= ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ И ПОЛЯ =

ИССЛЕДОВАНИЕ РЕАКЦИИ НЕУПРУГОГО РАССЕЯНИЯ A(p, p')XНА ЯДРАХ ⁹Ве и ⁹⁰Zr ПРИ ЭНЕРГИИ 1 ГэВ

© 2020 г. О. В. Миклухо^{1)*}, А. Ю. Киселев^{1)**}, Г. М. Амальский¹⁾, В. А. Андреев¹⁾, С. Г. Барсов¹⁾, Г. Е. Гаврилов¹⁾, А. А. Жданов¹⁾, А. А. Изотов¹⁾, Д. С. Ильин¹⁾, Н. Г. Козленко¹⁾, П. В. Кравченко¹⁾, Д. А. Майсузенко¹⁾, В. И. Мурзин¹⁾, Д. В. Новинский¹⁾, А. В. Шведчиков¹⁾

Поступила в редакцию 04.09.2019 г.; после доработки 04.09.2019 г.; принята к публикации 04.09.2019 г.

Поляризация вторичных протонов и дифференциальные сечения неупругой реакции (p, p') на ядрах ⁹Ве и ⁹⁰Zг при энергии протонного пучка 1 ГэВ измерены в широком диапазоне импульсов рассеянных протонов под углом $\Theta = 21^{\circ}$. Вторичные протоны детектировались с помощью магнитного спектрометра, оснащенного поляриметром на основе пропорциональных камер и углеродного анализатора. Как и ранее, при исследовании ядер ¹²С и ⁴⁰Ca, ²⁸Si и ⁵⁶Fe, наблюдена структура в поляризации и сечениях, возможно связанная с квазиупругим рассеянием на нуклонных корреляциях в ядрах ⁹Be и ⁹⁰Zr. Наблюдено отличие импульсных распределений отношения сечений рассеяния на ядрах ⁹⁰Zr и ¹²C и на ядрах ⁹⁰Zr и ⁹Be.

DOI: 10.31857/S004400272002021X

1. ВВЕДЕНИЕ

Данная работа является продолжением экспериментальной программы исследования кластеризации нуклонов в ядерной среде, которая проводится на синхроциклотроне ПИЯФ с использованием протонного пучка с энергией 1 ГэВ [1-4]. Ранее были измерены поляризация вторичных протонов и дифференциальные сечения в реакции A(p,p')X на ядрах ¹²С, ²⁸Si, ⁴⁰Са и ⁵⁶Fe под углом рассеяния $\Theta = 21^{\circ}$ [2, 4]. Измерения выполнены в широкой области импульсов рассеянных протонов K = 1370 - 1670 МэB/c, охватывающей как пик квазиупругого рN-рассеяния (импульс K_{pN}, соответствующий максимуму этого пика, примерно равен 1480 МэB/c), так и область больших импульсов $K > 1530 \text{ M} \cdot \text{B}/c$ вплоть до импульса, соответствующего ближайшему возбужденному уровню исследуемого ядра. Область K > 1530 МэB/c кинематически предпочтительна для квазиупругого рассеяния на ядерной нуклонной корреляции (NC) [5, 6], так как ее масса больше массы нуклона [1]. Была обнаружена структура в поляризации и дифференциальных сечениях реакции, возможно обусловленная квазиупругим рассеянием на различных многонуклонных корреляциях в ядрах [2, 4]. Определены с точностью ± 5 МэВ/*с* импульсные интервалы этой структуры II, III и IV, соответствующие рассеянию соответственно на двухнуклонных, трехнуклонных и четырехнуклонных корреляциях: K == 1535-1570 МэВ/*c* (II), K = 1570-1600 МэВ/*c* (III), K = 1600-1635 МэВ/*c* (IV) для ядер ¹²C, ²⁸ Si, ⁵⁶ Fe [2, 4] и K = 1545-1575 МэВ/*c* (II), K == 1575-1610 МэВ/*c* (III), K = 1610-1645 МэВ/*c* (IV) для ядра ⁴⁰Ca [1, 2]. Начало каждого интервала определялось по замедлению падения сечения рассеяния и (или) по заметному изменению поляризации вторичных протонов, что, возможно, связано с переходом к рассеянию на более тяжелой ядерной частице (корреляции).

В настоящей работе, в тех же кинематических условиях исследовалось более легкое, чем ранее, ядро ⁹Ве. Важной характеристикой этого ядра

Таблица 1. Параметры мишеней

Мишень	Размеры, мм толщина × × ширина × × высота	Концентрация изотопа, %	Плотность, г/см ³
⁹ Be	$4 \times 7 \times 10$	100	1.85
⁹⁰ Zr*	$2.7\times5.6\times9.7$	51.46	6.49

* см. Введение.

¹⁾Национальный исследовательский центр "Курчатовский институт" — ПИЯФ, Гатчина, Россия.

^{*}E-mail: miklukho_ov@pnpi.nrcki.ru

^{**}E-mail: kisselev@mail.desy.de

K , Мэ B/c	Р	K, МэВ/c	Р	K, МэВ/c	Р
1418.0	0.228 ± 0.020	1507.8	0.264 ± 0.010	1594.3	0.276 ± 0.011
1427.6	0.267 ± 0.019	1519.8	0.252 ± 0.014	1606.0	0.279 ± 0.014
1437.3	0.260 ± 0.018	1530.1	0.232 ± 0.015	1617.1	0.337 ± 0.016
1447.2	0.265 ± 0.018	1539.7	0.256 ± 0.011	1621.3	0.367 ± 0.013
1456.1	0.267 ± 0.011	1550.1	0.243 ± 0.011	1628.3	0.379 ± 0.016
1466.0	0.261 ± 0.011	1559.9	0.212 ± 0.015	1632.3	0.396 ± 0.014
1475.3	0.253 ± 0.014	1570.6	0.226 ± 0.017	1643.1	0.403 ± 0.014
1485.3	0.240 ± 0.014	1573.6	0.275 ± 0.012	1654.6	0.366 ± 0.015
1497.5	0.268 ± 0.010	1583.4	0.271 ± 0.010	1665.2	0.379 ± 0.019

Таблица 2. Поляризация (*P*) вторичных протонов в реакции ${}^{9}\text{Be}(p,p')X$ при 1 ГэВ под лабораторным углом рассеяния $\Theta = 21^{\circ}$

Таблица 3. Поляризация (P) вторичных протонов в реакции 90 Zr(p, p')X при 1 ГэВ под лабораторным углом рассеяния $\Theta = 21^{\circ}$

K, Мэ B/c	Р	K, Мэ B/c	Р	K, МэВ/c	Р
1419.8	0.211 ± 0.021	1509.8	0.272 ± 0.011	1595.8	0.289 ± 0.011
1429.5	0.212 ± 0.020	1521.6	0.289 ± 0.014	1607.7	0.285 ± 0.015
1439.2	0.203 ± 0.019	1532.0	0.253 ± 0.014	1621.2	0.325 ± 0.011
1449.0	0.206 ± 0.019	1541.7	0.271 ± 0.010	1632.3	0.320 ± 0.011
1458.0	0.247 ± 0.013	1552.2	0.284 ± 0.011	1644.9	0.323 ± 0.015
1467.8	0.236 ± 0.012	1561.9	0.289 ± 0.015	1656.0	0.301 ± 0.017
1477.1	0.271 ± 0.016	1572.5	0.265 ± 0.015	1667.3	0.293 ± 0.020
1487.2	0.257 ± 0.016	1575.5	0.311 ± 0.013		
1499.3	0.264 ± 0.011	1585.0	0.289 ± 0.010		

является то, что один нуклон (нейтрон) имеет существенно меньшую энергию связи (~2 МэВ), чем остальные [7]. Исследовалось также более тяжелое, чем ранее, ядро циркония (Zr) при натуральном изотопическом составе мишени (90 Zr — 51.46%, 91 Zr — 11.23%, 92 Zr — 17.11%, 94 Zr — 17.4%, 96 Zr — 2.8%) с наибольшим присутствием изотопа 90 Zr. Измерены поляризация (P) и дифференциальные сечения рассеяния ($\sigma^{incl} = \frac{d^2\sigma}{d\Omega dK}$) в зависимости от импульса вторичного протона.

В этой статье мы приводим также новые данные по отношениям сечений рассеяния $\sigma^{\text{incl}}(A)/\sigma^{\text{incl}}(A')$ для некоторых ядер A(A'), исследованных в наших экспериментах.

2. МЕТОДИКА ЭКСПЕРИМЕНТА

Методика эксперимента подробно описана в работе [2]. Протонный пучок синхроциклотрона ПИЯФ фокусировался на мишени магнитного спектрометра. Для калибровки установки использовались большие мишени из полиэтилена (CH₂)

ЯДЕРНАЯ ФИЗИКА том 83 № 3 2020

и углерода (С), а также тонкие полиэтиленовые пленки [2]. В основных измерениях использовались малые мишени из бериллия (⁹Ве) и циркония (⁹⁰Zr) (табл. 1). С помощью магнитного спектрометра, оснащенного поляриметром на основе пропорциональных камер и углеродного анализатора, измерялись импульсы вторичных протонов из реакции A(p, p')X и их поляризация. Основные параметры магнитного спектрометра приведены в табл. 2 работы [2]. Импульсное разрешение спектрометра (FWHM) в опытах с мишенями из бериллия и циркония (табл. 1) составляло соответственно ~6.7 и ~8.6 МэВ/с. Параметры поляриметра приведены в работе [2] (табл. 3).

Калибровка анализирующей способности поляриметра при различных импульсных настройках спектрометра осуществлялась с использованием данных по упругому *pp*-рассеянию, полученных в данном эксперименте. Проводились измерения поляризации с мишенями из полиэтилена (CH₂) и углерода (C) [2] при соответствующих угловых положениях спектрометра. Неопределенности ка-

Рис. 1. Импульсное распределение событий в инклюзивной реакции ⁹Ве(p, p')X под углом рассеяния $\Theta = 21^{\circ}$. ω — разница энергий протона пучка (E_0) и вторичного протона (E). Отрезок штриховой линии с меткой IV соответствует импульсному интервалу IV, определенному в тексте.

либровки включены в полную ошибку поляризационных измерений.

Относительное дифференциальное сечение $=\frac{d^2\sigma}{dOdK}$ инклюзивной реакции на ядрах ²⁸Si σ^{incl} и ⁵⁶Fe находилось, как в [4], из импульсных спектров, измеренных при различных импульсных настройках спектрометра. При этом суммировались события в импульсных интервалах с шириной 10 МэВ/с. Абсолютная нормировка сечения рассеяния в реакции с ядром ${}^{9}\text{Be}$ (${}^{90}\text{Zr}$) проводилась при импульсной настройке магнитного спектрометра, соответствующей кинематике упругого *pp*-рассеяния. В измерениях использовалась комбинированная мишень из бериллия (циркония) (табл. 1) и водородосодержащей тонкой полиэтиленовой пленки [2]. При нормировке сечения на данные упругого pp-рассеяния учитывался вклад от рассеяния на углероде в пленке. Относительные систематические ошибки $\delta\sigma^{
m incl}/\sigma^{
m incl}$ нормировки сечений реакций 9 Be(p, p')X и 90 Zr(p, p')X составили соответственно $\pm 5.1\%$ и $\pm 3\%$.

На рис. 1 приведен импульсный спектр вторичных протонов из реакции (p, p') с ядром ⁹Ве. Наблюдается широкий пик в этом спектре при переданной ядру энергии $\omega = 26$ МэВ. Подобный пик не проявляется в импульсном спектре в случае реакции с ядром ⁹⁰Zr.

3. РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТА

Результаты измерений поляризации Р (темные квадраты на рис. 2, 3) и сечений $\frac{d^2\sigma}{d\Omega dK}$ (кружки на рис. 4, 5) в реакциях ${}^{9}\text{Be}(p, p')X$ и ${}^{90}\text{Zr}(p, p')X$ в зависимости от импульса рассеянного протона К. Малые статистические ошибки измерения сечений представлены внутри кружков. Экспериментальные данные приведены также в табл. 2-5. Светлый квадрат на рис. 2 и 3 соответствует поляризации в упругом рассеянии протонов на ядрах 4 He [8]. Штриховая кривая на рисунках отвечает расчету поляризации в реакции ${}^{12}C(p, p')X[2]$ в рамках импульсного приближения с искаженными волнами с учетом релятивистского искажения нуклонного спинора в ядерной среде ИПИВ* [9, 10]. Присутствие этой кривой на рис. 2 и 3 позволяет сравнить данные по поляризации для ядер ⁹Ве и ⁹⁰Zr с аналогичными данными для ядра ¹²С [2] на рис. 1 в работе [4].

Рис. 2. Поляризация *P* протонов, рассеянных подуглом $\Theta = 21^{\circ}$ (темные квадраты) в инклюзивной реакции ⁹Be(*p*, *p'*)*X*, в зависимости от импульса вторичного протона *K*. Штриховая кривая — результат вычисления поляризации в реакции ¹²C(*p*, *p'*)*X* в рамках импульсного приближения с искаженными волнами с учетом модификации нуклонного спинора в ядерной среде ИПИВ* [2]. Квадрат отвечает поляризации в упругом рассеянии протонов на ядрах ⁴He [8]. Импульс K_{pN} примерно отвечает максимуму квазиупругого *pN*-пика. Отрезки точечных линий соответствуют импульсным интервалам II, III, IV и II'. Эти интервалы, импульсы K_2 , K_3 , K_4 и K'_2 , K_m , K_d определены в тексте.

Импульсные интервалы II, III и IV (определенные во введении) для ядер ⁹Ве и ⁹⁰Zr отмечены на рис. 2 и 3 отрезками точечной линии. Начало каждого импульсного интервала находилось по замедлению падения сечения рассеяния (рис. 4 и 5) и (или) по заметному изменению поляризации вторичных протонов (рис. 2 и 3), что возможно связано с переходом к рассеянию на более тяжелой ядерной частице (корреляции) [1, 2, 4]. Начало интервалов, определяемое из сечения рассеяния, отмечено на рис. 4 и 5 стрелкой с метками (III), (IV) и (II), (III) соответственно. На этих рисунках стрелка с метками (II*) и (IV*) отвечает случаю, когда начало импульсного интервала определялось по величине поляризации (рис. 2 и 3). Стрелка без метки соответствует концу интервала IV. В случае рассеяния на ядре ⁹Ве конец интервала IV можно определить более точно из импульсного спектра на рис. 1. Отметим здесь, что область самых больших импульсов, которая сразу следует за областью IV, в основном определяется квазиупругим рассеянием на остаточных ядрах (X) из реакций A(p, p'NC)X [2, 4]. Эти процессы рас-

ЯДЕРНАЯ ФИЗИКА том 83 № 3 2020

сеяния (A(p, p'X)NC) на легком ядре, ⁹Be, когда массы корреляций и остаточных ядер не очень сильно отличаются, могут существенно уменьшить ширину отмеченного выше интервала IV со стороны больших значений импульса K (рис. 1). В результате мы определили с точностью ± 5 МэВ/cимпульсные интервалы II, III и IV, которые могут быть обусловлены квазиупругим рассеянием на двухнуклонных, трехнуклонных и четырехнуклонных корреляциях [2, 4], для ядра ⁹Be K == 1535–1570 МэВ/c (II), K = 1570-1605 МэВ/c(III), K = 1605-1625 МэВ/c (IV) и ядра ⁹⁰Zr K == 1535–1575 МэВ/c (II), K = 1575-1610 МэВ/c(III), K = 1610-1630 МэВ/c (IV).

На рис. 2 и 3 отмечены вычисленные импульсы вторичного протона K_2 , K_3 (K_3^*) и K_4 , соответствующие максимумам квазиупругих пиков в реакциях квазиупругого рассеяния ⁹Be(p, p' NC)X и ⁹⁰Zr(p, p' NC)X на неподвижной ядерной нуклонной корреляции (NC), состоящей из двух, трех и четырех нуклонов. В этих кинематических расчетах масса NC бралась равной массе легкого ядра с

Рис. 3. То же, что на рис. 2, но для реакции 90 Zr(p, p')X.

простой внутренней структурой ²H, ³He (³H) и ⁴Не. Предполагалось также, что остаточное ядро (X) в реакции находится в основном состоянии. Как видно, на рис. 2 импульсы K_2 (1566 МэВ/c), $K_3 \approx K_3^*$ (1599 МэВ/с), за исключением импульса K_4 (1636 МэВ/c), и на рис. З импульсы K_2 (1565 MəB/c), $K_3 \approx K_3^*$ (1599 MəB/c), K_4 $(1631 \text{ M} \rightarrow \text{B}/c)$ находятся в пределах соответствующих импульсных интервалов II, III, IV, найденных из экспериментальных данных (импульс K₄ на рис. 2 находится вне интервала IV, что обусловлено отмеченным выше уменьшением ширины этого интервала). Это наблюдение сохраняется и в случае, когда масса NC меньше (из-за эффекта модификации в ядерной среде [10]), чем масса соответствующего свободного легкого ядра [2].

Мы предполагаем, что ширина каждого импульсного интервала (II, III, IV) определяется, главным образом, движением ядерной нуклонной корреляции в плоскости реакции (p, p') в направлении, перпендикулярном направлению протонного пучка. Эффективный горизонтальный угловой захват спектрометра при упругом рассеянии на многонуклонной корреляции может быть в несколько раз больше, когда корреляция движется, чем, когда она неподвижна [2]. Это дает нам возможность увидеть угловое распределение поляризации в рассматриваемом импульсном интервале, которое может быть подобным распределению поляризации в упругом рассеянии на соответствующем легком ядре. Так, мы ожидали увидеть близкое к однородному распределение поляризации в рассеянии на четырехнуклонной корреляции (⁴He) в пределах импульсного интервала IV [2, 4], подобное измеренному распределению поляризации в свободном упругом рассеянии протонов на ядрах ⁴He [8], приведенному в работе [2] (рис. 7).

Средняя поляризация в импульсных интервалах II, III, IV при рассеянии на ядрах ⁹Ве и ⁹⁰Zr (рис. 2 и 3), также как при рассеянии на ядре ¹²С (рис. 1 в [4]), растет от интервала II к интервалу IV. В пределах каждого интервала, за исключением интервала II для ядра ⁹Ве, поляризация практически не меняется. Поляризация в интервале II при рассеянии на ядре ⁹Ве уменьшается к концу интервала. Подобный эффект мы наблюдали в области (IV) рассеяния на четырехнуклонных корреляциях ядер ²⁸Si и ⁵⁶Fe [4]. В реакции с ядром ⁹Ве поляризация в импульсном интервале IV ($P_{\rm IV}$) достигает заметно большего значения ($P_{IV}({}^{9}\text{Be}) =$ $= 0.372 \pm 0.010$), чем в рассеянии на ядре углерода $(P_{\rm IV}(^{12}{\rm C}) = 0.348 \pm 0.010)$ [4]. В то же время поляризация $P_{\rm IV}$ в рассеянии на ядре ${}^{90}{\rm Zr} (P_{\rm IV} ({}^{90}{\rm Zr}) =$

Рис. 4. Дифференциальное сечение $\frac{d^2\sigma}{d\Omega dK}$ реакции ⁹Ве(p, p')X (кружки) в зависимости от импульса вторичного протона *К*. Импульс K_{pN} примерно отвечает максимуму квазиупругого pN-пика. Стрелка и стрелки с метками (II*), (III), (IV) определены в тексте.

= 0.323 ± 0.008) заметно меньше, чем $P_{\rm IV}(^{12}{\rm C})$. Наблюдаемая поляризация $P_{\rm IV}$ в реакции (p,p') со всеми исследованными ядрами существенно меньше, чем поляризация $P_{4\rm He}$ в свободном упругом рассеянии протонов на ядрах ⁴He (светлый квадрат на рис. 2 и 3) [8]. Это может быть связано с модификацией протон-нуклонного взаимодействия в ядре [2], приводящей к уменьшению поляризации с ростом нуклонной плотности ядерной среды [10]. Возможно, подобная модификация взаимодействия протона с четырехнуклонным кластером является причиной уменьшения поляризации $P_{\rm IV}$ в рассеянии на ядре ⁹⁰Zr по сравнению с рассеянием на ядре ⁹Be, которое имеет меньшую нуклонную плотность, чем ядро циркония.

В заключение этого параграфа отметим результаты измерения поляризации в области импульсов 1410 < K < 1530 МэВ/c (рис. 2 и 3), охватывающей пик квазиупругого pN-рассеяния (рис. 4 и 5), максимум которого находится примерно при импульсе K_{pN} . В этой области существенную роль играют процессы многократного выбивания нуклонов из ядра [11]. Импульс вторичного протона

(K) в этих процессах меньше, чем в исследуемом одноступенчатом (p, p')-процессе выбивания одного нуклона. Двухступенчатый процесс выбивания нуклонов уменьшает поляризацию вторичного протона при \check{K} меньше, чем K_m (рис. 2), также как анализирующую способность (A_y) в подобном эксперименте (p, p') с ядром ¹²С (LAMPF) при энергии 0.8 ГэВ [11]. В нашем эксперименте мы видим также падение поляризации при импульсах K, близких к импульсу K_d (рис. 2). Такое падение поляризации наблюдалось в рассеянии на всех исследованных нами ядрах [2, 4] и наиболее отчетливо в рассеянии на легком ядре углерода [2, 12]. В LAMPF не обнаружено подобного уменьшения A_{y} как в экспериментальных, так и в теоретических данных [11]. Причем теоретические расчеты были выполнены с учетом многоступенчатых процессов выбивания нуклонов из ядра углерода. В нашем (p, p')-эксперименте при энергии 1 ГэВ (большей, чем энергия протонного пучка в LAMPF) в области K > 1530 MэB/c обнаружены эффекты, возможно обусловленные квазиупругим рассеянием на многонуклонных корреляциях [2, 4]. Мы предположи-

Рис. 5. То же, что на рис. 4, но для реакции 90 Zr(p, p')X. Стрелка и стрелки с метками (II), (III), (IV*) определены в тексте.

ли, что отмеченное выше уменьшение поляризации в области 1410 < K < 1530 МэВ/с может быть обусловлено неупругим рассеянием на двухнуклонной корреляции, приводящим к развалу ее на два нуклона [12]. Поляризация в этом процессе рассеяния, также как в квазиупругом рассеянии в интервале II (рис. 4 в работе [12]), может быть существенно меньше поляризации в квазиупругом рассеянии на некоррелируемых нуклонах ядра углерода (штриховая кривая на рис. 4 в [12]). В рамках модели короткодействующих корреляций [6] два нуклона, принадлежащих двухнуклонной корреляции (²H), имеют противоположно направленные импульсы, примерно одинаковой величины, близкие к импульсу Ферми, $\sim 250 \text{ M} \cdot \text{B}/c$, соответствующему кинетической энергии нуклона ~ 35 МэВ. Импульс K'_2 на рис. 2 найден в кинематической программе для реакции ${}^{9}\text{Be}(p, p'^{2}\text{H})^{7}\text{Li}$ при энергии возбуждения остаточного ядра (⁷Li) ~70 МэВ, равной суммарной кинетической энергии нуклонов в покоящейся корреляции (²H). Импульс K_2' смещен по отношению к импульсу K_2 (принадлежащему интервалу II) в сторону меньших

значений *К*. Импульсный интервал II', отмеченный отрезком точечной линии и охватывающий импульс K'_2 , определяется движением корреляции. Импульс K'_2 и интервал II' для реакции (p, p') с ядром ⁹⁰Zr приведены на рис. 3.

4. ОТНОШЕНИЯ СЕЧЕНИЙ РАССЕЯНИЯ НА ЯДРАХ

На рис. 6 и 7 представлены отношения сечений рассеяния $\eta(A/A') = \frac{d^2\sigma}{d\Omega dK}(A) / \frac{d^2\sigma}{d\Omega dK}(A')$ на исследованных ядрах (кружки) в зависимости от импульса вторичного протона *K*. *A* и *A'* на рис. 6 соответствуют ядрам ⁹⁰Zr и ¹²C (²⁸Si, ⁴⁰Ca, ⁵⁶Fe), а на рис. 7 соответствуют ядрам ⁹⁰Zr и ⁹Be.

При вычислении отношений $\eta(A/A')$ использовались сечения рассеяния на ядрах, полученные с учетом только статистических ошибок в относительных измерениях. Для ядер ⁹Ве и ⁹⁰Zr использовались данные, приведенные в табл. 4 и 5. Данные для ядер ¹²C, ²⁸Si, ⁴⁰Ca и ⁵⁶Fe

Рис. 6. Отношения сечений рассеяния (кружки) на ядрах ⁹⁰Zr и ¹²C, ²⁸Si, ⁴⁰Ca, ⁵⁶Fe (η (Zr/C), η (Zr/Si), η (Zr/Ca), η (Zr/Fe)) в зависимости от импульса вторичного протона K. Вертикальная штриховая линия при K = 1575 МэВ/c отделяет область больших импульсов K, где минимальный импульс нуклонов в ядре ¹²C, K_N^{min} , определенный в тексте, больше, чем импульс Ферми k_F для ядра углерода (~220 МэВ/c). Отрезки точечной линии соответствуют импульсным интервалам III, IV и 1560 < K < 1630 МэВ/c, определенным в тексте. Импульс K_{pN} примерно отвечает максимуму квазиупругого pN-пика.

взяты из работы [4]. Относительные систематические ошибки ($\delta\eta/\eta(A/A')$) определения отношений $\eta(A/A')$, обусловленные систематическими неопределенностями нормировки сечений рассеяния на ядрах ⁹Ве и ⁹⁰Zr (см. текст выше), на ядрах ¹²С и ⁴⁰Ca [2], на ядрах ²⁸Si и ⁵⁶Fe [4], составляли $\delta\eta/\eta(Zr/C) = \pm 3.4\%$, $\delta\eta/\eta(Zr/Si) = \pm 4.5\%$, $\delta\eta/\eta(Zr/Ca) = \pm 4.6\%$, $\delta\eta/\eta(Zr/Fe) = \pm 5.2\%$ (рис. 6), $\delta\eta/\eta(Zr/Be) = \pm 5.9\%$ (рис. 7).

На рис. 6 вертикальная штриховая линия при K = 1575 МэB/c отделяет область больших импульсов рассеянных протонов K, где минимальный импульс нуклона K_N^{\min} в ядре ¹²С больше, чем импульс Ферми k_F для ядра углерода (~220 МэB/c) [3, 4]. В этой области наблюдаются интервалы III и IV, в пределах которых величина отношения сечений $\eta(\text{Zr/C})$ практически не зависит от импульса рассеянного протона K. Причем величина $\eta(\text{Zr/C})$ в интервале IV несколько больше, чем

ЯДЕРНАЯ ФИЗИКА том 83 № 3 2020

в интервале III. Заметим, что эти интервалы почти совпадают с импульсными интервалами III и IV, найденными при анализе экспериментальных данных по поляризации и сечениям в реакции с ядром углерода [2] и предположительно соответствующие упругому рассеянию в ядерной среде на трехнуклонных и четырехнуклонных корреляциях [2]. Подобная структура в отношении сечений $\eta(Zr/C)$ впервые наблюдалась в отношениях сечений η (Fe/C), η (Ca/C) и η (Si/C) [3, 4]. Согласно [6]. обнаружение ступенчатого изменения величины отношения сечений является сильным указанием на доминирование рассеяния на нуклонных корреляциях. Анализ (e, e')-эксперимента [6] показывает, что ступенчатый рост отношения сечений рассеяния $\eta(Fe/C)$ связан с несколько меньшей средней нуклонной плотностью ядра углерода по сравнению с ядром железа [3]. Не наблюдается ступенчатый рост отношений сечений рассеяния η (Zr/Si), η (Zr/Ca) и η (Zr/Fe) (рис. 6) в области

МИКЛУХО и др.

K, Мэ B/c	$rac{d^2\sigma}{d\Omega dK}$, мбн/(ср МэВ/ c)	K, Мэ B/c	$rac{d^2\sigma}{d\Omega dK}$, мбн/(ср МэВ/ c)	K, Мэ B/c	$rac{d^2\sigma}{d\Omega dK}$, мбн/(ср МэВ/ c)
1405.1	0.1816 ± 0.0014	1495.0	0.2612 ± 0.0017	1584.9	0.0655 ± 0.0010
1415.1	0.1983 ± 0.0015	1505.0	0.2397 ± 0.0016	1594.9	0.0508 ± 0.0010
1425.1	0.2149 ± 0.0016	1514.9	0.2235 ± 0.0016	1605.0	0.0393 ± 0.0007
1435.0	0.2320 ± 0.0016	1524.9	0.1999 ± 0.0010	1615.0	0.0355 ± 0.0007
1445.1	0.2449 ± 0.0018	1534.9	0.1736 ± 0.0010	1625.0	0.0346 ± 0.0006
1455.0	0.2562 ± 0.0018	1544.9	0.1459 ± 0.0010	1634.9	0.0341 ± 0.0006
1465.0	0.2650 ± 0.0018	1554.9	0.1202 ± 0.0010	1644.8	0.0236 ± 0.0006
1475.0	0.2625 ± 0.0017	1564.9	0.0981 ± 0.0010		
1484.9	0.2586 ± 0.0018	1574.9	0.0800 ± 0.0010		

Таблица 4. Сечение реакции ${}^{9}\text{Be}(p,p')X$ при 1 ГэВ под лабораторным углом рассеяния $\Theta = 21^{\circ}$

Таблица 5. Сечение реакции 90 Zr(p,p')X при 1 ГэВ под лабораторным углом рассеяния $\Theta=21^\circ$

K , Мэ B/c	$\frac{d^2\sigma}{d\Omega dK}$, мбн/(ср МэВ/ c)	K, Мэ B/c	$rac{d^2\sigma}{d\Omega dK}$, мбн/(ср МэВ/ c)	K, Мэ B/c	$rac{d^2\sigma}{d\Omega dK}$, мбн/(ср МэВ/с)
1405.0	0.5875 ± 0.0081	1495.0	0.8550 ± 0.0074	1584.9	0.4903 ± 0.0053
1415.0	0.6345 ± 0.0056	1505.0	0.8450 ± 0.0060	1594.9	0.4234 ± 0.0049
1425.0	0.6636 ± 0.0060	1515.0	0.8022 ± 0.0062	1604.9	0.3692 ± 0.0046
1435.0	0.7094 ± 0.0062	1525.0	0.7827 ± 0.0063	1614.9	0.3210 ± 0.0042
1445.1	0.7294 ± 0.0066	1535.0	0.7189 ± 0.0065	1624.9	0.2834 ± 0.0039
1455.1	0.7816 ± 0.0066	1544.9	0.7175 ± 0.0051	1634.9	0.2195 ± 0.0037
1465.0	0.8213 ± 0.0066	1555.0	0.6595 ± 0.0052	1644.9	0.1607 ± 0.0036
1475.0	0.8378 ± 0.0069	1565.0	0.5974 ± 0.0053		
1485.0	0.8274 ± 0.0074	1574.9	0.5200 ± 0.0054		

импульсов K = 1560 - 1630 МэB/c, охватывающей импульсные интервалы III и IV, проявившиеся в отношении $\eta(\text{Zr}/\text{C})$. В этой области мы видим только скейлинговое поведение отношений сечений рассеяния (величина отношения практически не зависит от импульса K), которое наблюдалось ранее в отношениях сечений $\eta(\text{Fe}/\text{Si}), \eta(\text{Fe}/\text{Ca})$ [3] и $\eta(\text{Ca}/\text{Si})$ [4]. Следуя сказанному выше, можно предположить, что уже в ядре ²⁸ Si наступает насыщение ядерных сил и средняя нуклонная плотность в ядрах ²⁸ Si, ⁴⁰ Ca, ⁵⁶ Fe и ⁹⁰ Zr почти одинакова.

В отличие от отношения сечений $\eta(Zr/C)$ (рис. 6), в отношении сечений $\eta(Zr/Be)$ на рис. 7 мы видим только узкий импульсный интервал IV, где величина $\eta(Zr/Be)$ не зависит от импульса вторичного протона *K*. Этот интервал совпадает с интервалом IV, найденным при анализе сечения рассеяния на ядре ⁹Ве (рис. 1). В импульсном интервале III (рис. 7) величина отношения n(Zr/Be) сильно зависит от импульса К. Правая вертикальная ось на рис. 7 соответствует вычисленному среднему значению минимального импульса (K_N^{\min}) ядерного нуклона при заданном импульсе рассеянного протона К [3, 4]. Величина К_N^{min} зависит от энергии связи ядерных нуклонов. Сплошные кривые на рисунке с метками 2 и 1 — это результат вычисления импульса K_N^{\min} при квазиупругом рассеянии соответственно на нейтроне ядра ⁹Ве с очень малой энергией связи и на остальных нуклонах ядра с большей энергией связи [7]. Горизонтальная штриховая линия отвечает равенству импульса K_N^{\min} и импульса Ферми $k_{
m F}$ для ядра

Рис. 7. Отношение сечений рассеяния (кружки) на ядрах ⁹⁰ Zг и ⁹Be (η (Zг/Be)) в зависимости от импульса вторичного протона *K*. Сплошные кривые с метками 2 и 1 отвечают результатам расчета минимального импульса K_N^{\min} , определенного в тексте, соответственно для квазиупругого рассеяния на слабосвязанном нейтроне ядра ⁹Be [7] и на других нуклонах этого ядра. Горизонтальная штриховая линия отвечает случаю, когда вычисленные импульсы K_N^{\min} равны импульсу Ферми $k_F(C)$ для ядра углерода. Вертикальные штриховые линии с метками 1' и 2' соответственно при K = 1580 МэВ/c и $K \approx 1600 \text{ МэB}/c$ отделяют области импульсов вторичных протонов, где $K_N^{\min} > k_F$. Отрезки точечной линии с метками III, IV и импульс K_{pN} означают то же, что и на рис. 6.

⁹Ве в приближении, что последний равен импульсу Ферми для ядра углерода $k_{\rm F}({\rm C})$ (~220 M₉B/c). Вертикальные штриховые линии с метками 2' и 1' указывают на области K > ~1600 M₉B/c и K >> 1580 M₉B/c, где импульс $K_N^{\rm min}$ при квазиупругом рассеянии соответственно на слабосвязанном нейтроне ядра ⁹Ве и на остальных нуклонах этого ядра превышает импульс Ферми. Анализ данных, приведенных на рис. 7, позволяет предположить, что причиной отмеченной выше неоднородности отношения сечений η (Zr/Be) в импульсном интервале III может быть существенный вклад от квазиупругого рассеяния на нейтроне ядра ⁹Ве с малой энергией связи.

5. ЗАКЛЮЧЕНИЕ

Поляризация вторичных протонов в неупругой (p, p')-реакции с ядрами ⁹Be, ⁹⁰Zr и дифференциальные сечения этих реакций измерены при энергии протонного пучка 1 ГэВ под углом рассеяния $\Theta = 21^{\circ}$. Данные получены в широком диапазоне импульсов рассеянных протонов K, охватывающем область квазиупругого pN-пика и область больших импульсов (K > 1530 МэB/c), включающей широкий пик возбуждения ядра ⁹Be.

Также как при исследовании ядер 12 С и 40 Са [2], и ядер 28 Si и 56 Fe [4] в области K > 1530 МэВ/cнаблюдена структура в поляризации рассеянных протонов и сечениях рассеяния на ядрах 9 Be и 90 Zr. Эта структура, возможно, связана с квазиупругим рассеянием протонов на ядерных двухнуклонных, трехнуклонных и четырехнуклонных корреляциях.

Обнаружено отличие импульсных распределений отношения сечений рассеяния на ядрах $^{90}{\rm Zr}$ и $^{12}{\rm C}$ и на ядрах $^{90}{\rm Zr}$ и $^{9}{\rm Be}.$

Авторы благодарны сотрудникам ускорителя ПИЯФ за стабильный протонный пучок с энергией 1 ГэВ. Авторам хотелось бы выразить также признательность А.А. Воробьеву и С.Л. Белостоцкому за их поддержку и плодотворные дискуссии.

СПИСОК ЛИТЕРАТУРЫ

- O. V. Miklukho, A. Yu. Kisselev, G. M. Amalsky, V. A. Andreev, G. E. Gavrilov, A. A. Izotov, N. G. Kozlenko, P. V. Kravchenko, M. P. Levchenko, D. V. Novinskiy, A. N. Prokofiev, A. V. Shvedchikov, S. I. Trush, and A. A. Zhdanov, Письма в ЖЭТФ 102, 15 (2015) [JETP Lett. 102, 11 (2015)].
- О. В. Миклухо, А. Ю. Киселев, Г. М. Амальский, В. А. Андреев, Г. Е. Гаврилов, А. А. Жданов, А. А. Изотов, Н. Г. Козленко, П. В. Кравченко, М. П. Левченко, Д. В. Новинский, А. Н. Прокофьев, А. В. Шведчиков, С. И. Труш, ЯФ 80, 175 (2017) [Phys. At. Nucl. 80, 299 (2017)].
- O. V. Miklukho, A. Yu. Kisselev, G. M. Amalsky, V. A. Andreev, G. E. Gavrilov, D. S. Ilyin, A. A. Izotov, P. V. Kravchenko, D. A. Maysuzenko, V. I. Murzin, A. N. Prokofiev, A. V. Shvedchikov, S. I. Trush, and A. A. Zhdanov, Письма в ЖЭТФ 106, 63 (2017) [JETP Letters 106, 69 (2017)].
- О. В. Миклухо, А. Ю. Киселев, Г. М. Амальский, В. А. Андреев, Г. Е. Гаврилов, А. А. Жданов, А. А. Изотов, Д. С. Ильин, П. В. Кравченко, Д. А. Майсузенко, В. И. Мурзин, А. Н. Прокофьев, А. В. Шведчиков, С. И. Труш, ЯФ 81, 304 (2018) [Phys. At. Nucl. 80, 320 (2018)].

- 5. Д. И. Блохинцев, ЖЭТФ **33**, 1295 (1957) [Sov. Phys. JETP **6**, 995 (1958)].
- K. S. Egiyan, N. B. Dashyan, M. M. Sargsian, M. I. Strikman, L. B. Weinstein, G. Adams, P. Ambrozewicz, M. Anghinolfi, B. Asavapibhop, G. Asryan, H. Avakian, H. Baghdasaryan, N. Baillie, J. P. Ball, N. A. Baltzell, V. Batourine, *et al.*, Phys. Rev. Lett. **96**, 082501 (2006).
- С. Л. Белостоцкий, С. С. Волков, А. А. Воробьев, Ю. В. Доценко, Л. Г. Кудин, Н. П. Куропаткин, О. В. Миклухо, В. Н. Никулин, О. Е. Прокофьев, ЯФ 41, 1425 (1985) [Sov. J. Nucl. Phys. 41, 903 (1985)].
- О. В. Миклухо, Г. М. Амальский, В. А. Андреев, С. Л. Белостоцкий, Д. О. Веретенников, Ю. В. Елкин, А. А. Жданов, А. А. Изотов, А. Ю. Киселев, А. И. Ковалев, Л. М. Коченда, М. П. Левченко, Т. Норо, А. Н. Прокофьев, Д. А. Прокофьев, Х. Сакагучи и др., ЯФ 69, 474 (2006) [Phys. At. Nucl. 69, 452 (2006)].
- V. A. Andreev, M. N. Andronenko, G. M. Amalsky, S. L. Belostoski, O. A. Domchenkov, O. Ya. Fedorov, K. Hatanaka, A. A. Izotov, A. A. Jgoun, J. Kamiya, A. Yu. Kisselev, M. A. Kopytin, O. V. Miklukho, Yu. G. Naryshkin, T. Noro, E. Obayashi, *et al.*, Phys. Rev. C **69**, 024604 (2004).
- 10. C. J. Horowitz and M. J. Iqbal, Phys. Rev. C **33**, 2059 (1986).
- R. D. Smith and S. J. Wallace, Phys. Rev. C 32, 1654 (1985).
- O. V. Miklukho, A. Yu. Kisselev, G. M. Amalsky, V. A. Andreev, G. E. Gavrilov, D. S. Ilyin, A. A. Izotov, N. G. Kozlenko, P. V. Kravchenko, M. P. Levchenko, D. V. Novinskiy, D. A. Maysuzenko, V. I. Murzin, A. N. Prokofiev, A. V. Shvedchikov, S. I. Trush, and A. A. Zhdanov, J. Phys.: Conf. Ser. **938**, 012013 (2017).

STUDY OF INELASTIC A(p, p')X REACTION WITH ⁹Be AND ⁹⁰Zr NUCLEI AT 1 GeV

O. V. Miklukho¹, A. Yu. Kisselev¹, G. M. Amalsky¹, V. A. Andreev¹, S. G. Barsov¹, G. E. Gavrilov¹, D. S. Ilyin¹, A. A. Izotov¹, N. G. Kozlenkon¹, P. V. Kravchenko¹, D. A. Maysuzenko¹, V. I. Murzin¹, D. V. Novinskiy¹, A. V. Shvedchikov¹, A. A. Zhdanov¹

¹⁾ National Research Centre "Kurchatov Institute" — PNPI, Gatchina, Russia

The secondary proton polarization and differential cross sections of the (p, p') inelastic reaction on nuclei ⁹Be and ⁹⁰Zr at the initial proton energy of 1 GeV were measured over a wide range of the scattered proton momenta at a laboratory angle of $\Theta = 21^{\circ}$. Scattered protons were detected by means of the magnetic spectrometer equipped with a polarimeter based on multiwire proportional chambers and carbon analyzer. A structure in the polarization and cross section data, related probably to the quasielastic scattering off nucleon correlations in the ⁹Be and ⁹⁰Zr nuclei, was observed as earlier in the same data for the ¹²C, ²⁸Si, ⁴⁰Ca, and ⁵⁶Fe nuclei. A difference in the momentum distributions of the scattering cross section ratios for the ⁹⁰Zr and ¹²C nuclei and for the ⁹⁰Zr and ⁹Be nuclei was observed.