= ЯДРА =

$\Delta I = 1$ "STAGGERING"-ЭФФЕКТ В ЭНЕРГЕТИЧЕСКОМ СПЕКТРЕ γ -ПОЛОСЫ ТЯЖЕЛЫХ ЧЕТНО-ЧЕТНЫХ ЯДЕР

© 2020 г. М. С. Надирбеков^{1)*}, С. Н. Кудиратов¹⁾, Ф. Н. Темиров²⁾

Поступила в редакцию 20.01.2020 г.; после доработки 26.02.2020 г.; принята к публикации 26.02.2020 г.

Изучены коллективные возбуждения четно-четных ядер квадрупольного типа в рамках приближения с произвольной неаксиальностью. В рамках данного приближения рассмотрено зигзагообразное поведение $\Delta I = 1$ "staggering"-эффекта в энергетическом спектре коллективного возбуждения γ -полосы тяжелых четно-четных ядер ¹⁵²Sm, ¹⁵⁶Dy, ^{164,166}Er и ²³⁰Th. При этом в описании энергий уровней рассматриваемых ядер учитываются члены первого и второго порядка в разложении оператора вращательной энергии по переменной γ . Показано, что $\Delta I = 1$ "staggering"-эффект происходит в случае сильной связи основной и γ -полос в рамках динамической симметрии SU(3).

DOI: 10.31857/S0044002720050165

1. ВВЕДЕНИЕ

Неадиабатическая коллективная модель, учитывающая связь вращательного движения с продольными и поперечными колебаниями квадрупольного типа поверхности ядра, позволяет объяснить ряд закономерностей, наблюдаемых в спектрах возбуждения деформируемых неаксиальных четно-четных ядер [1–5]. Поэтому квадрупольные коллективные состояния, как фундаментальный коллективный тип низколежащих возбуждений в ядрах, заслуживают подробного анализа [6].

Реальный наблюдаемый спектр возбуждения деформированных ядер содержит уровни, имеющие как вращательную природу, так и уровни, возникшие за счет коллективных колебаний [7]. Следовательно, в экспериментальных данных [7] можно найти информацию о коллективных состояниях основной, β - и γ -полос положительной четности тяжелых четно-четных ядер. Поэтому важной и актуальной задачей является описание характеристик возбужденных коллективных состояний основной, β - и γ -полос четно-четных ядер в рамках различных неадиабатических коллективных приближений [1, 2, 5, 8].

В работе [8] в рамках различных приближений неадиабатической коллективной модели рассмотрены возбужденные коллективные состояния тяжелых ядер основной, β - и γ -полос [7], а также изменения спектра энергетических уровней от ядра к ядру в тяжелых четно-четных ядрах [1, 2, 5]. Одним из таких приближений является приближение произвольной неаксиальности для динамических переменных β_2 -продольной и γ -поперечной компонент колебаний. Это приближение позволяет учитывать полный диапазон изменений γ -переменной ($0 \le \gamma \le \le \pi/3$).

В работе [9] в рамках приближения произвольной неаксиальности дано количественное описание низколежащих коллективных состояний основной, γ -вращательной и β -вращательно-вибрационной полос, включая состояния с большими спинами, а также описано вырождение низкоспиновых уровней β - и γ -полос [10] в спектрах тяжелых четночетных ядер. При этом в описании коллективных состояний вышеуказанных полос учитываются члены первого и второго порядка в разложении оператора вращательной энергии по переменной γ . Проведена оценка вклада членов разложения в энергетические уровни коллективных состояний.

Известны различные, хорошо изученные типы отклонения ядерного коллективного движения от чисто вращательного. В результате этих отклонений в структуре ядерного вращательного спектра происходят эффекты высокого порядка, такие как "squeezing", "backbending" и "staggering" [11]. В частности, "staggering"-эффект представляет собой разветвление вращательных полос в последовательности состояний, отличающихся несколькими единицами углового момента. Применение дискретных приближений производных высокого порядка данной ядерной характеристики как функции частной физической величины показывает различные формы четно-нечетных "staggering"эффектов [5], которые несут информацию о тонких

¹⁾Институт ядерной физики АН Республики Узбекистан, Улугбек, Ташкент, Узбекистан.

²⁾Самаркандский государственный медицинский институт, Самарканд, Узбекистан.

^{*}E-mail: mnadirbekov@yandex.ru

свойствах ядерного взаимодействия и соответствующих корреляциях высокого порядка в коллективной динамике системы [5, 11, 12].

В работе [13] показана важность присутствия четно-нечетных эффектов в реакциях с тяжелыми ионами, в распределении изотопных фрагментов, когда энергия возбуждения мала. Близко к порогу мультифрагментации "staggering"-эффект проявляется внезапно быстрым изменением выхода продукции с массой фрагмента. Поведение выходов продукции в зависимости от избытка нейтронов показывает, что четно-нечетные эффекты не могут быть объяснены эффектами спаривания, а зависят более сложным образом от цепочки возбуждения.

Анализ и интерпретация четно-нечетных "staggering"-эффектов представляет особый интерес в изучении свойств коллективной динамики ядер [5]. "Staggering"-эффект является очень чувствительным к тонкой структуре вращательного спектра и обеспечивает явное "staggering"-поведение в различных вращательных полосах. В данной работе рассматриваются возбужденные коллективные состояния со спином I (I — спин четно-четного ядра), которые находятся ниже области пересечения полос I_c . Это означает, что вращательная динамика системы меняется в критической точке I_c , т.е. сама система изменяет свое вращательное движение [12].

Четно-нечетный $\Delta I = 1$ "staggering"-эффект наблюдается в коллективных состояниях у-полосы четно-четных ядер [11], однако в работах [8, 9] этот эффект не рассматривался. В настоящей работе в рамках неадиабатической коллективной модели исследуется поведение $\Delta I = 1$ "staggering"эффекта в у-полосе (с большими значениями углового момента в этой полосе, т.е. в пределах I = = 10-14) спектра коллективных состояний четночетных ядер. Ранее такой подход не был использован для описания этого эффекта. Второй раздел посвящен краткому рассмотрению коллективного спектра четно-четных ядер в приближении произвольной неаксиальности. В третьем разделе рассматриваются вращательно-вибрационные полосы в энергетическом спектре четно-четных ядер, а в четвертом разделе — $\Delta I = 1$ "staggering"-эффект в них. В пятом разделе проведены сравнения с экспериментом, в шестом разделе приводятся заключительные выводы.

2. ВОЗБУЖДЕННЫЕ КОЛЛЕКТИВНЫЕ СОСТОЯНИЯ В ПРИБЛИЖЕНИИ ПРОИЗВОЛЬНОЙ НЕАКСИАЛЬНОСТИ

В приближении произвольной неаксиальности энергетические уровни основной, γ -вращательной и β -вращательно-вибрационных полос четно-четных ядер описываются оператором Гамильтона,

содержащим пять динамических переменных β , γ , θ_1 , θ_2 , θ_3 , который определяется выражением [2, 14]

$$\hat{H} = -\frac{\hbar^2}{2B} \left[\frac{1}{\beta^4} \frac{\partial}{\partial \beta} \left(\beta^4 \frac{\partial}{\partial \beta} \right) + (1) + \frac{1}{\beta^2 \sin 3\gamma} \frac{\partial}{\partial \gamma} \left(\sin 3\gamma \frac{\partial}{\partial \gamma} \right) \right] + \hat{T}_{\text{rot}} + V(\beta, \gamma),$$

где *В* — массовый параметр,

$$\hat{T}_{\rm rot} = \frac{1}{4\beta^2} \sum_{\lambda=1}^3 \frac{\hat{I}_{\lambda}^2}{\sin^2(\gamma - \frac{2\pi\lambda}{3})}$$
(2)

— оператор вращательной энергии, I_{λ} — проекции полного углового момента I на ось симметрии ядра, $V(\beta, \gamma)$ — потенциальная энергия β - и γ деформаций. Решение уравнения Шредингера с гамильтонианом (1) рассматривается в случае, когда [15]

$$V(\beta, \gamma) = u(\beta) + \frac{u(\gamma)}{\beta^2},$$

тогда уравнение Шредингера разделяется на два уравнения [6, 14, 15], а потенциалы $u(\beta)$ и $u(\gamma)$ выбираются в виде потенциала Дэвидсона для переменных β и γ [16].

В приближении произвольной неаксиальности оператор вращательной энергии (2) разлагается в ряд по степеням ($\gamma - \gamma_0$):

$$\hat{T}_{\text{rot}} = \hat{T}_{\text{rot}}(\gamma_0) + \frac{\partial T_{\text{rot}}}{\partial \gamma} \bigg|_{\gamma = \gamma_0} (\gamma - \gamma_0) + \qquad (3)$$
$$+ \frac{1}{2} \frac{\partial^2 \hat{T}_{\text{rot}}}{\partial \gamma^2} \bigg|_{\gamma = \gamma_0} (\gamma - \gamma_0)^2 + \dots,$$

где γ_0 — параметр поперечных деформаций поверхности ядра в основном состоянии. Члены этого разложения после $\hat{T}_{rot}(\gamma_0)$ рассматриваются как возмущения [9].

Получен энергетический спектр уравнения Шредингера с гамильтонианом (1) в нулевом приближении разложения (3). Тогда энергия уровней возбужденных состояний имеет следующий вид [8, 9]:

$$\Delta E_{n_{\gamma}n_{\beta}I\tau} = \hbar \omega \left[2n_{\beta} + \left(4 \right) + \sqrt{4n_{\gamma} \frac{\sqrt{\mu_{\gamma 0}^{-4}}}{\gamma_0^2}} + \varepsilon_{I\tau} + \mu_{\beta_0}^{-4} + \frac{1}{4} - \left(\sqrt{\mu_{\beta_0}^{-4}} + \frac{1}{4} \right) \right],$$
(4)

ЯДЕРНАЯ ФИЗИКА том 83 № 6 2020

Рис. 1. Зависимость энергии возбужденных уровней основной (штриховые кривые), γ - (точечные) и β -вибрационной полос (сплошные) от параметра μ ($\mu = \mu_{\beta}$) при $\gamma_0 = 10^{\circ}$ (a) и при $\gamma_0 = 20^{\circ}$ (δ) и параметра $\hbar\omega = 100$ кэВ.

где $\hbar\omega$ — энергетический множитель; n_{β} и n_{γ} — квантовые числа β - и γ -колебаний соответственно; $\varepsilon_{I\tau}$ — собственные значения уравнения жесткого асимметричного ротатора [2]; индекс τ нумерует собственные значения, относящиеся к одинаковым значениям I; $\mu_{\beta}^4 = \hbar^2/BC_{\beta}\beta_0^4$ и $\mu_{\gamma}^4 = \hbar^2/BC_{\gamma}\gamma_0^4$ — безразмерные параметры теории; β_0 и γ_0 — параметры продольных и поперечных деформаций в основном состоянии ядра соответственно; C_{β} и C_{γ} — жесткость поверхности ядра относительно β - и γ -колебаний соответственно.

В настоящей работе расчет энергий уровней четно-четных ядер проводился с учетом членов первого и второго порядка в разложении оператора вращательной энергии (3) по переменной γ [9]. Формулы первого и второго порядка вышеуказанного разложения подробно приведены в работах [9, 17], поэтому мы их здесь не приводим. В приближении произвольной неаксиальности используются следующие параметры: $\hbar\omega$, γ_0 , μ_β , μ_γ . Отметим, что параметр μ_β определяет жесткость и/или мягкость поверхности ядра по отношению к β_2 -колебаниям. Если $\mu_\beta < 1/3$, то ядерная поверхность мягкая, если нет, то она жесткая [2].

3. ВРАЩАТЕЛЬНО-ВИБРАЦИОННЫЕ ПОЛОСЫ В ЭНЕРГЕТИЧЕСКОМ СПЕКТРЕ ЧЕТНО-ЧЕТНЫХ ЯДЕР

В приближении произвольной неаксиальности энергия уровней возбужденных состояний основной, γ -вращательной и γ - и β -вращательновибрационных полос четно-четных ядер (4) описывается квантовыми числами $n_{\gamma}n_{\beta}I\tau$. Последовательность состояний в энергетических полосах можно изобразить следующим образом: $I_{n_{\gamma}n_{\beta}I\tau}$.

1) Состояния с квантовыми числами $n_{\beta} = n_{\gamma} = 0, \ \tau = 1$ называются основной полосой с

последовательностью спинов $I^+_{n_\gamma n_\beta \tau} = 0^+_{001}; 2^+_{001}; 4^+_{001}; 6^+_{001}; 8^+_{001}; \dots$

2) Состояния с квантовыми числами $n_{\beta} = n_{\gamma} = 0$, $\tau = 1$ для нечетных I, $\tau = 2$ для четных I называются γ -полосой (или аномальная вращательная полоса, или $K^{\pi} = 2^+$ -полоса [2]) с последовательностью спинов $I^+_{n_{\gamma}n_{\beta}\tau} = 2^+_{002};$ $3^+_{001}; 4^+_{002}; 5^+_{001}; 6^+_{002}; ...$

3) Состояния с квантовыми числами $n_{\beta} = 1$, $n_{\gamma} = 0$, $\tau = 1$ называются β -полосой с последовательностью спинов $I^+_{n_{\gamma}n_{\beta}\tau} = 0^+_{011}; 2^+_{011}; 4^+_{011}; 6^+_{011}; 8^+_{011}; ...$

4) Состояния с квантовыми числами $n_{\beta} = 0$, $n_{\gamma} = 1$, $\tau = 1$ называются γ -колебательной полосой с последовательностью спинов $I^+_{n_{\gamma}n_{\beta}\tau} = 0^+_{101}; 2^+_{101}; 4^+_{101}; 6^+_{101}; 8^+_{101}; ...$

5) Состояния с квантовыми числами $n_{\beta} = n_{\gamma} = 1$, $\tau = 1$ называются $\beta - \gamma$ -колебательной полосой с последовательностью спинов $I^+_{n_{\gamma}n_{\beta}\tau} = 0^+_{111}; 2^+_{111}; 4^+_{111}; 6^+_{111}; 8^+_{111}; ...$

Появление последовательности уровней, показанных в пункте 2), является прямым следствием нарушения аксиальной симметрии [18], т.е. эти возбужденные моды возникают в результате коллективной квадрупольной вибрации как вращение ядра неаксиальной формы [8, 19].

На рис. 1 представлена зависимость энергии возбужденных уровней $\Delta E_{n_{\gamma}n_{\beta}I\tau}$ (4) основной, γ и β -полос от параметра μ ($\mu = \mu_{\beta}$) при фиксированных значениях параметра $\gamma_0 = 10^\circ$ и $\gamma_0 = 20^\circ$. Энергии уровней и расстояния между уровнями основной, γ - и β -полос при фиксированном γ_0 с ростом параметра μ увеличиваются. При малых значениях параметра μ уровни энергий всех выше

Рис. 2. Теоретические и экспериментальные значения энергий уровней возбужденных состояний (*a*) и поведение $\Delta I = 1$ "staggering"-эффекта (*б*) в энергетическом спектре γ -полосы ядра ¹⁵²Sm ($\hbar\omega = 313.6$ кэВ, $\mu_{\beta} = 0.55593$, $\mu_{\gamma} = 0.55194$, $\gamma_0 = 11.14^\circ$, RMS = 132.7 кэВ, $R_{0041} = 3.0093$).

указанных полос при фиксированном γ_0 заметно понижаются и смешиваются между собой, образуя эквидистантные уровни, соответствующие сферическим четно-четным ядрам. При фиксированном малом значении параметра γ_0 ($\gamma_0 < 10^\circ$) с ростом μ эквидистантность спектра постепенно нарушается и уровни энергий γ - и β -полос заметно повышаются по сравнению с основной полосой, образуя отдельные полосы. При этом уровни энергий уполосы при малых значениях параметра неаксиальности γ_0 ($\gamma_0 \leq 10^\circ$) лежат выше, чем уровни энергий *β*-полосы. В этом случае нижние уровни энергий четно-четных ядер будут чисто вращательными и соответствовать спектрам деформированных ядер. При больших значениях параметра неаксиальности γ_0 ($\gamma_0 > 10^\circ$) с ростом параметра μ уровни энергий γ -полосы опускаются ниже уровней энергий *β*-полосы и смешиваются с уровнями энергий основной вращательной полосы и соответствуют спектрам переходных четно-четных ядер [8].

На рис. 2a-6a показаны сравнения теоретических и экспериментальных [7] значений спектра энергии возбужденных уровней основной, β - и γ -полос ядер ¹⁵²Sm, ¹⁵⁶Dy, ^{164,166}Er и ²³⁰Th. Энергетические уровни γ -полосы расположены ниже энергетических уровней β -полос для ядер ¹⁵²Sm, ¹⁵⁶Dy и ²³⁰Th, что соответствует спектрам деформированных ядер, а для ядер ^{164,166}Er они расположены наоборот и соответствуют спектрам переходных ядер. Видно, что модель произвольной неаксиальности хорошо воспроизводит экспериментальные энергии уровней тяжелых четночетных ядер [8, 9]. Подгонка экспериментального энергетического спектра с теоретическими произведена методом наименьших квадратов.

Рассмотрим отношения второго возбужденного уровня к энергии первого возбужденного уровня основной полосы:

$$R_{0041} = \frac{E_{0041}}{E_{0021}}.$$

От значения отношения R_{0041} зависит коллективное вращательно-колебательное поведение возбужденных уровней. При 2.7 < R_{0041} < 10/3 коллективное поведение спектра энергий уровней будет вращательным или близко вращательным, а при 2 < R_{0041} < 2.4 оно будет вибрационным или близко вибрационным [20]. Следовательно, значения R_{0041} играют важную роль в исследовании свойств деформируемых ядер. В конце подрисуночной подписи на рис. 2–6 приведены экспериментальные значения R_{0041} для рассматриваемых ядер. Видно, что спектр энергий уровней этих ядер является вращательным.

В последние годы основным источником получения информации о возбужденных коллективных высокоспиновых состояниях являются реакции с тяжелыми ионами [7]. Такие состояния наблюдаются в основной полосе спектра коллективного возбуждения тяжелых ядер. Однако в спектре γ -полосы можно наблюдать состояния с относительно большими значениями спина уровней, т.е. в пределах I = 10-14. Энергетические уровни с такими значениями спина дают возможность исследовать поведение $\Delta I = 1$ "staggering"-эффекта в γ -полосе коллективного возбуждения тяжелых четно-четных ядер.

4. "STAGGERING"-ЭФФЕКТ В ЭНЕРГЕТИЧЕСКОМ СПЕКТРЕ ЧЕТНО-ЧЕТНЫХ ЯДЕР

В последние годы явления "staggering"-эффектов в структуре тяжелых ядер интенсивно изучаются как экспериментально, так и теоретически.

Рис. 3. Теоретические и экспериментальные значения энергий уровней возбужденных состояний (*a*) и поведение $\Delta I = 1$ "staggering"-эффекта (*б*) в энергетическом спектре γ -полосы ядра ¹⁵⁶ Dy ($\hbar\omega = 349.37$ кэВ, $\mu_{\beta} = 0.55383$, $\mu_{\gamma} = 0.8928$, $\gamma_0 = 13.9^\circ$, RMS = 64.94 кэВ, $R_{0041} = 2.9336$).

Рис. 4. Теоретические и экспериментальные значения энергий уровней возбужденных состояний (*a*) и поведение $\Delta I = 1$ "staggering"-эффекта (*б*) в энергетическом спектре γ -полосы ядра ¹⁶⁴ Ег ($\hbar \omega = 563.7$ кэВ, $\mu_{\beta} = 0.2777$, $\mu_{\gamma} = 0.1346$, $\gamma_0 = 12.95^\circ$, RMS = 85.3 кэВ, $R_{0041} = 3.2767$).

Например, $\Delta I = 1$, $\Delta I = 2$, $\Delta I = 4$ "staggering"эффекты наблюдаются в энергетических полосах супердеформированных ядер [21–24]. Эти эффекты очень хорошо известны в четно-четных ядрах [5] и позволяют проверять различные коллективные модели [25].

 $\Delta I = 2$ "staggering"-эффект присутствует, когда уровни с I = 2, 6, 10, 14 ... перемещены относительно уровней с I = 0, 4, 8, 12 ..., т.е. уровень с угловым моментом I перемещен относительно его соседних уровней с угловым моментом $I \pm 2$ в энергетических уровнях основной полосы нормально деформированных ядер [26]. Аналогичная картина наблюдается в $\Delta I = 4$ "staggering"-эффекте, но только перемещение относительно соседних уровней $I \pm 4$.

 $\Delta I = 1$ "staggering"-эффект наблюдается в энергетических полосах переменной четности и

ЯДЕРНАЯ ФИЗИКА том 83 № 6 2020

в γ -полосе четно-четных ядер [27]. Этот эффект показывает зигзагообразное поведение с переменными знаками. При этом форма "биение" этого эффекта в полосе переменной четности имеет большую амплитуду [8]. $\Delta I = 1$ "staggering"эффект должен исчезнуть, если четные и нечетные уровни энергий формируют единственную полосу.

Нечетно-четный $\Delta I = 1$ "staggering"-эффект, пропорциональный дискретному приближению производной четвертого порядка от функции $\Delta E(I) = E(I+1) - E(I)$, представляется формулой [20]

$$\operatorname{Stag}(I) = 6\Delta E(I) - 4\Delta E(I-1) - (5) - 4\Delta E(I+1) + \Delta E(I+2) + \Delta E(I-2),$$

где E(I) — энергия возбужденных уровней. Отметим, что существуют другие альтернативные формулы для описания поведения нечетно-четного $\Delta I = 1$ "staggering"-эффекта [28]. Но поведение этого эффекта не зависит от вида этих формул [28].

5. СРАВНЕНИЯ С ЭКСПЕРИМЕНТОМ

Рассмотрим поведение $\Delta I = 1$ "staggering"эффекта в γ -полосе четно-четных ядер. На рис. 26-66 приведено зигзагообразное поведение $\Delta I = 1$ "staggering"-эффекта (в единицах кэВ) в энергетических спектрах ү-полосы тяжелых ядер ¹⁵²Sm, ¹⁵⁶Dy, ^{164,166}Er и ²³⁰Th. Во всех случаях мы получаем ярко выраженную картину "staggering"эффекта, зигзагообразное поведение величины Stag(I) как функции углового момента. Сразу отметим, что амплитуда $\Delta I = 1$ "staggering"эффекта в энергетических спектрах у-полосы отличается от амплитуды такого эффекта в энергетических спектрах yrast-полосы с переменной четностью. В рассматриваемом случае $\Delta I = 1$ "staggering"-эффект имеет значительно меньшую амплитуду, чем в полосе энергетического спектра с переменной четностью [29].

При малых значениях спина уровней І экспериментальное поведение этого эффекта для ядер ^{164,166}Ег имеет малую амплитуду (поверхность этих ядер жесткая, $\mu_{\beta} = 0.2777$ и $\mu_{\beta} = 0.2242$ соответственно) при малых значениях спина уровней, а для ядер 152 Sm, 156 Dy и 230 Th (поверхность этих ядер мягкая, $\mu_{\beta} = 0.55593$, $\mu_{\beta} = 0.55383$ и $\mu_{\beta} =$ = 0.3251 соответственно) имеет вполне заметную амплитуду. Для математического исследования динамических систем $\Delta I = 2$ бифуркация ($\Delta I = 1$ "staggering"-эффект) происходит, когда небольшое плавное изменение значений параметров системы вызывает внезапное (качественное) или топологическое изменение в ее поведении [12]. Следовательно, жесткость поверхности препятствует $\Delta I = 1$ "staggering"-эффекту в этих ядрах, когда изменение параметра (в данном случае энергия уровней) вызывает изменение стабильности равновесия.

На рис. 26 приведено зигзагообразное поведение $\Delta I = 1$ "staggering"-эффекта в энергетическом спектре γ -полосы ядра ¹⁵²Sm. Из рисунка видно, что поведения теоретического и экспериментального $\Delta I = 1$ "staggering"-эффекта хорошо согласуются, но экспериментальное поведение этого эффекта имеет относительно большую амплитуду.

Зигзагообразное поведение $\Delta I = 1$ "staggering"-эффекта в энергетическом спектре γ -полосы для ядра ¹⁵⁶ Dy приведено на рис. 36, где также теоретическое и экспериментальное поведения $\Delta I =$ = 1 "staggering"-эффекта хорошо согласуются. Однако теоретическое поведение этого эффекта имеет относительно большую амплитуду.

Таблица 1. Экспериментальные значения ΔE_{00I} для рассматриваемых ядер

Ι	$^{152}\mathrm{Sm}$	¹⁵⁶ Dy	¹⁶⁴ Er	¹⁶⁶ Er	²³⁰ Th
2	7.9166	5.4634	8.4138	8.7506	13.6663
4	8.2546	5.5472	8.3064	8.5758	13.3181
6	8.3865	5.4779	8.145	8.3176	12.8195
8	8.3295	5.3929	7.8817	7.9963	12.1861
10	—	5.2476	7.2903	7.6241	12.0262
12	—	5.163	7.1191	7.2246	_
14	_	_	_	6.0881	_

Для ядра ¹⁶⁴Ег (рис. 46) теоретическое и экспериментальное поведения $\Delta I = 1$ "staggering"эффекта не очень хорошо согласуются. Теоретическое поведение $\Delta I = 1$ "staggering"-эффекта имеет ярко выраженную амплитуду.

Для ядра ¹⁶⁶Ег (рис. 56) согласие теоретического и экспериментального поведения $\Delta I = 1$ "staggering"-эффекта в энергетическом спектре γ полосы хорошее. Теоретическое и экспериментальное поведения этого эффекта имеют одинаковые поведения, однако их амплитуды различаются.

Теоретическое и экспериментальное поведения $\Delta I = 1$ "staggering"-эффекта для ядра ²³⁰Th (рис. 66) в энергетическом спектре γ -полосы имеют также хорошее согласие.

Из рис. 26-66 видно, что $\Delta I = 1$ "staggering"эффект имеет зигзагообразное поведение и исчезновение этого эффекта не происходит в пределах наблюдаемой области углового момента. Кроме того, отметим, что Stag(I) показывает "staggering" с минимумами при четном I и максимумами при нечетном I для ядра ¹⁵²Sm. Для остальных рассматриваемых ядер Stag(I) показывает "staggering" с минимумами при нечетном I и максимумами при четном I. Это зависит от взаимного расположения соседних уровней, т.е. от $\Delta E(I) =$ = E(I+1) - E(I).

Ранее поведение $\Delta I = 1$ "staggering"-эффекта в энергетическом спектре γ -полосы тяжелых ядер рассмотрено в рамках вектор-бозон модели с SU(3) динамической симметрией [11].

Взаимодействие основной и γ -полос (при смешивании этих полос) в тяжелых деформированных ядрах коррелирует с энергетическим разделением между двумя полосами. В рамках динамической симметрии SU(3) это разделение соответствует расщеплению мультиплета SU(3) и определяется соотношением

$$\Delta E_{00I} = \frac{E_{00I2} - E_{00I1}}{E_{0021}},$$

ЯДЕРНАЯ ФИЗИКА том 83 № 6 2020

Рис. 5. Теоретические и экспериментальные значения энергий уровней возбужденных состояний (*a*) и поведение $\Delta I = 1$ "staggering"-эффекта (*б*) в энергетическом спектре γ -полосы ядра ¹⁶⁶ Ег ($\hbar \omega = 675.9$ кэВ, $\mu_{\beta} = 0.2242$, $\mu_{\gamma} = 0.2091$, $\gamma_0 = 12.14^\circ$, RMS = 131.25 кэВ, $R_{0041} = 3.2877$).

Рис. 6. Теоретические и экспериментальные значения энергий уровней возбужденных состояний (*a*) и поведение $\Delta I = 1$ "staggering"-эффекта (*б*) в энергетическом спектре γ -полосы ядра ²³⁰ Th ($\hbar \omega = 296.7$ кэВ, $\mu_{\beta} = 0.3251$, $\mu_{\gamma} = 0.2024$, $\gamma_0 = 11.4^\circ$, RMS = 87.6 кэВ, $R_{0041} = 3.268$).

которое характеризуется разностью энергий уровней и четным угловым моментом основной и γ -полос. Например, в работе [11] установлено, что экспериментальные соотношения ΔE_{00I} изменяются в пределах $5 \leq \Delta E_{00I} \leq 20$ для лантанидов и $13 \leq \Delta E_{00I} \leq 25$ для актинидов. В табл. 1 приведены экспериментальные значения ΔE_{00I} , из которых видно, что ΔE_{00I} удовлетворяют этим соотношениям. Кроме того, в работе [11] показано, что если $\Delta E_{00I} \leq 12$ для лантанидов и $\Delta E_{00I} \leq 15$ для актинидов, то основная и γ -полосы сильно связаны в рамках динамической симметрии SU(3), если наоборот, то связь слабая.

Из табл. 1 видно, что в рассматриваемых ядрах $\Delta I = 1$ "staggering"-эффект происходит в рамках динамической симметрии SU(3) в случае сильной связи основной и γ -полос.

ЯДЕРНАЯ ФИЗИКА том 83 № 6 2020

6. ЗАКЛЮЧЕНИЕ

Представлена важная характеристика тонкой вращательной структуры γ -полосы с соответствующими ядерными коллективными свойствами, несмотря на то, что число рассматриваемых ядер не позволяет предоставить какую-либо детальную систематику. Проведеннное исследование приводит к последовательной теоретической интерпретации доступной экспериментальной информации относительно $\Delta I = 1$ "staggering"-эффекта в γ -полосах коллективного возбуждения.

Предложено описание поведения нечетночетного $\Delta I = 1$ "staggering"-эффекта в рамках приближения произвольной неаксиальности [8, 9] в γ -полосе возбужденных коллективных состояний тяжелых деформированных четно-четных ядер. Модельная интерпретация поведения нечетночетного $\Delta I = 1$ "staggering"-эффекта в γ -полосе спектра коллективного возбуждения полезна для понимания "staggering"-эффектов о вращательных спектрах в целом.

Теоретическое поведение $\Delta I = 1$ "staggering"эффекта для рассматриваемых ядер имеет ярко выраженные амплитуды по сравнению с их экспериментальным поведением. Видимо, вклады тонких эффектов во вращательном спектре ядер, т.е. вклады частично-дырочных нуклонных переходов и взаимодействия различных полос возбуждения ядра [5, 12], играют важную роль.

Представляемое приближение удовлетворительно воспроизводит поведение нечетно-четного $\Delta I = 1$ "staggering"-эффекта в рассматриваемых ядрах ниже области пересечения полос I_c и в пределах I = 10-14. Оно дает довольно общий рецепт для анализа различных тонких характеристик вращательного движения в квантовомеханических системах, что позволяет детально сравнить различные виды "staggering"-эффектов в ядрах.

Работа финансировалась Министерством инновационного развития Республики Узбекистан, грант ОТ № Ф2-14.

СПИСОК ЛИТЕРАТУРЫ

- 1. A. S. Davydov and A. A. Chaban, Nucl. Phys. **20**, 499 (1960).
- 2. А. С. Давыдов, *Возбужденные состояния атомных ядер* (Атомиздат, Москва, 1967).
- 3. А. С. Давыдов, УФН 87, 599 (1965).
- 6. Бор, в сб.: Проблемы современной физики, № 9 (1955), с. 9.
- 5. A. Bohr and B. R. Mottelson, *Nuclear Structure, Vol. 2: Nuclear Deformations* (World Sci., Singapore, 1998).
- 6. L. Fortunato, Eur. Phys. J. A 26, 1 (2005).
- 7. http://www.nndc.bnl.gov/ensdf/
- 8. M. S. Nadirbekov and G. A. Yuldasheva, Int. J. Mod. Phys. E **23**, 1450034 (2014).
- М. С. Надырбеков, О. А. Бозаров, ЯФ 79, 287 (2016) [Phys. At. Nucl. 79, 461 (2016)].
- Y. Alhassid and N. Whelan, Phys. Rev. Lett. 67, 816 (1991).
- N. Minkov, S. B. Drenska, P. P. Raychev, R. P. Roussev, and Dennis Bonatsos, Phys. Rev. C 61, 064301 (2000).
- 12. I. M. Pavlichenkov, Phys. Rep. 226, 175 (1993).
- M. D' Agostino, M. Bruno, F. Gulminelli, L. Morelli, G. Baiocco, L. Bardelli, S. Barlini, F. Cannata, G. Casini, E. Geraci, F. Gramegna, V. L. Kravchuk, T. Marchi, A. Moroni, A. Ordine, and R. Raduta, Nucl. Phys. A 861, 47 (2011).

- 14. A. A. Raduta, P. Buganu, and A. Faessler, J. Phys. G: Nucl. Part. Phys. **39**, 025103 (2012).
- 15. F. Iachello, Phys. Rev. Lett. 87, 052501 (2001).
- Dennis Bonatsos, E. A. McCutchan, N. Minkov, R. F. Casten, P. Yotov, D. Lenis, D. Petrellis, and I. Yigitoglu, Phys. Rev. C 76, 064312 (2007).
- Ю. В. Породзинский, Е. Ш. Суховицкий, ЯФ 53, 64 (1991) [Sov. J. Nucl. Phys. 53, 41 (1991)].
- G. R. DeMille, T. M. Kavanagh, R. B. Moore, R. S. Weaver, and W. White, Cand. J. Phys. 37, 1036 (1959).
- 19. P. Buganu and A. A. Raduta, Phys. Rev. C 83, 034313 (2011).
- Dennis Bonatsos, C. Daskaloyannis, S. B. Drenska, N. Karoussos, N. Minkov, P. P. Raychev, and R. P. Roussev, Phys. Rev. C 62, 024301 (2000).
- S. Flibotte, H. R. Andrews, G. C. Ball, C. W. Beausang, F. A. Beck, G. Belier, T. Byrski, D. Curien, P. J. Dagnall, G. de France, D. Disdier, G. Duchêne, Ch. Finck, B. Haas, G. Hackman, D. S. Haslip, *et al.*, Phys. Rev. Lett. **71**, 4299 (1993); S. Flibotte, G. Hackman, I. Ragnarsson, Ch. Theisen, H. R. Andrews, G. C. Ball, C. W. Beausang, F. A. Beck, G. Belier, M. A. Bentley, T. Byrski, D. Curien, G. de France, D. Disdier, G. Duchêne, B. Haas, *et al.*, Nucl. Phys. A **584**, 373 (1995).
- B. Cederwall, R. V. F. Janssens, M. J. Brinkman, I. Y. Lee, I. Ahmad, J. A. Becker, M. P. Carpenter, B. Crowell, M. A. Deleplanque, R. M. Diamond, J. E. Draper, C. Duyar, P. Fallon, L. P. Farris, E. A. Henry, R. G. Henry, *et al.*, Phys. Rev. Lett. **72**, 3150 (1994).
- Dennis Bonatsos, C. Daskaloyannis, S. B. Drenska, G. A. Lalazissis, N. Minkov, P. P. Raychev, and R. P. Roussev, Phys. Rev. A 54, R2533(R) (1996).
- 24. C. S. Wu and Z. N. Zhou, Phys. Rev. C 56, 1814 (1997).
- 25. D. Bonatsos, Phys. Lett. B 200, 1 (1988).
- 26. L. A. Wu and H. Toki, Phys. Rev. C 56, 1821 (1997).
- Dennis Bonatsos, C. Daskaloyannis, S. B. Drenska, N. Karoussos, J. Maruani, N. Minkov, P. P. Raychev, and R. P. Roussev, Phys. Rev. A 60, 253 (1999).
- Dennis Bonatsos, C. Daskaloyannis, S. B. Drenska, N. Fotiades, N. Minkov, P. P. Raychev, and R. P. Roussev, nucl-th/0111003v1.1.
- 29. M. S. Nadirbekov, G. A. Yuldasheva, N. Minkov, and W. Scheid, Int. J. Mod. Phys. E **21**, 1250044 (2012).

$\Delta I = 1$ "STAGGERING" EFFECTS IN THE ENERGY SPECTRUM OF γ BAND OF HEAVY EVEN-EVEN NUCLEI

M. S. Nadirbekov¹⁾, S. N. Kudiratov¹⁾, F. N. Temirov²⁾

¹⁾ Institute of Nuclear Physics, Academy of Sciences of Uzbekistan, Tashkent ²⁾ Samarkand State Medical Institute, Uzbekistan

In the framework of an approximation with free triaxiality collective excitations of even-even nuclei of a quadrupole type are studied. In the framework of this approximation, the "staggering" effects in the energy spectrum of γ band of heavy even-even nuclei 152 Sm, 156 Dy, 164,166 Er, and 230 Th are considered. In the description of the energy levels of these nuclei, the terms in the expansion of the rotational energy operator with respect to the variable γ are taken into account. It is shown that the $\Delta I = 1$ "staggering"-effect occurs in the case of strong coupling of the basic and γ bands in the SU(3) dynamic symmetry limit.