ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ И ПОЛЯ =

ПОИСК ПРОЦЕССА $e^+e^- o \eta'\gamma$ НА ДЕТЕКТОРЕ СНД

© 2020 г. М. Н. Ачасов^{1),2)}, А. Ю. Барняков^{1),2)}, К. И. Белобородов^{1),2)}, А. В. Бердюгин^{1),2)*}, Д. Е. Беркаев^{1),2)}, А. Г. Богданчиков¹⁾, А. А. Ботов¹⁾, В. Б. Голубев^{1),2)}, Т. В. Димова^{1),2)}, В. П. Дружинин^{1),2)}, В. Н. Жабин¹⁾, Л. В. Кардапольцев^{1),2)}, А. С. Касаев¹⁾, А. Н. Кирпотин¹⁾, Д. П. Коврижин^{1),2)}, И. А. Кооп^{1),2)}, А. А. Король^{1),2)}, А. С. Купич¹⁾, К. А. Мартин¹⁾, Н. А. Мельникова^{1),2)}, Н. Ю. Мучной^{1),2)}, А. Е. Образовский¹⁾, А. В. Отбоев¹⁾, Е. В. Пахтусова¹⁾, К. В. Пугачев^{1),2)}, Ю. А. Роговский^{1),2)}, Я. С. Савченко^{1),2)}, А. И. Сенченко^{1),2)}, С. И. Середняков^{1),2)}, З. К. Силагадзе^{1),2)}, И. К. Сурин^{1),2)}, М. В. Тимошенко¹⁾,
Ю. В. Усов^{1),2)}, А. Г. Харламов^{1),2)}, Ю. М. Шатунов^{1),2)}, Д. Б. Шварц^{1),2)}, Д. А. Штоль^{1),2)}

Поступила в редакцию 02.03.2020 г.; после доработки 02.03.2020 г.; принята к публикации 02.03.2020 г.

Представлены результаты поиска процесса $e^+e^- \to \eta'\gamma$ в эксперименте с детектором СНД на e^+e^- -коллайдере ВЭПП-2000. Использовались данные с интегральной светимостью около 87 пб⁻¹, накопленные в диапазоне энергии в системе центра масс \sqrt{s} от 1.15 до 2 ГэВ. Установлены верхние пределы на 90% уровне достоверности: $\sigma_{\eta'\gamma} < 28$ пб при 1.15 $< \sqrt{s} < 1.39$ ГэВ и $\sigma_{\eta'\gamma} < 12$ пб при 1.39 $< \sqrt{s} < 2.00$ ГэВ.

DOI: 10.31857/S0044002720050049

1. ВВЕДЕНИЕ

Данная работа посвящена изучению процесса $e^+e^- \rightarrow \eta' \gamma$ в эксперименте с детектором СНД на коллайдере ВЭПП-2000 [1] в области энергии в системе центра масс $1.15 < \sqrt{s} < 2$ ГэВ. Процесс $e^+e^- \rightarrow \eta' \gamma$ экспериментально мало исследован. Имеются данные по распадам векторных мезонов $\phi, J/\psi, \psi(2S) \rightarrow \eta' \gamma$ [2] и измерения сечения при $\sqrt{s} = 3.773$ ГэВ [3] и 10.6 ГэВ [4]. В изучаемой области энергии 1.15-2 ГэВ в e^+e^- -аннигиляции в адроны доминируют вклады возбужденных векторных резонансов семейств ρ , ω и ϕ . Поэтому можно ожидать, что сечение процесса $e^+e^- \rightarrow \eta' \gamma$ будет определяться радиационными распадами этих резонансов. Ранее в эксперименте СНД в этой области энергии были проведены измерения сечений $e^+e^- \rightarrow \pi^0 \gamma$ [5] и $e^+e^- \rightarrow \eta \gamma$ [6]. В обеих реакциях было обнаружено превышение измеренного сечения над расчетом в рамках модели векторной доминантности с учетом только низших состояний векторных мезонов $\rho(770), \omega(782)$ и $\phi(1020).$

В частности, для реакции $e^+e^- \to \eta\gamma$ при $\sqrt{s} = 1.5$ ГэВ измеренное сечение составляет около 35 пб и на порядок превосходит вклад от низколежащих резонансов. В работе [6] это превышение интерпретировалось как проявление распадов $\rho(1450) \to \eta\gamma$ и $\phi(1680) \to \eta\gamma$, амплитуды которых интерферируют друг с другом и амплитудой для $e^+e^- \to \rho(770), \omega(782), \phi(1020) \to \eta\gamma$.

Ниже мы используем результаты работы [6] для оценки сечения процесса $e^+e^- \rightarrow \eta'\gamma$. В кварковом базисе $(|n\rangle = (|u\bar{u}\rangle + |d\bar{d}\rangle)/\sqrt{2}, |s\rangle = |s\bar{s}\rangle)$ волновые функции η' - и η -мезонов записываются следующим образом [7]:

$$|\eta\rangle = \cos\phi_P |n\rangle - \sin\phi_P |s\rangle, \qquad (1)$$
$$|\eta'\rangle = \sin\phi_P |n\rangle + \cos\phi_P |s\rangle,$$

где $\phi_P \approx 42^\circ$ [8, 9] — угол смешивания. При таком угле смешивания η -мезон на 45%, а η' -мезон на 55% состоит из странных кварков. Константы связи для низколежащих векторных мезонов V = $= \rho, \omega, \phi$ приблизительно равны друг другу по модулю $|g_{V\eta\gamma}| \approx |g_{V\eta'\gamma}|$, но для ϕ -мезона имеют разный знак [8]. Мы предполагаем, что такие же соотношения выполняются и для возбужденных резонансов. Сечение $e^+e^- \rightarrow \eta'\gamma$ подавлено по сравнению с сечением $e^+e^- \rightarrow \eta\gamma$ фактором $p_{\eta'}^3/p_{\eta}^3$,

¹⁾Институт ядерной физики им. Г.И. Будкера СО РАН, Новосибирск, Россия.

²⁾Новосибирский государственный университет, Новосибирск, Россия.

^{*}E-mail: A.V.Berdyugin@inp.nsk.su

где $p_{\eta'}$ и p_{η} — импульсы η' - и η -мезонов соответственно. При $\sqrt{s} = 1.5$ ГэВ он равен 0.32. В работе [6] для описания сечения $e^+e^- \to \eta\gamma$ выше 1.1 ГэВ использовались вклады резонансов $\rho(1450)$ и $\phi(1680)$, которые интерферируют между собой деструктивно. В процессе $e^+e^- \to \eta'\gamma$ ожидается конструктивная интерференция этих вкладов. В результате сечение для $\eta'\gamma$ оказывается близким по величине к сечению для $\eta\gamma$, несмотря на упомянутое выше подавление. Например, при $\sqrt{s} = 1.5$ ГэВ ожидается $\sigma(e^+e^- \to \eta'\gamma) \approx 30$ пб. Статистика, накопленная на детекторе СНД, позволяет провести поиск процесса $e^+e^- \to \eta'\gamma$ на этом уровне сечения.

2. ДЕТЕКТОР И ЭКСПЕРИМЕНТ

В работе анализируются данные с интегральной светимостью около 87 пб⁻¹, накопленные с детектором СНД на e^+e^- -коллайдере ВЭПП-2000 в 2010, 2011, 2012 и 2017 гг. в диапазоне энергии в системе центра масс \sqrt{s} от 1.15 до 2.05 ГэВ.

Детальное описание детектора СНД дано в работах [10]. Это немагнитный детектор, основной частью которого является трехслойный сферический электромагнитный калориметр на основе кристаллов NaI(Tl). Телесный угол калориметра составляет 95% от 4π . Его энергетическое разрешение для фотонов равно $\sigma_E/E = 4.2\%/\sqrt[4]{E(\Gamma
ightarrow B)}$, а угловое — около 1.5°. Направления заряженных частиц измеряются в трековой системе, состоящей из девятислойной дрейфовой камеры и пропорциональной камеры со съемом сигналов с катодных полосок. Телесный угол трековой системы составляет 94% от 4π . Снаружи калориметр окружен мюонной системой, которая в этом анализе используется для подавления космического фона.

Поиск процесса $e^+e^- \to \eta'\gamma$ проводится в канале распада $\eta' \to \eta \pi^0 \pi^0$ с последующими распадами $\eta \to \gamma\gamma, 3\pi^0$ и $\pi^0 \to \gamma\gamma$, т.е. в конечных состояниях с 7 и 11 фотонами. Поскольку события изучаемого процесса не содержат заряженных частиц, для нормировки был выбран процесс $e^+e^- \to \gamma\gamma$. В результате такой нормировки сокращаются систематические неопределенности, связанные с аппаратным отбором событий в системе первичного триггера, а также неопределенности, возникающие из-за наложения на изучаемые события заряженных треков от пучкового фона. Систематическая погрешность измерения светимости по процессу $e^+e^- \to \gamma\gamma$ была оценена в работе [11] и равна 2.2%.

В данном анализе важную роль играет моделирование фоновых процессов. Генераторы событий методом Монте-Карло для фоновых процессов включают радиационные поправки [12], в частности, излучение дополнительного фотона из начального состояния [13]. Борновские сечения, необходимые для моделирования фона, были взяты из работ [14] для $e^+e^- \to \omega\eta\pi^0$, [6, 15] для $e^+e^- \to$ $\to \eta\gamma$, [16] для $e^+e^- \to \eta\pi^0\gamma$ и $e^+e^- \to \eta\eta\gamma$, [17, 18] для $e^+e^- \to \omega\pi^0\pi^0$, [11] для $e^+e^- \to \omega\pi^0$, [19] для $e^+e^- \to K_S K_L$, [20, 21] для $e^+e^- \to K_S K_L\pi^0$, [21] для $e^+e^- \to K_S K_L\pi^0\pi^0$. Приблизительно в 5% экспериментальных событий из-за наложения пучкового фона возникает дополнительный фотон. Для моделирования этого эффекта используются специальные фоновые события, записанные во время эксперимента со случайным триггером. Эти события накладываются на моделированные события.

3. УСЛОВИЯ ОТБОРА

Для анализа отбирались события, в которых зарегистрировано 7 или 11 нейтральных частиц, нет заряженных треков в дрейфовой камере, и не сработала мюонная система. Суммарное энерговыделение в калориметре E_{tot} и суммарный импульс P_{tot} , вычисленный по энерговыделениям в кристаллах калориметра, удовлетворяют условиям

$$0.7\sqrt{s} < E_{\rm tot} < 1.2\sqrt{s},$$
 (2)
 $P_{\rm tot} < 0.3\sqrt{s}, \quad E_{\rm tot} - P_{\rm tot} > 0.7\sqrt{s}.$

В семифотонном событии требовалось наличие двух кандидатов в π^0 -мезон и одного кандидата в η -мезон, которые определяются как пары фотонов с инвариантными массами в диапазонах $|m_{\gamma\gamma} - m_{\pi^0}| < 35 \text{ МэВ и } |m_{\gamma\gamma} - m_{\eta}| < 50 \text{ МэВ соответственно. Для отобранных таким образом событий проводилась кинематическая реконструкция в гипотезе <math>e^+e^- \rightarrow \eta\pi^0\pi^0\gamma \rightarrow 7\gamma$, которая использует четыре условия сохранения энергии и импульса и три условия на инвариантные массы пар фотонов. На χ^2 кинематической накладывалось условие $\chi^2_{n\pi^0\pi^0\gamma} < 50$.

Для семифотонных событий доминирующим источником фона при $\sqrt{s} > 1.7$ ГэВ является процесс $e^+e^- \to \omega\eta\pi^0$ с распадом $\omega \to \pi^0\gamma$, имеющий такое же конечное состояние, как и изучаемый процесс. При меньших энергиях источниками фона являются процессы $e^+e^- \to \eta\gamma \to 3\pi^0\gamma$, $e^+e^- \to \omega\pi^0\pi^0 \to 3\pi^0\gamma$, $e^+e^- \to \eta\omega \to \eta\pi^0\gamma$ и $e^+e^- \to \eta\phi \to \eta\eta\gamma$ с распадом $\eta \to 3\pi^0$ или 2γ и $e^+e^- \to \omega\pi^0 \to \pi^0\pi^0\gamma$. В фоновых событиях от процессов с пятью фотонами в конечном состоянии дополнительные два фотона могут образовываться из-за расщепления ливня в калориметре, излучения фотонов на большой угол начальными частицами и наложения на события пучкового фона. Кроме перечисленных выше многофотонных процессов, в

фон могут давать вклады процессы с нейтральными каонами, $e^+e^- \to K_S K_L$, $K_S K_L \pi^0$ и $K_S K_L \pi^0 \pi^0$, с распадом $K_S \to 2\pi^0$ и одним или несколькими кластерами в калориметре от ядерного взаимодействия K_L -мезона.

Для подавления фона накладываются еще два условия. Во-первых, отбрасываются события, в которых имеются 3 кандидата в π^0 -мезоны, определенных выше. Во-вторых, проводится кинематическая реконструкция в гипотезе $e^+e^- \rightarrow 7\gamma$. По подправленным в результате реконструкции параметрам фотонов вычисляются трехфотонные инвариантные массы. Если инвариантная масса трех фотонов удовлетворяет условию $|m_{3\gamma} - m_{\omega}| < 35$ МэВ, и два из этих фотонов имеют инвариантную массу внутри диапазона $|m_{2\gamma} - m_{\pi^0}| < 35$ МэВ, то такое событие отбрасывается.

На рис. 1 приведено распределение по массе отдачи фотона $M_{\rm rec~\gamma}$, вычисленной после кинематической реконструкции в гипотезе $e^+e^- \rightarrow \eta \pi^0 \pi^0 \gamma$. Экспериментальное распределение сравнивается с моделированными распределениями сигнала и ожидаемого фона.

Видно, что измеренный спектр масс отдачи хорошо согласуется с расчетным спектром для моделированных фоновых событий. Окончательный отбор кандидатов в события процесса $e^+e^- \rightarrow \eta'\gamma$ осуществляется по условию $0.9 < M_{\rm rec} \gamma < 1$ ГэВ. В этом диапазоне масс находятся 6 экспериментальных событий при ожидаемом числе фоновых событий 9.3 ± 2.1.

Для событий с 11 зарегистрированными фотонами проводилась кинематическая реконструкция в гипотезе $e^+e^- \rightarrow 11\gamma$, использующая условия сохранения энергии и импульса. На χ^2 кинематической накладывалось условие $\chi^2_{11\gamma} < 50$.

В одиннадцатифотонном конечном состоянии доминирующим источником фона является процесс $e^+e^- \to \omega\eta\pi^0$ с распадами $\omega \to \pi^0\gamma$ и $\eta \to 3\pi^0$. Также в фон могут давать вклад процессы $e^+e^- \to \eta\eta\gamma$, $e^+e^- \to K_S K_L$, $K_S K_L \pi^0$ и $K_S K_L \pi^0 \pi^0$.

Для подавления фона от процесса $e^+e^- \rightarrow \omega \eta \pi^0$ по подправленным в результате кинематической реконструкции параметрам фотонов вычисляются трехфотонные инвариантные массы. Если инвариантная масса трех фотонов удовлетворяет условию $|m_{3\gamma} - m_{\omega}| < 35 \text{ МэВ}$, и два из трех фотонов имеют инвариантную массу в диапазоне $|m_{2\gamma} - m_{\pi^0}| < 35 \text{ МэВ}$, то такое событие отбрасывается.

Моделирование показывает, что фотон отдачи в событиях процесса $e^+e^- \rightarrow \eta'\gamma \rightarrow 11\gamma$ может быть однозначно идентифицирован как наиболее энер-гичный фотон в событии при энергии $\sqrt{s} \gtrsim 1.3$ ГэВ.

ЯДЕРНАЯ ФИЗИКА том 83 № 5 2020

Рис. 1. Распределение по массе отдачи фотона, вычисленной после кинематической реконструкции в гипотезе $e^+e^- \rightarrow \eta \pi^0 \pi^0 \gamma$. Точки с ошибками — экспериментальные данные. Сплошная гистограмма — моделированное распределение для событий сигнала. Штриховая гистограмма — вычисленное по моделированию ожидаемое распределение для фоновых процессов.

Поэтому одиннадцатифотонные события используются в анализе при $\sqrt{s} > 1.4$ ГэВ. Распределение отобранных экспериментальных событий по массе отдачи наиболее энергичного фотона в событии $M_{\rm rec \ \gamma}$ приведено на рис. 2. Экспериментальный спектр неплохо описывается распределением для фона, полученном по моделированию. Окончательный отбор событий осуществляется по условию $0.85 < M_{\rm rec \ \gamma} < 1.05$ ГэВ. В этой области находится одно экспериментальное событие при ожидаемом фоне 1.9 ± 0.8 .

4. ВЕРХНИЙ ПРЕДЕЛ НА СЕЧЕНИЕ ПРОЦЕССА $e^+e^- \rightarrow \eta'\gamma$

В табл. 1 приведено распределение отобранных экспериментальных событий (сумма семи- и одиннадцатифотонных событий) по трем интервалам энергии. Там же приведены значения интегральной светимости, эффективности регистрации событий процесса $e^+e^- \rightarrow \eta'\gamma$ и оценки числа фоновых событий. Эффективность регистрации определялась по моделированию. Систематическая неопределенность эффективности для событий многофотонных процессов не хуже 10% [11].

Источники фона и точности его оценки сильно различаются в трех энергетических интервалах. При $\sqrt{s} < 1.39$ ГэВ ожидаемый фон составляет

Рис. 2. Распределение по массе отдачи наиболее энергичного фотона для событий с 11 зарегистрированными фотонами, прошедших условия отбора. Точки с ошибками — экспериментальные данные. Сплошная гистограмма — моделированное распределение для событий сигнала. Штриховая гистограмма — вычисленное по моделированию ожидаемое распределение для фоновых процессов. Распределение построено для событий с $\sqrt{s} > 700 \text{ МэВ.}$

 0.5 ± 0.2 события и определяется, главным образом, процессом $e^+e^- \to \eta\gamma$. Его доля составляет около 80%, остальные 20% происходят от процесса $e^+e^- \to K_S K_L$. Сечение $e^+e^- \to \eta\gamma$ известно в области $1.15 < \sqrt{s} < 1.4$ ГэВ с точностью 40% [6], а систематическая погрешность вклада процесса $e^+e^- \to K_S K_L$ определяется точностью моделирования взаимодействия K_L -мезона с веществом детектора. Мы приписываем вкладам процессов с нейтральными каонами 100% неопределенность. Чтобы проверить точность оценки фона, используется расширенная область по массе отдачи

Таблица 1. Энергия в системе центра масс (\sqrt{s}), интегральная светимость (L), число отобранных экспериментальных событий (N) и расчетное число фоновых событий ($N_{\rm bkg}$), эффективность регистрации процесса $e^+e^- \to \eta'\gamma$ (ϵ), верхний предел на видимое сечение процесса $e^+e^- \to \eta'\gamma$ ($\sigma_{\eta'\gamma}$) на 90% уровне достоверности

\sqrt{s} , МэВ	L , пб $^{-1}$	N	$N_{ m bkg}$	$\varepsilon,\%$	$\sigma_{\eta'\gamma},$ пб
1150-1390	16.2	1	0.5 ± 0.2	0.75	<28
1390-1690	19.4	0	2.2 ± 1.1	0.96	<12
1690-2000	51.2	6	6.9 ± 0.8	0.60	<12

 $0.8 < M_{\rm rec~\gamma} < 1.3$ ГэВ. При $\sqrt{s} < 1.39$ ГэВ в этой области находятся 6 экспериментальных событий при расчетном фоне 2.5 ± 1.0 . Можно сделать вывод, что моделирование по крайней мере не завышает уровень фона.

Для интервала $1.39 < \sqrt{s} < 1.69$ ГэВ расчетный фон составляет 2.2 ± 1.1 события в сигнальной области по массе отдачи и 19 ± 12 в расширенной. Число экспериментальных событий в сигнальной и расширенной областях равно 0 и 29 соответственно. В этом диапазоне энергии около 50% фона происходит от процессов с нейтральными каонами. С учетом большой систематической неопределенности фона наблюдаемые числа экспериментальных событий не противоречат расчетным.

В интервале $1.69 < \sqrt{s} < 2.0$ ГэВ число экспериментальных событий в сигнальной и расширенной областях по массе отдачи составляет 6 и 75, а расчетный фон — 8.5 ± 2.0 и 93 ± 22 соответственно. В фоне с долей около 90% доминирует процесс $e^+e^- \rightarrow \omega\eta\pi^0$, сечение которого известно с точностью около 25% [14]. Отношение чисел моделированных и экспериментальных событий в расширенной области по массе отдачи $0.8 < M_{\rm rec \ \gamma} < 1.3$ ГэВ, равное 1.24 ± 0.14 , используется для поправки расчетного фона в сигнальной области. Полученная оценка фона равна 6.9 ± 0.8 событий.

В шестом столбце табл. 1 приведены верхние пределы на 90% уровне достоверности на среднее сечение процесса $e^+e^- \rightarrow \eta'\gamma$ в трех интервалах энергии. Пределы установлены с помощью метода, описанного в работе [22], который учитывает погрешности в определении уровня фона и эффективности регистрации. В интервале энергии $1.39 < \sqrt{s} < 1.69$ ГэВ число отобранных кандидатов в события процесса $e^+e^- \rightarrow \eta'\gamma$ равно 0. В этом интервале мы использовали консервативный подход к установке верхнего предела, полагая, что ожидаемый фон равен нулю.

Сечение процесса $e^+e^- \to \eta'\gamma$, оцененное, как описано во введении, по сечению $e^+e^- \to \eta\gamma$, измеренному в работе [6], составляет около 15 пб при $\sqrt{s} = 1.25$ ГэВ, около 30 пб при $\sqrt{s} = 1.55$ ГэВ и около 10 пб при $\sqrt{s} = 1.85$ ГэВ. Приведенные в табл. 1 верхние пределы превышают эту оценку в первом и третьем интервале. В интервале $1.39 < \sqrt{s} < \sqrt{s} < 1.69$ ГэВ верхний предел более, чем в два раза меньше нашей оценки сечения процесса $e^+e^- \to \eta'\gamma$.

В ближайшее время по процессу $e^+e^- \to \eta\gamma$ предполагается проанализировать данные, накопленные детектором СНД в 2017, 2018, 2019 гг. Это в несколько раз увеличит статистику для измерения сечения $e^+e^- \to \eta\gamma$, позволит уточнить модель для описания его энергетической зависимости, а также и предсказания для процесса $e^+e^- \to \eta' \gamma$.

5. ЗАКЛЮЧЕНИЕ

В данной работе представлены результаты поиска процесса $e^+e^- \to \eta'\gamma$ в диапазоне энергий от 1.15 до 2 ГэВ в системе центра масс. Анализировались данные с интегральной светимостью 87 пб⁻¹, накопленные в эксперименте с детектором СНД на e^+e^- -коллайдере ВЭПП-2000 в 2010, 2011, 2012 и 2017 гг. Для поиска использовался канал распада $\eta' \to \eta \pi^0 \pi^0$ с последующими распадами $\eta \to \gamma \gamma$ и $3\pi^0$. Событий процесса $e^+e^- \to \eta'\gamma$ обнаружить не удалось. Получены верхние пределы на его сечение на уровне достоверности 90% для трех интервалов энергии: 28 пб при 1.15 < \sqrt{s} < 1.39 ГэВ, 12 пб при 1.39 < \sqrt{s} < 1.69 ГэВ и 12 пб при 1.69 < \sqrt{s} < < 2.00 ГэВ.

Работа выполнена на базе УНУ "Комплекс ВЭПП-4 — ВЭПП-2000".

СПИСОК ЛИТЕРАТУРЫ

- P. Yu. Shatunov, D. E. Berkaev, Yu. M. Zharinov, I. M. Zemlyansky, A. S. Kasaev, A. N. Kyrpotin, I. A. Koop, A. P. Lysenko, A. V. Otboev, E. A. Perevedentsev, V. P. Prosvetov, Yu. A. Rogovsky, A. L. Romanov, A. I. Senchenko, A. N. Skrinsky, Yu. M. Shatunov, and D. B. Shwartz, Phys. Part. Nucl. Lett. 13, 995 (2016).
- M. Tanabashi *et al.* (Particle Data Group), Phys. Rev. D 98, 030001 (2018).
- 3. T. K. Pedlar *et al.* (CLEO Collab.), Phys. Rev. D **79**, 111101 (2009).
- B. Aubert *et al.* (BABAR Collab.), Phys. Rev. D 74, 012002 (2006).
- M. N. Achasov *et al.* (SND Collab.), Phys. Rev. D 98, 112001 (2018).
- M. N. Achasov *et al.* (SND Collab.), Phys. Rev. D 90, 032002 (2014).
- Th. Feldmann, P. Kroll, and B. Stech, Phys. Rev. D 58, 114006 (1998).
- 8. R. Escribano and J. Nadal, JHEP 0705, 006 (2007).
- 9. C. E. Thomas, JHEP 0710, 026 (2007).
- M. N. Achasov, D. E. Berkaev, A. G. Bogdanchikov, D. A. Bukin, I. A. Koop, A. A. Korol, S. V. Koshuba, D. P. Kovrizhin, A. V. Otboev, E. A. Perevedentsev, Yu. A. Rogovsky, A. L. Romanov, P. Yu. Shatunov, Yu. M. Shatunov, D. B. Shwartz, A. A. Valkovich, and I. M. Zemlyansky, Nucl. Instrum. Methods A 598, 31 (2009); V. M. Aulchenko, A. G. Bogdanchikov, A. A. Botov, A. D. Bukin, D. A. Bukin, T. V. Dimova, V. P. Druzhinin, P. V. Filatov, V. B. Golubev, A. G. Kharlamov, A. A. Korol, S. V. Koshuba, A. E. Obrazovsky, E. V. Pakhtusova, V. M. Popov, S. I. Serednyakov, *et al.*, Nucl. Instrum. Methods A 598, 102 (2009); M. Yu. Barnyakov, K. I. Beloborodov, V. S. Bobrovnikov, A. R. Buzykaev,

A. F. Danilyuk, V. B. Golubev, V. L. Kirillov,
S. A. Kononov, E. A. Kravchenko, A. P. Onuchin,
K. A. Martin, S. I. Serednyakov, and V. M. Vesenev,
Nucl. Instrum. Methods A 598, 163 (2009);
A. G. Bogdanchikov, A. A. Botov, D. A. Bukin,
M. A. Bukin, E. A. Chekushkin, T. V. Dimova,
V. P. Druzhinin, A. A. Korol, S. V. Koshuba,
A. I. Tekutiev, and Yu. V. Usov, Nucl. Instrum.
Methods A 598, 340 (2009).

- M. N. Achasov *et al.* (SND Collab.), Phys. Rev. D 88, 054013 (2013);
 M. N. Achasov, A. Yu. Barnyakov, K. I. Beloborodov, A. V. Berdyugin, D. E. Berkaev, A. G. Bogdanchikov, A. A. Botov, T. V. Dimova, V. P. Druzhinin, V. B. Golubev, L. V. Kardapoltsev, A. S. Kasaev, A. G. Kharlamov, A. N. Kirpotin, D. P. Kovrizhin, I. A. Koop, *et al.*, Phys. Rev. D 94, 112001 (2016).
- 12. Э. А. Кураев, В. С. Фадин, ЯФ **41**, 733 (1985) [Sov. J. Nucl. Phys. **41**, 466 (1985)].
- G. Bonneau and F. Martin, Nucl. Phys. B 27, 381 (1971).
- M. N. Achasov, V. M. Aulchenko, A. Yu. Barnyakov, K. I. Beloborodov, A. V. Berdyugin, D. E. Berkaev, A. G. Bogdanchikov, A. A. Botov, T. V. Dimova, V. P. Druzhinin, V. B. Golubev, L. V. Kardapoltsev, A. G. Kharlamov, I. A. Koop, A. A. Korol, D. P. Kovrizhin, *et al.*, Phys. Rev. D **94**, 032010 (2016).
- 15. M. N. Achasov *et al.* (SND Collab.), Phys. Rev. D **76**, 077101 (2007).
- M. N. Achasov, A. Yu. Barnyakov, K. I. Beloborodov, A. V. Berdyugin, A. G. Bogdanchikov, A. A. Botov, T. V. Dimova, V. P. Druzhinin, V. B. Golubev, L. V. Kardapoltsev, A. G. Kharlamov, A. A. Korol, S. V. Koshuba, D. P. Kovrizhin, A. S. Kupich, R. A. Litvinov, *et al.*, Phys. Rev. D **99**, 112004 (2019).
- R. R. Akhmetshin *et al.* (CMD-2 Collab.), Phys. Lett. B 489, 125 (2000).
- B. Aubert *et al.* (BABAR Collab.), Phys. Rev. D 76, 092005 (2007).
- J. P. Lees *et al.* (BABAR Collab.), Phys. Rev. D 89, 092002 (2014).
- M. N. Achasov, V. M. Aulchenko, A. Yu. Barnyakov, K. I. Beloborodov, A. V. Berdyugin, D. E. Berkaev, A. G. Bogdanchikov, A. A. Botov, T. V. Dimova, V. P. Druzhinin, V. B. Golubev, L. V. Kardapoltsev, A. S. Kasaev, A. G. Kharlamov, A. N. Kirpotin, I. A. Koop, *et al.*, Phys. Rev. D **97**, 032011 (2018).
- 21. J. P. Lees *et al.* (BaBar Collab.), Phys. Rev. D **95**, 052001 (2017).
- 22. R. Barlow, Comput. Phys. Commun. 149, 97 (2002).

ЯДЕРНАЯ ФИЗИКА том 83 № 5 2020

SEARCH FOR THE PROCESS $e^+e^- o \eta'\gamma$ at the SND detector

M. N. Achasov^{1),2)}, A. Yu. Barnyakov^{1),2)}, K. I. Beloborodov^{1),2)}, A. V. Berdyugin^{1),2)},
D. E. Berkaev^{1),2)}, A. G. Bogdanchikov¹⁾, A. A. Botov¹⁾, V. B. Golubev^{1),2)}, T. V. Dimova^{1),2)},
V. P. Druzhinin^{1),2)}, V. N. Zhabin¹⁾, L. V. Kardapoltsev^{1),2)}, A. S. Kasaev¹⁾, A. N. Kyrpotin¹⁾,
D. P. Kovrizhin^{1),2)}, I. A. Koop^{1),2)}, A. A. Korol^{1),2)}, A. S. Kupich¹⁾, K. A. Martin¹⁾,
N. A. Melnikova^{1),2)}, N. Yu. Muchnoi^{1),2)}, A. E. Obrazovskiy¹⁾, A. V. Otboyev¹⁾,
E. V. Pakhtusova¹⁾, K. V. Pugachev^{1),2)}, Yu. A. Rogovsky^{1),2)}, Ya. S. Savchenko^{1),2)},
A. I. Senchenko^{1),2)}, S. I. Serednyakov^{1),2)}, Z. K. Silagadze^{1),2)}, I. K. Surin^{1),2)},
M. V. Timoshenko¹⁾, Yu. V. Usov^{1),2)}, A. G. Kharlamov^{1),2)}, Yu. M. Shatunov^{1),2)},

¹⁾Budker Institute of Nuclear Physics of SB RAS, Novosibirsk, Russia ²⁾Novosibirsk State University, Novosibirsk, Russia

The results of the search for the process $e^+e^- \rightarrow \eta'\gamma$ with the SND detector at the VEPP-2000 e^+e^- collider are presented. The data sample with an integrated luminosity of 87 pb⁻¹ recorded in the center-of-mass energy region from 1.15 up to 2 GeV is used in this analysis. Upper limits are established at a 90% confidence level: $\sigma_{\eta'\gamma} < 28$ pb at $1.15 < \sqrt{s} < 1.39$ GeV and $\sigma_{\eta'\gamma} < 12$ pb at $1.39 < \sqrt{s} < 2.00$ GeV.