= ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ И ПОЛЯ =

КВАЗИКЛАССИЧЕСКОЕ УСЛОВИЕ КВАНТОВАНИЯ РЕЛЯТИВИСТСКОЙ СВЯЗАННОЙ СИСТЕМЫ ДВУХ ФЕРМИОНОВ РАВНЫХ МАСС

© 2020 г. Ю. Д. Черниченко*

Гомельский государственный технический университет им. П.О. Сухого; Международный центр перспективных исследований, Гомель, Беларусь Поступила в редакцию 27.11.2019 г.; после доработки 12.12.2019 г.; принята к публикации 12.12.2019 г.

Получены новые релятивистские квазиклассические условия квантования для системы двух фермионов равных масс, взаимодействующих посредством несингулярных запирающих квазипотенциалов и квазипотенциалов воронкообразного типа. Определены условия квантования в псевдоскалярном, псевдовекторном и векторном случаях. Рассмотрение проведено в рамках гамильтоновой формулировки квантовой теории поля путем перехода в релятивистское конфигурационное представление для случая связанной системы двух релятивистских спиновых частиц равных масс.

DOI: 10.31857/S0044002720030046

1. ВВЕДЕНИЕ

Для описания спектра масс мезонов в основном и довольно успешно использовалось нерелятивистское уравнение Шредингера с линейным потенциалом

$$V_{\text{lin}}(r) = \sigma r, \quad \sigma > 0.$$

Однако нерелятивистская модель оказалась непригодной при описании спектра масс существенно релятивистских систем, поскольку вклад релятивистских поправок для высших радиальных возбуждений становится большим $(v^2/c^2\approx 0.4)$, а для легких векторных ρ -, ω -мезонов он даже сравним с вкладом нерелятивистского гамильтониана, выбираемого в качестве основного [1—3].

Иной подход для нахождения спектра масс мезонов основан на применении одновременного полностью ковариантного двухчастичного трехмерного релятивистского квазипотенциального (РКП) подхода Логунова-Тавхелидзе в квантовой теории поля [4]. В настоящей работе используется тот вариант РКП-подхода [5] к задаче о составной системе двух релятивистских спиновых частиц, который основан на гамильтоновой формулировке квантовой теории поля [6]. При этом важно, что трехмерность в нее заложена с самого начала, а все частицы даже в промежуточных состояниях являются физическими, т.е. лежат на массовых поверхностях. Тем самым двухчастичная задача сводится к одночастичной, описание которой ведется на языке волновой РКП-функции одной релятивистской

частицы, удовлетворяющей полностью ковариантному трехмерному РКП-уравнению в импульсном пространстве (см., например, работы [7–10]). Кроме того, РКП-подход для случая взаимодействия двух релятивистских спиновых частиц равных масс $m_1=m_2=m$, развитый в работах [5, 6], позволяет перейти от импульсной формулировки в пространстве Лобачевского к трехмерному релятивистскому конфигурационному представлению, введенному в [11]. Для сферически симметричных потенциалов конечно-разностная форма РКП-уравнения для волновой функции в конфигурационном представлении имеет вид [12]

$$\frac{1}{2mc^2}(M_{\mathcal{Q}} - \hat{H}_0)\psi_{M_{\mathcal{Q}}}(\mathbf{r}) =$$

$$= V(\mathbf{r})\hat{A}\left(\frac{\hat{H}_0}{2mc^2}\right)\psi_{M_{\mathcal{Q}}}(\mathbf{r}).$$
(1)

Здесь
$$M_{\mathcal{Q}}^2 = \mathcal{Q}^2 = (q_1 + q_2)^2$$
, оператор
$$\widehat{H}_0 = 2mc^2 \left[\operatorname{ch} \left(i\lambda \frac{\partial}{\partial r} \right) + \right.$$

$$\left. + \frac{i\lambda}{r} \operatorname{sh} \left(i\lambda \frac{\partial}{\partial r} \right) - \frac{\lambda^2}{2r^2} \Delta_{\theta,\varphi} \exp \left(i\lambda \frac{\partial}{\partial r} \right) \right]$$
(2)

— оператор свободного гамильтониана, являющийся конечно-разностным оператором, построенным из операторов сдвига $\exp\left(\pm i\lambda\partial/\partial r\right)$, в то время как $\Delta_{\theta,\varphi}$ — его угловая часть, причем $\lambda=\hbar/mc$ — комптоновская длина волны, а модуль радиусавектора \mathbf{r} ($\mathbf{r}=r\mathbf{n}$, $|\mathbf{n}|=1$) является релятивистским инвариантом; квазипотенциал $V(\mathbf{r})$ является

^{*}E-mail: chyud@mail.ru; chern@gstu.by

локальным в смысле геометрии Лобачевского и для простоты считается не зависящим от энергии $M_{\mathcal{Q}}$, а оператор \hat{A} определяется выражением

$$\hat{A}\left(\frac{\hat{H}_{0}}{2mc^{2}}\right) = \frac{1}{4} \left[a \left(\frac{\hat{H}_{0}}{2mc^{2}}\right)^{2} + b \right], \qquad (3)$$

$$a = \begin{cases} 1 & \text{при } \hat{O} = \gamma_{5} \text{ (псевдоскаляр);} \\ \frac{1}{2} & \text{при } \hat{O} = \gamma_{\mu} \text{ (вектор);} \\ -\frac{1}{2} & \text{при } \hat{O} = \gamma_{5}\gamma_{\mu} \text{ (псевдовектор);} \end{cases}$$

$$b = \begin{cases} 0 & \text{при } \hat{O} = \gamma_{5} \text{ (псевдоскаляр);} \\ \frac{1}{4} & \text{при } \hat{O} = \gamma_{\mu} \text{ (вектор);} \\ \frac{3}{4} & \text{при } \hat{O} = \gamma_{5}\gamma_{\mu} \text{ (псевдовектор).} \end{cases}$$

Напомним, что для простоты рассмотрения, как и в работе [13], мы считаем, что квазипотенциал имеет биспинорную структуру вида $I \otimes I$, а вершинная функция также имеет заданную спинорную структуру, пропорциональную матрице \hat{O} , не зависящую от импульсных переменных, причем в качестве \hat{O} выбираются матрицы Дирака $\gamma_5, \gamma_\mu, \gamma_5 \gamma_\mu$ ($\mu=0,1,2,3$). Такой выбор матрицы \hat{O} позволил найти точные решения РКП-уравнения (1) с кулоновоподобным хромодинамическим потенциалом (см., например, работы [12, 13])

$$V_{\text{Coul}}(r) = -\frac{\alpha_s}{r}, \quad \alpha_s > 0,$$
 (4)

осуществляющим взаимодействие между кварками внутри адрона путем обмена безмассовым скалярным глюоном и обладающим в импульсном пространстве КХД-подобным поведением [14].

Отметим еще работы в [15], в которых в рамках РКП-подхода [5] были найдены выражения для квазиклассических условий квантования и ширин лептонных распадов векторных и псевдоскалярных мезонов. Также обратим внимание и на работу [16], в которой были вычислены слабые константы распада псевдоскалярных и векторных мезонов, волновые функции которых удовлетворяют РКП-уравнению, предложенному в [17], с полным релятивистским потенциалом взаимодействия кварка, т.е. учитывающим все спин-зависимые и спиннезависимые релятивистские вклады.

Цель настоящей работы состоит в получении в релятивистском квазиклассическом приближении (см., например, работы [15, 18–20]) релятивистских формул для условий квантования связанной системы двух релятивистских спиновых частиц равных масс с относительным орбитальным

моментом ℓ . Рассмотрены случаи, когда взаимодействие двух релятивистских фермионов равных масс является либо несингулярным, чисто запирающим, либо содержит кулоновское взаимодействие. В разд. 2 в рамках РКП-подхода в квантовой теории поля, сформулированного в релятивистском ${f r}$ -представлении для случая взаимодействия двух релятивистских частиц равных масс [11], получены квазиклассические решения уравнения для радиальной волновой РКП-функции $\varphi_{\ell}(r,\chi)$ и определены условия применимости релятивистского квазиклассического приближения. В разд. 3 и 4 получены условия квантования псевдоскалярных, векторных и псевдовекторных мезонов в релятивистском квазиклассическом приближении для случая взаимодействия двух релятивистских спиновых частиц равных масс посредством несингулярных запирающих квазипотенциалов и квазипотенциалов воронкообразного типа. Результаты исследований обсуждаются в Заключении.

2. КВАЗИКЛАССИЧЕСКОЕ РЕШЕНИЕ РКП-УРАВНЕНИЯ

В основу нашего рассмотрения положено полностью ковариантное РКП-уравнение в **r**-представлении в конечно-разностной форме (1), построенное в [12] для волновой РКП-функции $\psi_{M_{\mathcal{Q}}}(\mathbf{r})$ для случая сферически симметричных взаимодействий двух релятивистских спиновых частиц равных масс $m_1 = m_2 = m$.

Используя разложение волновой РКП-функции $\psi_{M_{\mathcal{O}}}(\mathbf{r})$ по функциям Лежандра,

$$\psi_{M_{\mathcal{Q}}}(\mathbf{r}) = \sum_{\ell=0}^{\infty} (2\ell+1)i^{\ell} \frac{\varphi_{\ell}(r,\chi)}{r} P_{\ell} \left(\frac{\mathbf{\Delta}_{q,m\lambda_{\mathcal{Q}}} \cdot \mathbf{r}}{|\mathbf{\Delta}_{q,m\lambda_{\mathcal{Q}}}|r} \right),$$

вместо (1) получим уравнение для радиальной волновой РКП-функции $\varphi_{\ell}(r,\chi)$:

$$\left[\widehat{H}_0^{\rm rad} - \operatorname{ch}\chi + V(r)\widehat{A}\left(\widehat{H}_0^{\rm rad}\right)\right] \varphi_\ell(r,\chi) = 0, \quad (5)$$

где

$$\widehat{H}_0^{\text{rad}} = \operatorname{ch}\left(i\lambda \frac{d}{dr}\right) + \frac{\lambda^2 \ell(\ell+1)}{2r(r+i\lambda)} \exp\left(i\lambda \frac{d}{dr}\right)$$

— радиальная часть оператора свободного гамильтониана (2), оператор \hat{A} по-прежнему определен в (3), а χ — быстрота, которая параметризирует

импульс $oldsymbol{\Delta}_{q,m\lambda_{\mathcal{O}}}$ и полную энергию $^{1)}$:

$$\Delta_{q,m\lambda_{\mathcal{Q}}} = mc \operatorname{sh} \chi \mathbf{n}_{\Delta_{q,m\lambda_{\mathcal{Q}}}}, \quad |\mathbf{n}_{\Delta_{q,m\lambda_{\mathcal{Q}}}}| = 1,$$

$$M_{\mathcal{Q}} = 2\Delta_{q,m\lambda_{\mathcal{Q}}}^{0}, \quad \Delta_{q,m\lambda_{\mathcal{Q}}}^{0} = mc^{2} \operatorname{ch} \chi.$$

В релятивистском квазиклассическом приближении (ВКБ-приближение) решение уравнения (5) ищется в виде [15, 18-20]

$$\varphi_{\ell}(r,\chi) = \exp\left[\frac{i}{\hbar}g(r)\right], \tag{6}$$

$$g(r) = g_0(r) + \frac{\hbar}{i}g_1(r) + \left(\frac{\hbar}{i}\right)^2 g_2(r) + \dots$$

Учет первых двух членов разложения (6) позволяет получить ВКБ-решения с левой r_L и правой r_R точками поворота в области $r_L \le r \le r_R$:

$$\varphi_{\ell}^{L,R}(r,\chi) = \frac{C_{L,R}}{2\sqrt[4]{[\mathcal{X}^2(r) - R^2(r)][1 + aV(r)X(r)]}} \times \left\{ \exp\left[i\alpha_+^{L,R}(r) \mp \frac{i\pi}{4}\right] + \exp\left[i\alpha_-^{L,R}(r) \pm \frac{i\pi}{4}\right] \right\},$$
(7)

где

$$\alpha_{\pm}^{L,R}(r) = \frac{1}{\lambda} \int_{r_{L,R}} dr' \chi_{\pm}(r'),$$

$$\chi_{\pm}(r) = \ln \left[\mathcal{X}(r) \pm \sqrt{\mathcal{X}^2(r) - R^2(r)} \right],$$

$$\mathcal{X}(r) = \frac{2X(r)}{1 + \sqrt{1 + aV(r)X(r)}},$$

$$X(r) = \operatorname{ch} \chi - \frac{b}{4}V(r),$$

$$R(r) = \sqrt{1 + \frac{\lambda^2 \Lambda^2}{r^2}}, \quad \Lambda = \ell + 1/2,$$

 $C_{L,R}$ — нормировочные константы, а левая r_L и правая r_R точки поворота определяются как точки ветвления корня в (8):

$$\mathcal{X}(r_{L,R}) = R(r_{L,R}).$$

Условие применимости релятивистского ВКБметода в спиновом случае определяется неравен-

$$\lambda \left| \frac{\operatorname{ch} \chi_{\operatorname{eff}}(r)}{\chi_{+}(r) \operatorname{sh} \chi_{\operatorname{eff}}(r)} \frac{d\chi_{+}(r)}{dr} \right| \ll 1, \tag{9}$$

$$\begin{split} \chi_{\rm eff}(r) &= {\rm arch} \mathcal{X}_{\rm eff}(r) = \ln \left(\mathcal{X}_{\rm eff}(r) + \sqrt{\mathcal{X}_{\rm eff}^2(r) - 1} \right), \\ \mathcal{X}_{\rm eff}(r) &= {\rm ch} \, \chi_{\rm eff}(r) = \frac{\mathcal{X}(r)}{R(r)}. \end{split}$$

В случае $\ell = 0$ условие (9) преобразуется в нера-

$$\lambda \left| \frac{\operatorname{ch} \chi(r)}{\chi(r) \operatorname{sh} \chi(r)} \frac{d\chi(r)}{dr} \right| \ll 1,$$

где величина

(8)

$$\chi(r) = \operatorname{arch} \mathcal{X}(r) = \ln \left[\mathcal{X}(r) + \sqrt{\mathcal{X}^2(r) - 1} \right]$$
 (10)

имеет смысл быстроты релятивистской частицы массы m, движущейся в поле потенциала V(r), в терминах которой измеряется расстояние между двумя точками импульсного пространства Лобачевского.

В заключение этого раздела подчеркнем, что при $a = 0, b = 2/mc^2$ все полученные выше выражения совпадают с аналогичными выражениями, взятыми при $m_1=m_2=m$, которые были получены в бесспиновом случае для произвольных масс [20].

3. КВАЗИКЛАССИЧЕСКОЕ УСЛОВИЕ КВАНТОВАНИЯ

Условие квантования, как и в бесспиновом случае [20], находим из условия совпадения волновых функций в (7) в точке $r \in (r_L; r_R)$. Для этого необходимо положить

$$C_L = C_\ell \exp\left[-\frac{i}{\lambda} \int_{r_L}^r dr' \ln R(r')\right],$$

$$C_R = C_\ell (-1)^n \exp\left[-\frac{i}{\lambda} \int_{r_R}^r dr' \ln R(r')\right],$$

где C_ℓ — произвольная постоянная, что ведет к ВКБ-условию квантования

$$\int_{r_L}^{r_R} dr \left[\chi_+(r) - \ln R(r) \right] = \pi \lambda \left(n + \frac{1}{2} \right), \qquad (11)$$

$$n = 0, 1, \dots, \ell > 0,$$

которое при $a=0, b=2/mc^2$ совпадает с анало-

гичным выражением, взятым при $m_1=m_2=m,$ полученным в бесспиновом случае для произвольных масс [20].

 $^{^{1)}}$ Напомним, что здесь $\lambda_{\mathcal{Q}}=(\lambda_{\mathcal{Q}}^{0};\boldsymbol{\lambda}_{\mathcal{Q}})=\mathcal{Q}/\sqrt{\mathcal{Q}^{2}}$ — 4-вектор скорости составной частицы с 4-импульсом $Q = q_1 + q_2$, причем все 4-импульсы принадлежат верхним полам массовых гиперболоидов $\Delta^2_{q,m\lambda_{\mathcal{O}}} =$ $=\Delta_{q,m\lambda_\mathcal{Q}}^{02}-c^2\Delta_{q,m\lambda_\mathcal{Q}}^2=m^2c^4$, где $\Delta_{q,m\lambda_\mathcal{Q}}^0$, $\Delta_{q,m\lambda_\mathcal{Q}}^1$ — временная и пространственная компоненты 4-вектора $\Lambda_{\lambda Q}^{-1} q = \Delta_{q, m \lambda Q}$ из пространства (подробности см. в работе [12]).

3.1. Случай несингулярного конфайнментного потенциала

Для несингулярного чисто запирающего (конфайнментного) потенциала $V(r) = V_{\rm conf}(r)$ ($V_{\rm conf}(0) = 0$) интеграл в (11) преобразуем к более простому виду вынесением зависимости от центробежного члена в $\chi_+(r)$ за знак интеграла путем разбиения на две части области интегрирования в (11) точкой R, лежащей в классически допустимой области движения и такой, что значение R можно считать большим по сравнению с r_L , т.е. как и в бесспиновом случае (подробности см. в [20]). В результате проведенных вычислений приходим к следующему ВКБ-условию квантования в случае несингулярного конфайнментного потенциала:

$$\int_{0}^{r_{+}} dr \chi(r) = \pi \lambda \left(n + \frac{\ell}{2} + \frac{3}{4} \right), \qquad (12)$$

$$n = 0, 1, \dots, \ell \ge 0,$$

которое по форме совпадает с выражениями, полученными в бесспиновом случае в работах [19, 20], однако быстрота $\chi(r)$ теперь дается выражением (10), причем точка поворота r_L определяется, также как и в бесспиновом случае, центробежным членом, т.е.

$$r_L \approx r_- = \frac{\lambda \Lambda}{\sinh \chi},$$

а точка поворота $r_R \approx r_+$ — потенциалом $V_{\rm conf}(r)$, т.е., как и в случае $\ell=0$, условием

$$\mathcal{X}(r_+) = 1. \tag{13}$$

В качестве примера применения формулы (12) приведем условия квантования для линейного потенциала (1)

$$4(\sh \chi - \arctan \sinh \chi) = \frac{\pi \sigma \lambda}{2mc^2} \left(n + \frac{\ell}{2} + \frac{3}{4} \right), \quad (14)$$

$$n = 0, 1, \dots, \ell \ge 0 \quad (\text{псевдоскаляр});$$

$$\frac{16\sqrt{3}}{3} \operatorname{ch} \chi \ln \left(\frac{\sqrt{3} \operatorname{ch} \chi + \operatorname{sh} \chi}{\sqrt{2 \operatorname{ch}^2 \chi + 1}} \right) - \quad (15)$$

$$- \frac{8\sqrt{6}}{3} \operatorname{arctg} \left(\sqrt{\frac{2}{3}} \operatorname{sh} \chi \right) = \frac{\pi \sigma \lambda}{2mc^2} \left(n + \frac{\ell}{2} + \frac{3}{4} \right),$$

$$n = 0, 1, \dots, \ell \ge 0 \quad (\text{вектор});$$

$$\frac{16\sqrt{3}}{3} \operatorname{ch} \chi \ln \left(\frac{\sqrt{3} \operatorname{sh} \chi + \operatorname{ch} \chi}{\sqrt{|2 \operatorname{ch}^2 \chi - 3|}} \right) - \quad (16)$$

$$- 4\sqrt{2} \ln \left| \frac{\sqrt{2} \operatorname{sh} \chi + 1}{\sqrt{2} \operatorname{sh} \chi - 1} \right| = \frac{\pi \sigma \lambda}{2mc^2} \left(n + \frac{\ell}{2} + \frac{3}{4} \right),$$

 $n=0,1,\ldots,\ell\geq 0$ (псевдовектор), которые отличаются от условия квантования для линейного потенциала (1) в бесспиновом случае

для произвольных масс [20], взятых при $m_1 = m_2 = m$:

$$\chi \operatorname{ch} \chi - \operatorname{sh} \chi = \frac{\pi \sigma \lambda}{2mc^2} \left(n + \frac{\ell}{2} + \frac{3}{4} \right), \qquad (17)$$

$$n = 0, 1, \dots, \ell \ge 0.$$

Проведенный сравнительный анализ формул (14)—(16) с формулой (17) для бесспинового случая показывает, что учет спина приводит к увеличению значений уровней энергии, отвечающих фиксированным значениям n и ℓ .

3.2. Случай сингулярного конфайнментного потенциала

В случае, когда к несингулярному потенциалу запирания $V_{\rm conf}(r)$ добавляется кулоновское взаимодействие (4), т.е.

$$V(r) = V_{\text{conf}}(r) - \frac{\alpha_s}{r}, \alpha_s > 0, \tag{18}$$

необходимо в условии квантования (11) теперь вынести за знак интеграла зависимости от центробежного и кулоновского членов в выражении для $\chi_+(r)$. При этом точка поворота $r_R\approx r_+$ попрежнему определяется условием (13), однако точка поворота $r_L\approx r_-$ теперь определяется в основном суммой центробежного и кулоновского членов и находится из условия

$$2\left(\operatorname{ch}\chi + \frac{b\alpha_s}{4r_-}\right) =$$

$$= \left[1 + \sqrt{1 - \frac{a\alpha_s}{r_-}\left(\operatorname{ch}\chi + \frac{b\alpha_s}{4r_-}\right)}\right]\sqrt{1 + \frac{\lambda^2\Lambda^2}{r_-^2}},$$

в качестве приближенного решения которого можно взять

$$r_{-} \approx \lambda \frac{-B \operatorname{ch} \chi + \sqrt{\Lambda^2 + B^2}}{\operatorname{sh} \chi},$$
 (19)

где параметр B здесь определяется как

$$B = \frac{\tilde{\alpha}_s(a \operatorname{ch}^2 \chi + b)}{4 \operatorname{sh} \chi}, \quad \tilde{\alpha}_s = \frac{\alpha_s}{\lambda},$$

и входит в выражение для кулоновской волновой функции двухфермионной связанной системы в s-состоянии ($\ell=0$), а при $\chi=i\kappa$ он связан с условием квантования (подробности см. в работах [12, 21])

$$\frac{\tilde{\alpha}_s(a\cos^2\kappa + b)}{4\sin\kappa} = n,$$

$$n = 1, 2, \dots, \quad 0 < \kappa < \pi/2.$$

Тогда условие квантования (11) путем разбиения его области интегрирования точкой R на две части запишем в виде

$$\int_{r_{L}}^{r_{R}} dr \ln \left\{ \frac{2 \left(X_{\text{conf}}(r) + b\alpha_{s}/4r \right)}{\sqrt{1 + \lambda^{2} \Lambda^{2}/r^{2}} \left[1 + \sqrt{1 + a \left(V_{\text{conf}}(r) - \alpha_{s}/r \right) \left(X_{\text{conf}}(r) + b\alpha_{s}/4r \right)} \right]} + \sqrt{\left[\frac{2 \left(X_{\text{conf}}(r) + b\alpha_{s}/4r \right)}{\sqrt{1 + \lambda^{2} \Lambda^{2}/r^{2}} \left[1 + \sqrt{1 + a \left(V_{\text{conf}}(r) - \alpha_{s}/r \right) \left(X_{\text{conf}}(r) + b\alpha_{s}/4r \right)} \right]^{2} - 1} \right\}} =$$

$$= \tilde{I}_{1} + \tilde{I}_{2} = \pi \lambda \left(n + \frac{1}{2} \right), \quad n = 0, 1, \dots, \quad \ell \geq 0,$$
(20)

где

$$\begin{split} \tilde{I}_1 &= \int\limits_{r_L}^R dr \ln \left\{ \frac{2 \left(X_{\text{conf}}(r) + b \alpha_s / 4r \right)}{\sqrt{1 + \lambda^2 \Lambda^2 / r^2} \left[1 + \sqrt{1 + a \left(V_{\text{conf}}(r) - \alpha_s / r \right) \left(X_{\text{conf}}(r) + b \alpha_s / 4r \right)} \right]} + \\ &+ \sqrt{\left[\frac{2 \left(X_{\text{conf}}(r) + b \alpha_s / 4r \right)}{\sqrt{1 + \lambda^2 \Lambda^2 / r^2} \left[1 + \sqrt{1 + a \left(V_{\text{conf}}(r) - \alpha_s / r \right) \left(X_{\text{conf}}(r) + b \alpha_s / 4r \right)} \right]^2 - 1} \right\}, \\ \tilde{I}_2 &= \int\limits_R^{r_R} dr \ln \left\{ \frac{2 \left(X_{\text{conf}}(r) + b \alpha_s / 4r \right)}{\sqrt{1 + \lambda^2 \Lambda^2 / r^2} \left[1 + \sqrt{1 + a \left(V_{\text{conf}}(r) - \alpha_s / r \right) \left(X_{\text{conf}}(r) + b \alpha_s / 4r \right)} \right]} + \\ &+ \sqrt{\left[\frac{2 \left(X_{\text{conf}}(r) + b \alpha_s / 4r \right)}{\sqrt{1 + \lambda^2 \Lambda^2 / r^2} \left[1 + \sqrt{1 + a \left(V_{\text{conf}}(r) - \alpha_s / r \right) \left(X_{\text{conf}}(r) + b \alpha_s / 4r \right)} \right]} \right]^2 - 1} \right\}, \\ X_{\text{conf}}(r) &= \operatorname{ch} \chi - \frac{b}{4} V_{\text{conf}}(r). \end{split}$$

В принятых приближениях $r_- \ll R \ll r_+$, $\tilde{\alpha}_s \ll 2\Lambda \sh \chi$, где точка поворота r_+ определяется условием (13), а точка поворота r_- теперь дается выражением (19), для интегралов в \tilde{I}_1 и \tilde{I}_2 получаем следующие результаты:

$$\tilde{I}_1 \approx R\chi + \lambda B \ln \left(\frac{2R \sin \chi}{\lambda \sqrt{\Lambda^2 + B^2}} \right) -$$
 (21)
$$- \frac{\pi \lambda \Lambda}{2} - \lambda \chi \tilde{\rho},$$

$$\tilde{I}_2 \approx \int_0^{r_+} dr \chi(r) - R\chi + \lambda B \ln\left(\frac{r_+}{R}\right),$$
 (22)

где

$$\tilde{\rho} = \frac{\tilde{\alpha}_s a \operatorname{ch} \chi}{4}.$$

Наконец, подставляя в (20) выражения (21) и (22), приходим к ВКБ-условию квантования в случае

взаимодействия (18):

$$\int_{0}^{r_{+}} dr \chi(r) = \pi \lambda \left(n + \frac{\ell}{2} + \frac{3}{4} \right) -$$

$$- \lambda \delta_{\ell}^{\text{Coul,WKB}}(\chi), \quad n = 0, 1, \dots, \ell \ge 0.$$
(23)

Здесь

$$\delta_{\ell}^{\text{Coul,WKB}}(\chi) = B \ln \left(\frac{2r_{+} \operatorname{sh} \chi}{\lambda \sqrt{\Lambda^{2} + B^{2}}} \right) - \chi \tilde{\rho}$$
 (24)

— фаза релятивистской кулоновской функции в ВКБ-приближении в рассматриваемых спиновых случаях, вычисленная в точке поворота r_+ при $\tilde{\alpha}_s \ll 2\Lambda \sh \chi$.

Отметим, что при $a=0,b=2/mc^2$ как ВКБ-условие квантования (23), так и выражение (24) совпадают с аналогичными выражениями, взятыми при $m_1=m_2=m$, которые были получены в бесспиновом случае для произвольных масс [20].

4. ЗАКЛЮЧЕНИЕ

В настоящей работе в релятивистском квазиклассическом приближении получены новые релятивистские выражения для условий квантования псевдоскалярных, векторных и псевдовекторных мезонов. Рассмотрение проводится для случая, когда релятивистские кварки, составляющие мезоны, взаимодействуют посредством несингулярных запирающих потенциалов, либо когда к несингулярному потенциалу запирания добавляется кулоновское взаимодействие. Для этой цели было использовано полностью ковариантное конечноразностное РКП-уравнение в трехмерном релятивистском \mathbf{r} -представлении [11] для случая взаимодействия двух релятивистских спиновых частиц равных масс. РКП-уравнение решено релятивистским ВКБ-методом. Установлено условие применимости ВКБ-приближения. Получены простые формулы для определения спектра масс псевдоскалярных, векторных и псевдовекторных мезонов, рассматриваемых как системы двух связанных

Показано, что в рамках рассматриваемого полностью ковариантного РКП-подхода в квантовой теории поля новые модифицированные релятивистские квазиклассические условия квантования устанавливают явную зависимость относительного орбитального момента ℓ от энергии резонансов, что определяет релятивистские траектории Редже семейства мезонов как системы двух связанных кварков. Полученные формулы позволяют учитывать влияние константы кулоновского взаимодействия α_s при вычислении уровней энергий и реджевских траекторий двухчастичных связанных систем.

Установлено, что во всех трех рассматриваемых спиновых случаях (псевдоскалярных, векторных и псевдовекторных мезонов) модифицированное релятивистское квазиклассическое условие квантования, когда к несингулярному потенциалу запирания добавляется кулоновское взаимодействие, включает в себя поправочный член в виде фазы релятивистской кулоновской функции в ВКБ-приближении, взятой в точке поворота r_+ , которая соответствует несингулярному запирающему (конфайнментному) потенциалу.

Получены условия квантования для псевдоскалярных, векторных и псевдовекторных мезонов, отвечающих линейному потенциалу (1), которые отличаются от условия квантования для линейного потенциала в бесспиновом случае. Показано, что учет спина приводит к увеличению значений уровней энергии, отвечающих фиксированным значениям n и ℓ .

Поскольку выражения для релятивистских квазиклассических условий квантования мезонов получены в рамках полностью ковариантного метода,

то можно ожидать, что они более полно учитывают релятивистский характер взаимодействующих частиц.

Автору приятно выразить искреннюю благодарность О.П. Соловцовой за обсуждение полученных результатов, ценные замечания и техническую поддержку, А.Е. Дорохову, Ю.А. Курочкину, И.С. Сацункевичу, В.В. Андрееву и А.В. Киселеву за обсуждение полученных результатов, их комментарии и стимулирующие дискуссии.

Работа выполнена при поддержке программы международного сотрудничества Республики Беларусь с ОИЯИ и Государственной программы научных исследований на 2016—2020 гг. "Конвергенция-2020", подпрограмма "Микромир, плазма и Вселенная".

СПИСОК ЛИТЕРАТУРЫ

- 1. R. Barbieri, R. Kögerler, Z. Kunszt, and R. Gatto, Nucl. Phys. B **105**, 125 (1976).
- 2. R. McClary and N. Byers, Phys. Rev. D **28**, 1692 (1983).
- 3. E. Etim and L. Schülke, Nuovo Cimento A 77, 347 (1983).
- 4. A. A. Logunov and A. N. Tavkhelidze, Nuovo Cimento **29**, 380 (1963).
- 5. V. G. Kadyshevsky, Nucl. Phys. B 6, 125 (1968).
- 6. В. Г. Кадышевский, ЖЭТФ **46**, 654, 872 (1964) [Sov. Phys. JETP **19**, 443, 597 (1964)]; Докл. АН СССР **160**, 573 (1965) [Sov. Phys. Dokl. **10**, 46 (1965)].
- 7. R. N. Faustov, Ann. Phys. (N. Y.) 78, 176 (1973).
- 8. N. B. Skachkov and I. L. Solovtsov, Preprint No. E2-11727, JINR (Dubna, 1978); Н. Б. Скачков, И. Л. Соловцов, ЯФ **30**, 1079 (1979) [Sov. J. Nucl. Phys. **30**, 562 (1979)].
- 9. N. B. Skachkov and I. L. Solovtsov, Preprint No. E2-11678, JINR (Dubna, 1978); Н. Б. Скачков, И. Л. Соловцов, ТМФ 41, 205 (1979) [Theor. Math. Phys. 41, 977 (1979)].
- 10. А. Д. Линкевич, В. Й. Саврин, Н. Б. Скачков, ТМФ **53**, 20 (1982) [Theor. Math. Phys. **53**, 955 (1982)].
- 11. V. G. Kadyshevsky, R. M. Mir-Kasimov, and N. B. Skachkov, Nuovo Cimento A 55, 233 (1968).
- 12. Ю. Д. Черниченко, ЯФ **80**, 396 (2017) [Phys. At. Nucl. **80**, 707 (2017)].
- 13. N. B. Skachkov and I. L. Solovtsov, Preprint No. E2-81-760, JINR (Dubna, 1981); Н. Б. Скачков, И. Л. Соловцов, ТМФ **54**, 183 (1983) [Theor. Math. Phys. **54**, 116 (1983)].
- 14. V. İ. Savrin and N. B. Skachkov, Lett. Nuovo Cimento **29**, 363 (1980).
- 15. А. В. Сидоров, Н. Б. Скачков, ТМФ **46**, 213 (1981) [Theor. Math. Phys. **46**, 141 (1981)]; Препринт Р2-80-45, ОИЯИ (Дубна, 1980); V. I. Savrin, A. V. Sidorov, and N. B. Skachkov, Hadronic J. **4**, 1642 (1981).
- D. Ebert, R. N. Faustov, and V. O. Galkin, Phys. Lett. B 635, 93 (2006).

- 17. А. П. Мартыненко, Р. Н. Фаустов, ТМФ **64**, 179 (1985); **66**, 399 (1986) [Theor. Math. Phys. **64**, 765 (1985); **66**, 264 (1986)].
- 18. А. Д. Донков и др., Труды IV международного симпозиума по нелокальным теориям поля, Алушта, СССР, 1976, ОИЯИ, Д2-9788 (Дубна, 1976).
- 19. Н. Б. Скачков, И. Л. Соловцов, ЯФ **31**, 1332 (1980) [Sov. J. Nucl. Phys. **31**, 686 (1980)].
- 20. В. В. Кондратюк, Ю. Д. Черниченко, ЯФ **81**, 40 (2018) [Phys. At. Nucl. **81**, 51 (2018)].
- 21. Ю. Д. Черниченко, ЯФ **82**, 172 (2019) [Phys. At. Nucl. **82**, 158 (2019)].

SEMICLASSICAL QUANTIZATION CONDITION FOR THE RELATIVISTIC SYSTEM OF TWO FERMIONS OF EQUAL MASSES

Sukhoi Gomel State Technical University; International Center for Advanced Studies, Gomel, Republic of Belarus

Yu. D. Chernichenko

New semiclassical quantization conditions are obtained for the relativistic system of two fermions of equal masses interacting by means of nonsingular confining quasipotentials and funnel-type potentials. Quantization conditions were found for the pseudoscalar, pseudovector, and vector cases. The present analysis was performed within the Hamiltonian formulation of quantum field theory via a transition to the relativistic configuration representation for the case of two relativistic spin particles of equal masses.