ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ И ПОЛЯ =

СВЯЗЬ ПОЛЕЙ ТЯЖЕЛОГО КВАРКА В КХД И НQET В 4 ПЕТЛЯХ

© 2020 г. А. Г. Грозин^{1),2)*}, П. Марквард^{3)**}, А. В. Смирнов^{4)***}, В. А. Смирнов^{5)****}, М. Штайнхаузер^{6)*****}

Поступила в редакцию 05.05.2020 г.; после доработки 05.05.2020 г.; принята к публикации 05.05.2020 г.

Коэффициент сшивки полей тяжелого кварка в КХД и НQET вычислен до 4 петель.

DOI: 10.31857/S0044002720060173

Задачи КХД, в которых имеется один тяжелый кварк Q с импульсом P = Mv + k (где M — масса в схеме перенормировки на массовой поверхности, а v — некоторый вектор с $v^2 = 1$), причем характерный остаточный импульс $k \ll M$ (и характерные импульсы легких кварков и глюонов тоже $\ll M$), могут быть описаны эффективной теорией тяжелого кварка (HQET, см., например, [1, 2]). Вместо поля тяжелого кварка Q в нее входит поле h_v , удовлетворяющее $\hat{v}h_v = h_v$. Операторы КХД разлагаются в ряд по 1/M по операторам HQET, коэффициенты сшивки находятся приравниванием их матричных элементов на массовой поверхности в обеих теориях.

Так, для голых кварковых полей мы имеем

$$\langle 0|Q_0(x)|Q(P)\rangle = e^{-iP \cdot x} \left(Z_Q^{\text{os}}\right)^{1/2} u(P), \quad (1) \langle 0|h_{v0}(x)|h(k)\rangle = e^{-ik \cdot x} \left(Z_h^{\text{os}}\right)^{1/2} u_v(k),$$

где $Z_{Q,h}^{os}$ — константы перенормировки полей в схеме на массовой поверхности, а биспинорные

- ⁵⁾Научно-исследовательский институт ядерной физики Московского государственного университета, Москва, Россия.
- ⁶⁾Institut für Theoretische Teilchenphysik, Karlsruher Institut für Technologie (KIT), 76128 Karlsruhe, Germany.
- *E-mail: A.G.Grozin@inp.nsk.su
- **E-mail: peter.marquard@desy.de
- ****E-mail: asmirnov80@gmail.com
- *****E-mail: smirnov@theory.sinp.msu.ru
- ****** E-mail: matthias.steinhauser@kit.edu

волновые функции связаны преобразованием Фолди-Ваутхайзена

$$u(Mv+k) = \left[1 + \frac{\hat{k}}{2M} + \mathcal{O}\left(\frac{k^2}{M^2}\right)\right] u_v(k). \quad (2)$$

Поэтому голые поля связаны соотношением [3]

$$Q_{0}(x) = e^{-iMv \cdot x} \times$$
(3)

$$\times \left[z_{0}^{1/2} \left(1 + \frac{i\hat{D}_{\perp}}{2M} \right) h_{v0}(x) + \mathcal{O}\left(\frac{1}{M^{2}} \right) \right],$$

$$z_{0} = \frac{Z_{Q}^{os}(g_{0}^{(n_{f})}, a_{0}^{(n_{f})})}{Z_{h}^{os}(g_{0}^{(n_{l})}, a_{0}^{(n_{l})})},$$

где $n_f = n_l + 1$, a_0 — голый параметр ковариантной калибровки. Перенормированные в $\overline{\mathrm{MS}}$ поля $(Q_0 = Z_Q^{1/2} Q(\mu), h_0 = Z_h^{1/2} h(\mu))$ связаны как

$$Q(\mu) = e^{-iMv \cdot x} \times$$
(4)

$$\times \left[z(\mu)^{1/2} \left(1 + \frac{i\hat{D}_{\perp}}{2M} \right) h_v(\mu) + \mathcal{O}\left(\frac{1}{M^2} \right) \right],$$

$$z(\mu) = \frac{Z_h(\alpha_s^{(n_l)}(\mu), a^{(n_l)}(\mu))}{Z_Q(\alpha_s^{(n_f)}(\mu), a^{(n_f)}(\mu))} z_0.$$

Перенормированный коэффициент сшивки

$$z(\mu) = \frac{Z_h(\alpha_s^{(n_l)}(\mu), a^{(n_l)}(\mu)) Z_Q^{\text{os}}(g_0^{(n_f)}, a_0^{(n_f)})}{Z_Q(\alpha_s^{(n_f)}(\mu), a^{(n_f)}(\mu)) Z_h^{\text{os}}(g_0^{(n_l)}, a_0^{(n_l)})}$$
(5)

связывает перенормированные пропагаторы вне массовой поверхности в двух теориях, и потому должен быть конечен при $\varepsilon \to 0$. Ультрафиолетовые (УФ) расходимости сокращаются в отношениях Z_Q/Z_Q^{os} , Z_h/Z_h^{os} ; Z_Q , Z_h инфракрасно (ИК) конечны; ИК-расходимости сокращаются в Z_Q^{os}/Z_h^{os} (поскольку HQET воспроизводит ИК-поведение

¹⁾Институт ядерной физики им. Будкера СО РАН, Новосибирск, Россия.

²⁾Новосибирский государственный университет, Новосибирск, Россия.

³⁾Deutsches Elektronen-Synchrotron, DESY, 15738 Zeuthen, Germany.

⁴⁾Научно-исследовательский вычислительный центр Московского государственного университета, Москва, Россия.

КХД). Если все ароматы, кроме Q, безмассовые, то $Z_h^{os} = 1$: петлевые интегралы не содержат масштаба, УФ- и ИК-расходимости взаимно сокращаются.

Коэффициент сшивки удовлетворяет уравнению ренормгруппы

$$\frac{d\log z(\mu)}{d\log \mu} = \gamma_h(\alpha_s^{(n_l)}(\mu), a^{(n_l)}(\mu)) - (6) - \gamma_Q(\alpha_s^{(n_f)}(\mu), a^{(n_f)}(\mu)),$$

где аномальные размерности определены как $\gamma_i = d \log Z_i / d \log \mu$. Поэтому его достаточно вычислить при каком-нибудь $\mu \sim M$ и решить это уравнение с таким начальным условием.

Чтобы вычислить

$$\log z(\mu) = \log Z_Q^{os}(g_0^{(n_f)}, a_0^{(n_f)}) -$$
(7)
$$-\log Z_Q(\alpha_s^{(n_f)}(\mu), a^{(n_f)}(\mu)) +
$$+\log Z_h(\alpha_s^{(n_l)}(\mu), a^{(n_l)}(\mu)),$$$$

нужно привести все 3 члена к единым переменным. Мы выбрали $\alpha_s^{(n_f)}(\mu)$, $a^{(n_f)}(\mu)$. Голые величины $g_0^{(n_f)}$, $a_0^{(n_f)}$ выражаются через них при помощи хорошо известных $\overline{\text{MS}}$ констант перенормировки. Величины $\alpha_s^{(n_l)}(\mu)$, $a^{(n_l)}(\mu)$ выражаются через них при помощи коэффициентов декаплинга (они нам нужны вплоть до $\alpha_s^3 \varepsilon$). Мы выбрали $\mu = M$ (масса в схеме на массовой поверхности).

Коэффициент сшивки $z(\mu)$ был вычислен с 3петлевой точностью [3]. Здесь мы вычисляем его до α_s^4 . Если эта величина используется в вычислении, в котором могут возникать $1/\varepsilon^n$ -расходимости, то, наряду с конечным α_s^4 -членом, нужны α_s^3 -члены до ε , α_s^2 до ε^2 и α_s до ε^3 .

Что известно о Z_Q^{os} в 4 петлях? Член n_l^3 известен много лет; члены с n_l^2 известны аналитически [4]; остальные члены были вычислены численно [5]. Недавно были аналитически вычислены [6] члены C_F^4 , $C_F^3 T_F n_h$, $C_F^2 (T_F n_h)^2$, $C_F (T_F n_h)^3$, $d_{FF} n_h$. Здесь

$$d_{FF} = \frac{d_F^{abcd} d_F^{abcd}}{N_F},\tag{8}$$

$$d_F^{abcd} = \operatorname{Tr} t_F^{(a} t_F^b t_F^c t_F^{d)}, \quad N_F = \operatorname{Tr} 1_F,$$

скобки означают симметризацию. Точнее говоря, в результат для последней цветовой структуры входят ε^0 -части 6 непланарных мастер-интегралов с рассеянием света на свете, известных с точностью 1100 значащих цифр; для остальных вкладов аналитические выражения через известные трансцендентные числа получены с помощью алгоритма PSLQ.

ЯДЕРНАЯ ФИЗИКА том 83 № 6 2020

Разумеется, Z_Q в $\overline{\text{MS}}$ давно известна в 4 петлях.

Что известно о Z_h в 4 петлях? Член $C_F(T_Fn_l)^3$ известен давно; $C_F^2(T_Fn_l)^2$ найден в [7]; $C_FC_A(T_Fn_l)^2$ — в [5]; $C_F^3T_Fn_l$ — в [8]; $d_{FF}n_l$ в [9]; $C_F^2C_AT_Fn_l$ и $C_FC_A^2T_Fn_l$ — в [10]; наконец, члены $C_FC_A^3$ и d_{FA} известны численно [5].

Коэффициент сшивки $z(\mu)$ должен быть конечен. Из этого требования мы получили аналитические выражения для всех $1/\varepsilon^n$ -членов в 4петлевой Z_Q^{os} , за исключением $C_F C_A^3/\varepsilon$ и d_{FA}/ε (из-за того, что соответствующие члены в Z_h не известны аналитически). Многие такие члены были ранее известны только численно [5]. Аналитические выражения для $1/\varepsilon^n$ -членов в структурах C_F^4 , $C_F^3 T_F n_h$, $C_F^2 (T_F n_h)^2$, $C_F (T_F n_h)^3$, $d_{FF} n_h$ были также недавно опубликованы в [6] и совпадают с нашими.

Мы вычислили z(M): структуры C_F^4 , $d_{FF}n_h$, $C_F^3 T_F n_h$, $C_F^2 (T_F n_h)^2$, $C_F (T_F n_h)^3$, $C_F^2 (T_F n_l)^2$, $C_F C_A (T_F n_l)^2$, $C_F T_F^3 n_h n_l^2$, $C_F (T_F n_l)^3$ аналитически и $C_F^3 C_A$, $C_F^2 C_A^2$, $C_F C_A^3$, d_{FA} , $C_F^2 C_A T_F n_h$, $C_F C_A^2 T_F n_h$, $C_F C_A (T_F n_h)^2$, $C_F^3 T_F n_l$, $C_F^2 C_A T_F n_l$, $C_F C_A^2 T_F n_l$, $C_F^2 T_F^2 n_h n_l$, $C_F C_A T_F^2 n_h n_l$, $C_F T_F^3 n_h^2 n_l$, $d_{FF} n_l$ численно. Эта формула слишком длинна, чтобы приводить ее здесь. Численно

$$z(M) = 1 - \frac{4}{3} \frac{\alpha_s}{\pi} - \left(\frac{\alpha_s}{\pi}\right)^2 (17.45 - 1.33n_l) - (9) - \left(\frac{\alpha_s}{\pi}\right)^3 (262.42 - 0.78\xi - 35.81n_l + 0.98n_l^2) - - \left(\frac{\alpha_s}{\pi}\right)^4 [5137.72 - 15.67\xi + 1.07\xi^2 - - (1030.82 - 0.71\xi)n_l + 60.30n_l^2 - - 1.00n_l^3] + \mathcal{O}(\alpha_s^5),$$

где $\alpha_s = \alpha_s^{(n_f)}(M), \quad \xi = 1 - a^{(n_f)}(M).$ Для *b*-кварковой HQET ($n_l = 4$) в калибровке Ландау

$$z(M) = 1 - \frac{4}{3} \frac{\alpha_s}{\pi} - 12.12 \left(\frac{\alpha_s}{\pi}\right)^2 - (10)$$

- 134.11 $\left(\frac{\alpha_s}{\pi}\right)^3 - 1903.42 \left(\frac{\alpha_s}{\pi}\right)^4 + \mathcal{O}(\alpha_s^5).$

В [3] было опубликовано предсказание наивной неабелианизации [11] (называемой также пределом большого β_0)

$$z(M) = 1 - \frac{4}{3} \frac{\alpha_s}{\pi} - 16.66 \left(\frac{\alpha_s}{\pi}\right)^2 - (11)$$
$$- 153.41 \left(\frac{\alpha_s}{\pi}\right)^3 - 1953.40 \left(\frac{\alpha_s}{\pi}\right)^4 + \mathcal{O}(\alpha_s^5).$$

Результат (10) хорошо с ним согласуется. Коэффициенты ряда теории возмущений быстро растут; это связано с ИК-ренормалоном в $u = \frac{1}{2}$ [3], т.е. в наиболее близкой к началу координат из всех возможных точек, что приводит к самому быстрому росту.

В квантовой электродинамике коэффициент сшивки $z(\mu)$, связывающий поля электрона в КЭД и эффективной теории Блоха—Нордсика, калибровочно-инвариантен во всех порядках по α [3]. Мы получили

$$z(M) = 1 - \frac{\alpha}{\pi} - 1.09991 \left(\frac{\alpha}{\pi}\right)^2 + (12)$$

+ 4.40502 $\left(\frac{\alpha}{\pi}\right)^3 - 2.16215 \left(\frac{\alpha}{\pi}\right)^4 + \mathcal{O}(\alpha^5),$

где $\alpha = \alpha^{(1)}(M)$, то есть $\overline{\text{MS}} \alpha^{(1)}(\mu)$ (с 1 лептонным ароматом) при $\mu = M$, массе электрона в схеме на массовой поверхности. Этот результат легко перевыразить через α в схеме перенормировки на массовой поверхности. Быстрого роста коэффициентов ряда здесь нет; коэффициенты не знакопостоянны. Это связано с отсутствием ренормалона.

Подробные результаты представлены в [12].

Работа А.Г. поддержана российским министерством науки и высшего образования.

СПИСОК ЛИТЕРАТУРЫ

1. A. V. Manohar and M. B. Wise, *Heavy Quark Physics*, Vol. 10 of *Camb. Monogr. Part. Phys.*

Nucl. Phys. Cosmol. (Cambridge University Press, Cambridge, 2000).

- 2. A. G. Grozin, *Heavy Quark Effective Theory*, Vol. 201 of *Springer Tracts Mod. Phys.* (Springer, Berlin, 2004).
- 3. A. G. Grozin, Phys. Lett. B **692**, 161 (2010), arXiv:1004.2662.
- R. Lee, P. Marquard, A. V. Smirnov, V. A. Smirnov, and M. Steinhauser, JHEP 03, 162 (2013), arXiv:1301.6481.
- P. Marquard, A. V. Smirnov, V. A. Smirnov, and M. Steinhauser, Phys. Rev. D 97, 054032 (2018), arXiv:1801.08292.
- 6. S. Laporta, Phys. Lett. B 802, 135264 (2020), arXiv:2001.02739.
- A. Grozin, J. M. Henn, G. P. Korchemsky, and P. Marquard, JHEP 01, 140 (2016), arXiv:1510.07803.
- 8. A. Grozin, JHEP **06**, 073 (2018); JHEP **01**, 134 (Addendum) (2019), arXiv:1805.05050.
- 9. A. Grozin, J. Henn, and M. Stahlhofen, JHEP **10**, 052 (2017), arXiv:1708.01221.
- 10. R. Brüser, A. Grozin, J. M. Henn, and M. Stahlhofen, JHEP **05**, 186 (2019), arXiv:1902.05076.
- 11. D. J. Broadhurst and A. G. Grozin, Phys. Rev. D 52, 4082 (1995), hep-ph/9410240.
- 12. A. G. Grozin, P. Marquard, A. V. Smirnov, V. A. Smirnov, and M. Steinhauser, arXiv:2005.14047.

MATCHING HEAVY-QUARK FIELDS IN QCD AND HQET AT 4 LOOPS

A. G. Grozin^{1),2)}, P. Marquard³⁾, A. V. Smirnov⁴⁾, V. A. Smirnov⁵⁾, M. Steinhauser⁶⁾

 ¹⁾Budker Institute of Nuclear Physics, Novosibirsk, Russia
²⁾Novosibirsk State University, Novosibirsk, Russia
³⁾Deutsches Elektronen-Synchrotron, DESY, Zeuthen, Germany
⁴⁾Research Computing Center, Moscow State University, Russia
⁵⁾Skobeltsyn Institute of Nuclear Physics of Moscow State University, Russia
⁶⁾Institut für Theoretische Teilchenphysik, Karlsruher Institut für Technologie (KIT), Karlsruhe, Germany

The matching coefficient of the heavy-quark fields in QCD and HQET is calculated up to 4 loops.