contribution of energetic neutrinos to the ratio of the resulting ¹²⁷Xe and ¹²⁶Xe isotopes. The ¹²⁶Xe/¹²⁷Xe isotope ratio was found to be an indicator of hard boron neutrinos in the solar spectrum.