ИЗМЕРЕНИЕ ОТНОШЕНИЯ КУМУЛЯТИВНЫХ СПЕКТРОВ БЕТА-ЧАСТИЦ ОТ ПРОДУКТОВ ДЕЛЕНИЯ ²³⁵U И ²³⁹Pu ДЛЯ РЕШЕНИЯ ЗАДАЧ ФИЗИКИ РЕАКТОРНЫХ АНТИНЕЙТРИНО

© 2021 г. В. И. Копейкин^{1)*}, Ю. Н. Панин¹⁾, А. А. Сабельников¹⁾

Поступила в редакцию 19.07.2020 г.; после доработки 19.07.2020 г.; принята к публикации 19.07.2020 г.

Выполнен первый цикл измерений отношения кумулятивных спектров β -частиц изотопов ²³⁵U и ²³⁹Pu, делящихся тепловыми нейтронами. Обнаружено, что кривая отношения спектров β -частиц ²³⁵U/²³⁹Pu, измеренная в настоящей работе, лежит на 5% ниже такой же кривой, полученной из измерений группы ILL. Проведенный анализ показал, что это связано с ошибочным завышением на 5% измеренного группой ILL спектра β -частиц ²³⁵U. Как следствие этого, оказался завышенным на 5% и "спектр $\bar{\nu}_e$ ²³⁵U в момент рождения", который восстанавливается из кумулятивного спектра β -частиц ²³⁵U. Полученные данные объясняют эффект "реакторной антинейтринной аномалии".

DOI: 10.31857/S0044002721010128

ВВЕДЕНИЕ

Оценки спектра антинейтрино ($\bar{\nu}_e$) ядерного реактора впервые получены Альваресом в 1949 г., см. работу Райнеса и Коуэна [1], в которой по этим данным они рассчитали ожидаемое сечение процесса обратного β -распада

$$\bar{\nu}_e + p \to n + e^+ \tag{1}$$

в потоке реакторных $\bar{\nu}_e$. С тех пор проводятся исследования спектра $\bar{\nu}_e$, сформировалось и развивается новое направление — спектроскопия реакторных $\bar{\nu}_e$. Знание спектра $\bar{\nu}_e$ необходимо для интерпретации ведущихся и планирования новых нейтринных экспериментов. Особую актуальность изучение спектра $\bar{\nu}_e$ приобрело в последние годы в связи с повышением точности измерений, постановкой ряда крупных экспериментов и развитием нейтринной индустрии на ядерных реакторах.

Спектр $\bar{\nu}_e$ в области энергий, превышающих порог реакции (1) $E_{\rm th} = 1.8$ МэВ, формируется от β распада продуктов деления изотопов топлива ²³⁵U, ²³⁹Pu, ²³⁸U, ²⁴¹Pu, где ²³⁵U и ²³⁹Pu вносят подавляющий вклад. Наиболее тщательное моделирование спектров $\bar{\nu}_e$ изотопов урана и плутония было проведено в 2011 г. [2, 3] по данным измерений кумулятивных спектров β -частиц этих изотопов, выполненных группой института Лауэ–Ланжевена (ILL)[4–7]. Оказалось[8], что измеренный на стандартном удалении ~15–100 м от реактора выход реакции (1) на $\sim 5\%$ меньше, чем ожидаемый выход по данным работ [2, 3]. Обнаруженный 5% дефицит измеренного выхода к ожидаемому ("reactor antineutrino anomaly") обычно связывают с двумя причинами:

- существованием стерильных нейтрино,

— ошибками в измерениях спектров β -частиц $^{235}{\rm U}$ и $^{239}{\rm Pu}$ группы ILL.

Гипотеза существования стерильных нейтрино проверяется с помощью нескольких детекторов $\bar{\nu}_e$, расположенных на расстояниях менее 15 м от реакторов. Настоящая работа Курчатовского института (KI) нацелена на проверку измерений спектров β -частиц ²³⁵U и ²³⁹Pu. Статья построена следующим образом. Вначале мы кратко рассмотрим способы определения спектра реакторных $\bar{\nu}_e$ в той части, которая необходима для анализа эксперимента. Далее опишем методику опыта, полученные результаты и проведем их обсуждение. Отметим, что эксперимент в настоящее время продолжается, однако полученный материал уже позволяет сделать определенные выводы.

1. О СПОСОБАХ ИЗУЧЕНИЯ СПЕКТРА РЕАКТОРНЫХ $\bar{\nu}_e$

1.1. Расчетный метод

Спектры антинейтрино ρ_{ν}^{i} делящихся изотопов *i*, где индексы i = 5, 9, 8, 1 относятся соответственно к изотопам ²³⁵U, ²³⁹Pu, ²³⁸U и ²⁴¹Pu, получаются путем суммирования вкладов всех β -переходов от всех продуктов деления. На практике спектры

¹⁾Национальный исследовательский центр "Курчатовский институт", Москва, Россия.

^{*}E-mail: kopeikin46@yandex.ru

 $\bar{\nu}_e$ определяются β -распадом всего лишь ≈ 600 продуктов деления. Эти нуклиды отбираются по величине их кумулятивных выходов ($\geq 10^{-6}$ дел⁻¹) и имеют суммарно более 10000 β -переходов. Вклад остальных продуктов деления мал. Одновременно с расчетом спектров ρ_{ν}^i рассчитываются по тем же исходным данным и спектры β -частиц ρ_{β}^i .

Основная проблема расчета заключается в неточном знании выходов и схем распада продуктов деления, особенно короткоживущих, имеющих, как правило, большие энергии β -переходов. Недостаток в экспериментальных данных о независимых выходах продуктов деления приводит к существенному отличию в библиотеках оцененных ядерных данных, см., например, [9]. Обновленные данные о схемах распада для ряда продуктов деления частично снижают проблему [10], но не могут ее полностью исключить.

Ошибки расчетных спектров ρ_{β}^5 и ρ_{β}^9 возрастают от 4–5% при $E_{\beta} = 2-3$ МэВ до 10% при $E_{\beta} \approx$ ≈ 7 МэВ и резко увеличиваются в области >7 МэВ. Вместе с тем, как показано в работе [11], результаты вычисления отношений спектров, например $\rho_{\beta}^5/\rho_{\beta}^9, \rho_{\nu}^5/\rho_{\nu}^9$, гораздо менее чувствительны к прогнозированию исходных для расчета данных, чем сами спектры, и рассчитываются поэтому существенно точнее [12–14].

Конверсия экспериментального спектра β-частиц в спектр ν _e

В реакции β -распада электрон и $\bar{\nu}_e$ испускаются вместе и делят энергию распада между собой. Известно, что спектры $\dot{\rho_{
u}^{i}}$ й $\dot{\rho_{\beta}^{i}}$ для каждого делящегося изотопа *i*, выраженные в полных энергиях частиц, близки друг к другу. Различие в области 2-8 МэВ составляет до ~10% [15, 16]. При расчете спектров в том же диапазоне энергий прослеживается устойчивая связь отношений спектров, приведенных в полных энергиях частиц. Так, отношения $ho_{eta}^5/
ho_{eta}^9$ и $ho_{
u}^5/
ho_{
u}^9$ в пределах $\pm(1.5{-}2)\%$ совпадают между собой, то же относится к $\rho_{\beta}^5/\rho_{\beta}^1$ и $\rho_{\nu}^5/\rho_{\nu}^1$ [14, 15, 17]. Помимо указанной "генетической связи" между спектрами ρ^i_{ν} и ρ^i_{β} , имеется еще одна существенная предпосылка преобразования спектра β -частиц в спектр $\bar{\nu}_e$. В экспериментальном спектре β-частиц уже "природой заложены" выходы и схемы распада продуктов деления и нет нужды об этом беспокоиться, как в случае расчета.

На измерениях спектров β -частиц группы ILL [4–7], выполненных более 30 лет назад, базируются современные знания о спектре реакторных $\bar{\nu}_e$. Поэтому спустя много лет появилась более подробная публикация спектров β -частиц ILL [18].

Конверсионные спектры $\bar{\nu}_e$ делящихся изотопов восстанавливаются из спектров β -частиц ²³⁵U, ²³⁹Pu, ²⁴¹Pu группы ILL [5–7], а в случае изотопа ²³⁸U, для которого экспериментальные данные [19] имеют невысокую точность, используется расчетный спектр $\bar{\nu}_e$. Перечислим модели конверсионных спектров $\bar{\nu}_e$ и время их появления:

1) Huber-Mueller-модель, 2011 г.

В работе Huber [2] восстановлены спектры $\bar{\nu}_e$ ²³⁵U, ²³⁹Pu, ²⁴¹Pu из спектров β -частиц ILL [5–7]. Спектр $\bar{\nu}_e$ ²³⁸U рассчитан в работе Mueller *et al.* [3].

2) Mueller-модель, 2011 г.

В работе Mueller *et al.* [3] восстановлены спектры $\bar{\nu}_e^{235}$ U, ²³⁹Pu, ²⁴¹Pu из спектров β -частиц ILL [5–7] с применением элементов расчета. Спектр $\bar{\nu}_e^{238}$ U рассчитан в [3].

3) ILL-Vogel-модель, 1980-ые гг.

Спектры $\bar{\nu}_e^{235}$ U, ²³⁹Pu, ²⁴¹Pu восстановлены группой ILL [6, 7] из спектров β -частиц ILL [5–7]. Спектр $\bar{\nu}_e^{238}$ U рассчитан в работе Vogel *et al.* [15].

Несмотря на ряд различий, указанные модели имеют однотипную схему преобразования спектров β -частиц ILL в спектры $\bar{\nu}_e$, см. [2, 3, 6, 7].

Ошибки, связанные с процедурой восстановления спектра $\bar{\nu}_e$ при переходе от 2 до 7 МэВ увеличиваются от 2% до 4% [2, 3, 6, 7]. Метод совершенствуется и имеет перспективы снижения ошибок [20]. Для иллюстрации на рис. 1 приведены спектры β -частиц делящихся изотопов. Конверсионный метод является наиболее точным при получении спектра $\bar{\nu}_e$. Вместе с тем нет полной ясности в эффекте ~10% превышения экспериментального спектра реакторных $\bar{\nu}_e$ в области $E_{\nu} = 5-7$ МэВ над конверсионным спектром $\bar{\nu}_e$ ("bump effect"). Существует ряд возможных объяснений [9, 13, 21], одно из них связано с ошибками в измерениях спектров β -частиц группой ILL.

1.3. Прямое измерение спектра $\bar{\nu}_e$ на реакторе

Недостаточная статистика нейтринных измерений долгое время ограничивала возможности экспериментов на реакторах. Коллаборациями Daya Bay и RENO после многолетнего набора статистики впервые из эксперимента получены сечения σ_f^i [см² дел⁻¹] реакции (1) в $\bar{\nu}_e$ -спектрах ρ_{ν}^i [MэB⁻¹ дел⁻¹] изотопов ²³⁵U и ²³⁹Pu [22–24]

$$\sigma_f^i = \int \rho_\nu^i(E_\nu) \sigma_\nu(E_\nu) dE_\nu, \qquad (2)$$

где $\sigma_{\nu}(E_{\nu})$ [см²] — сечение реакции (1) для моноэнергетических $\bar{\nu}_{e}$.

Рис. 1. Кумулятивные спектры β -частиц продуктов деления ²³⁵U (кривая 2), ²³⁹Pu (кривая 4) и ²⁴¹Pu (кривая 3), измеренные в институте Лауэ–Ланжевена [5–7], и кумулятивный спектр β -частиц ²³⁸U (кривая 1), полученный с помощью расчета [3].

Кроме этого, Daya Bay получила также спектры позитронов (1) в потоках $\bar{\nu}_e^{235}$ U и 239 Pu [24]. Высокая стабильность и линейность энергетической шкалы нейтринных детекторов Daya Bay вместе с хорошим энергетическим разрешением [25] и достаточной статистикой нейтринных событий создают реальные предпосылки точного определения спектров $\bar{\nu}_e$ изотопов 235 U и 239 Pu.

2. ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА

2.1. Создание установки

С начала изучения спектров $\bar{\nu}_e$ и до конца 1970х гг. в качестве спектра $\bar{\nu}_e$ реактора принимался спектр $\bar{\nu}_e^{235}$ U. После того, как расчет показал, что спектры $\bar{\nu}_e^{235}$ U и 239 Pu заметно различаются между собой [26], появилась необходимость подтвердить вычисления. С этой целью в Курчатовском институте была разработана установка для измерения отношения спектров β -частиц 235 U/ 239 Pu, проведен эксперимент [27], который подтвердил расчеты [26]. Источником нейтронов при облучении мишеней 235 U и 239 Pu служила ампула с изотопом 252 Cf, помещенная в парафиновый блок. Измерения были проведены в ограниченном диапазоне энергий и на небольшой статистике. Измерения ILL спектров β -частиц делящихся изотопов — единственные на сегодня, выполненные с высокой заявленной точностью. Острая необходимость ревизии спектров β -частиц ILL [9, 21] и, в частности, отношения $\rho_{\beta}^5/\rho_{\beta}^9$ [28] возникла в связи с обнаруженным существенным различием в величинах измеренного [22, 23] и предсказанного [2] сечения σ_f^5 реакции (1) в потоке $\bar{\nu}_e^{-235}$ U. Однако к этому времени установка для измерения $\rho_{\beta}^5/\rho_{\beta}^9$, через ~35 лет после ее создания, была утрачена. В следующем разделе приведена схема восстановленной установки и описана методика эксперимента.

2.2. Схема эксперимента

Установка размещена на выходе нейтронного пучка исследовательского реактора ИР-8 Курчатовского института и предназначена для прецизионного измерения отношения спектров β частиц ²³⁵U/²³⁹Pu. Особенность эксперимента заключается в одновременном измерении спектров β -частиц ²³⁵U и ²³⁹Pu и спектра фона в одном и том же потоке нейтронов и в одинаковых условиях. Рассмотрим вкратце схему установки, см. рис. 2. Более полно экспериментальная установка представлена в работе [29], см. также [27].

Мишени из металлической фольги ²³⁵U и ²³⁹Pu размером 20×30 мм и толщиной 39 мг/см² в количестве по 16 штук для каждого изотопа помещены в тонкие защитные оболочки и компактно расположены вдоль обода вращающегося (10 об/с) диска (диаметр 600 мм) из дюралюминия. Мишени ²³⁵U и ²³⁹Pu занимают по 1/3 окружности диска. На оставшейся трети прикреплены оболочки мишеней без делящегося материала для измерения фона. С одной стороны от центра диска проводится облучение пучком нейтронов мишеней ²³⁵U и ²³⁹Pu и пустых оболочек мишеней. С противоположной стороны с помощью спектрометра осуществляется регистрация eta-частиц от смесей продуктов деления ²³⁵U и ²³⁹Pu, а также регистрация спектра фона. Между нейтронным пучком и спектрометром располагается пассивная защита из тяжелых и легких материалов. Конструкция установки позволяет отдалить место облучения мишеней от места регистрации В-частиц и значительно снизить фон от пучка нейтронов, а также мгновенных нейтронов и у-квантов и запаздывающего у-излучения при делении. Существенное снижение фона достигается также конструкцией спектрометра. Бетаспектрометр изготовлен в виде $\Delta E \times E$ -телескопа из органических сцинтилляторов, разделенных по свету. Импульсы сцинтилляторов поставлены на

Рис. 2. Схема экспериментальной установки на пучке тепловых нейтронов: a — вид сзади, δ — вид сверху. I — бета-спектрометр; 2 - E-детектор из стильбена (H × D = 50 × 50 мм), сочлененный с фотоумножителем Φ ЭУ-110; 3 — пролетный ΔE -детектор: тонкая (H × D = 0.16 × 30 мм) сцинтилляционная пластмасса в светоотражающей коробочке, просматриваемая двумя Φ ЭУ-97; 4 — диафрагмы; 5 — мишени; 6 вращающийся диск — держатель мишеней; 7 — пучок нейтронов; 8 — нейтронная ловушка; 9 — комбинированная пассивная защита (на рис. 2a нейтронная ловушка и комбинированная пассивная защита не показаны).

совпадение. Импульс совпадения разрешает регистрацию и анализ амплитуды суммарного сигнала $\Delta E + E$. Тонкий (0.16 мм) сцинтиллятор используется как пролетный ΔE -детектор и размещен вплотную к *E*-сцинтиллятору (50 × 50 мм) на пути электронов. Такая конструкция позволяет подавлять фон γ -лучей с энергией 1 МэВ в ~200 раз. Энергетическое разрешение (отношение полуширины к положению пика) спектрометра составляет 12% для энергии электронов 1 МэВ.

Спектры β -частиц ²³⁵U и ²³⁹Pu быстро спадают с увеличением энергии, см. рис. 1. Вместе с тем, отношение спектров $\rho_{\beta}^5/\rho_{\beta}^9$ в диапазоне 2–7 МэВ меняется всего лишь в ~2 раза. Поэтому при измерении отношения $\rho_{\beta}^5/\rho_{\beta}^9$ существенно снижаются требования к линейности и стабильности энергетической шкалы. Предпринятые меры подавления фона позволяют продвинуться в область высоких энергий, где интенсивность β -частиц резко падает. Особенностью эксперимента является то, что работа в своей основной части сводится к относительным измерениям. В значительной мере обходятся сложности абсолютной спектрометрии и, поэтому, удается достичь результатов высокой точности. Основные погрешности — статистические.

3. ИЗМЕРЕНИЕ, ОБРАБОТКА И КАЛИБРОВКА

3.1. Процедура измерений

Измерение проводилось сериями длительностью $\sim 2 \times 10^4$ с. Перед началом и по окончании каждой серии пучок нейтронов перекрывался шибером и выполнялась калибровка энергетической шкалы с помощью источника конверсионных электронов 207Ві (482 кэВ, 991 кэВ — K + L-линии) и источников β -спектров ¹⁴⁴Се- $^{144} \Pr{(E_{\max}=2996 \text{ кэB})}$ и $^{38} \mathrm{Cl}\,(E_{\max}=4913 \text{ кэB}).$ Нелинейность шкалы в продолжение всего эксперимента не превышала ±1%, а ее нестабильность составляла менее 0.5%. Проводился контроль функции отклика спектрометра и передачи формы β -спектров. В области энергий E > 5 МэВконтроль шкалы велся по пику потерь энергии космических мюонов в Е-детекторе. Полное время набора статистики составило 2.3×10^6 с. В течение каждой секунды в области E>2 МэВ регистрировалось в среднем 4.0 β -частицы от 235 U, 5.5 β -частиц — от 239 Pu и 0.27 фоновых событий. Таким образом, соотношение эффект/фон для E > 2 МэВ достигало 15-20 раз, уменьшалось с ростом энергии и становилось равным единице при $E \approx 7.7 \text{ МэВ.}$

Расчет показал, что после начала облучения мишеней нейтронами спектральное распределение $\rho_{\beta}^5/\rho_{\beta}^9$ через 15 мин выходит на практически стационарный уровень: при энергии 2 МэВ поправка не превышает ±1.5% и быстро уменьшается с увеличением энергии. Поэтому не требуется длительного облучения мишеней перед началом измерения отношения $\rho_{\beta}^5/\rho_{\beta}^9$, как в случае измерения отдельных спектров ρ_{β}^5 и ρ_{β}^9 [5–7].

С помощью окон, отображаемых на дисплее компьютера, проводился контроль набора спектров ΔE - и E-детекторов, спектров β -частиц ²³⁵U, ²³⁹Pu и спектра фона, а также контроль сигналов и интегральных характеристик.

При обработке результатов измерений спектров β -частиц ²³⁵U, ²³⁹Pu и спектров контрольных источников учитывались потери энергии в самом источнике и на пути к E-детектору в воздухе и пленках.

Дальнейшая работа заключалась в установлении всех искажающих измеренные β -спектры ²³⁵U и ²³⁹Pu факторов и оценке влияния этих искажений на отношение спектров β -частиц ²³⁵U/²³⁹Pu.

3.2. Факторы искажений спектров β-частиц ²³⁵ *U и* ²³⁹ *Pu*

Условия прохождения через вещество электронов, рожденных в мишенях урана и плутония до регистрации их в β -спектрометре, одинаковы. Это обусловлено близостью заряда ядер и плотности металлов мишеней ²³⁵U и ²³⁹Pu, одинаковым размером и весом мишеней, однотипностью их упаковки и крепления к дюралюминиевому диску и т. п.

Причинами искажений спектров β -частиц ²³⁵U и ²³⁹Pu являются: а) рассеяние и потери энергии электронов в фольге ²³⁵U и ²³⁹Pu и упаковке мишеней, б) то же в воздухе и пленках при дальнейшем пролете к β -спектрометру, в) искажения, вносимые самим спектрометром.

Основные искажения связаны с рассеянием и потерями энергии электронов в мишенях (причина а)). Поправки к спектрам *β*-частиц ²³⁵U и ²³⁹Pu определялись в измерениях спектров электронов от тонких источников ²⁰⁷Ві, ⁵⁶Мп, ¹⁴⁴Се-¹⁴⁴Рг, 42 К, 38 Сl и 252 Сf, каждый из которых помещался между двух фольг из свинца и в упаковку мишеней. Так имитировался выход электронов из мишени (из толстого источника). Было установлено, что отношение спектра от толстого источника к спектру от тонкого источника $\eta(E_0)$ при данной энергии Е0 практически одинаково для всех перечисленных изотопов, т.е. мало зависит от природы источника электронов. Заметные при малой энергии, $\eta(2 \text{ M} \Rightarrow \text{B}) = 1.22$, поправки быстро убывают с ее увеличением, $\eta(3 \text{ M} \Rightarrow \text{B}) = 1.10$, и становятся в дальнейшем незначительными, $\eta(4 \text{ M} \Rightarrow \text{B}) = 1.03$. Экспериментальная кривая $\eta(E)$ для источника 252 Сf приведена в работе [27].

Дальнейшее искажение спектров, вызванное б) и в) причинами, было небольшим, см. [27]. Расчетная процедура определения поправок по функции отклика спектрометра хорошо изучена [30] и опробована нами ранее при измерении спектра βчастиц от смеси продуктов деления ²⁵²Cf [31].

Важно подчеркнуть, что слабая связь поправок с природой источника электронов, а также близость самих спектров β -частиц ²³⁵U и ²³⁹Pu позволяют измерить отношение β -спектров ²³⁵U/²³⁹Pu

ЯДЕРНАЯ ФИЗИКА том 84 № 1 2021

особенно надежно без привлечения сложной процедуры восстановления абсолютных спектров β -частиц ²³⁵U и ²³⁹Pu. Основные ошибки опыта — статистические.

*3.3. Абсолютная калибровка отношения спектров β-частиц*²³⁵*U*/²³⁹*Pu*

При измерении на установке определяется только форма отношения спектров β -частиц ²³⁵U/²³⁹Pu. Абсолютизация этого распределения проводилась двумя способами: 1) расчетом и 2) с помощью эксперимента.

В первом способе мы воспользовались тем, что погрешности вычислений отношения абсолютных спектров $\rho_{\beta}^5/\rho_{\beta}^9$ в области 2–3 МэВ небольшие, см. разд. 1.1. При $E_{\beta} = 2$ МэВ отношение спектров $\rho_{\beta}^5/\rho_{\beta}^9 = 1.20 \pm 1.5\%$, а при $E_{\beta} = 3$ МэВ отношение $\rho_{\beta}^5/\rho_{\beta}^9 = 1.31 \pm 2\%$ [14, 15, 17, 32, 33].

Второй способ основывается на пропорциональности скорости счета регистрируемых спектрометром β -частиц n_{β} [1/c] и скорости счета делений ядер в мишенях. Скорость счета делений можно выразить в виде произведения $\sigma \times F \times N$ [1/c], где σ — сечение деления ядер нейтронами, F — плотность потока нейтронов, N — число ядер в мишенях. Связь n_{β} с числом β -частиц, испускаемых в расчете на один акт деления ρ_{β} [1/дел] для мишеней ²³⁵ U или ²³⁹ Pu в интервале энергий $E, E + \Delta E$, для удобства опишем одним выражением:

$$n_{\beta}^{5,9} = \sigma^{5,9} \times F \times N^{5,9} \times \varepsilon \times \rho_{\beta}^{5,9}, \qquad (3)$$

где $n_{\beta}^{5,9}$ обозначает скорость счета регистрируемых β -частиц n_{β}^5 от ²³⁵U или n_{β}^9 от ²³⁹Pu и т.п., а ε — эффективность регистрации β -частиц.

Из записи (3) находим искомое выражение $\rho_{\beta}^{5}/\rho_{\beta}^{9}$:

$$\frac{\rho_{\beta}^5}{\rho_{\beta}^9} = \frac{\sigma^9}{\sigma^5} \times \frac{N^9}{N^5} \times \frac{n_{\beta}^5}{n_{\beta}^9}.$$
 (4)

Поясним запись (4). Отношение спектров β частиц n_{β}^5/n_{β}^9 измеряется в настоящем эксперименте на установке. Отношение N^9/N^5 легко находится из знания масс мишеней и привлечением атомных масс ²³⁵U и ²³⁹Pu. Наиболее трудоемкий этап состоит в определении величины σ^9/σ^5 .

Работа выполнялась в несколько шагов. Сначала определялось кадмиевое отношение при активации тонкой золотой фольги в нейтронном пучке.

Кадмиевое отношение — это отношение активности образца золотой фольги, облученного тепловыми и надтепловыми нейтронами, к активности такого же образца, помещенного в кадмиевый фильтр и облученного, таким образом, только надтепловыми нейтронами [34]. Оказалось, что кадмиевое отношение равно ≈2. Сечение захвата золотом тепловых нейтронов составляет 99 бн, а резонансный интеграл для надтепловых нейтронов равен 1550 бн, поэтому такая величина кадмиевого отношения соответствует тепловым нейтронам с небольшой примесью надтепловых. Исходное сечение деления ²³⁵U тепловыми нейтронами с энергией 0.0253 эВ $(T = 20^{\circ} \text{C})$ взято из справочника [35]. После учета отклонения энергетической зависимости сечения от закона 1/v [35] и введения поправки на более высокую температуру (42°С) замедлителя нейтронов в исследовательском реакторе [36] получаем величину сечения 553 бн. Аналогичная последовательность действий для ²³⁹Ри приводит к сечению 788 бн. Подчеркнем, что разумные вариации поправок на примесь надтепловых нейтронов, температуру замедлителя и т. п. к исходным сечениям деления ²³⁵U и ²³⁹Pu практически не влияют на определение величины отношения сечений σ^9/σ^5 .

В настоящей работе использовалась данные экспериментальной калибровки. Для сравнения с расчетом отметим, что калиброванное отношение $\rho_{\beta}^5/\rho_{\beta}^9$ при энергии E = 2 МэВ составило 1.197, а при E = 3 МэВ — 1.307.

4. РЕЗУЛЬТАТЫ И АНАЛИЗ

4.1. Результаты эксперимента

Отношения спектров β -частиц настоящей работы $(\rho_{\beta}^5/\rho_{\beta}^9)_{\rm KI}$ и группы ILL $(\rho_{\beta}^5/\rho_{\beta}^9)_{\rm ILL}$ представлены на рис. За. Поведение кривых, в целом, идентично: они нарастают с увеличением энергии, а в области \sim 7.5 МэВ происходит их резкий спад. Вместе с тем, кривая $(\rho_{\beta}^5/\rho_{\beta}^9)_{\rm KI}$ лежит на \approx 5% ниже кривой $(\rho_{\beta}^5/\rho_{\beta}^9)_{\rm ILL}$ практически во всем диапазоне энергий, см. рис. Зб. На рис. За показаны статистические ошибки измерений KI и ILL: в диапазоне до 5 МэВ они меньше или близки к \sim 1%. С увеличением энергии ошибки быстро возрастают и к концу энергетического диапазона достигают \sim 30%.

Выбранная в настоящей работе методика позволяет проводить прецизионные измерения отношения спектров $\rho_{\beta}^5/\rho_{\beta}^9$. Для оценки отдельных спектров β -частиц и $\bar{\nu}_e$ используем следующую дополнительную информацию.

 В работе [28] при исследовании конверсионного метода была прослежена и подтверждена прямая сильная корреляция между отношениями

Рис. 3. Отношение кумулятивных спектров β -частиц продуктов деления ²³⁵ U и ²³⁹ Pu, измеренных группой ILL (институт Лауэ—Ланжевена) и группой KI (Курчатовский институт). *а* — отношение спектров β -частиц ²³⁵ U/²³⁹ Pu группы ILL $(\rho_{\beta}^{5}/\rho_{\beta}^{9})_{ILL}$ [5, 6, 18] (черные кружки, соединенные штриховой кривой), отношение спектров β -частиц ²³⁵ U/²³⁹ Pu группы KI $(\rho_{\beta}^{5}/\rho_{\beta}^{9})_{KI}$, измеренные в настоящей работе (светлые кружки, соединенные сплошной кривой). δ — Сопоставление отношения спектров настоящей работы $(\rho_{\beta}^{5}/\rho_{\beta}^{9})_{KI}$ и отношения спектров группы ILL $(\rho_{\beta}^{5}/\rho_{\beta}^{9})_{ILL}$.

спектров β -частиц $\rho_{\beta}^5/\rho_{\beta}^9$ и антинейтрино $\rho_{\nu}^5/\rho_{\nu}^9$ и, как следствие этого, отношением сечений σ_f^5/σ_f^9 .

2. Расчетом установлено, что отношения $\rho_{\beta}^5/\rho_{\beta}^9$ и $\rho_{\nu}^5/\rho_{\nu}^9$, представленные в полных энергиях частиц, в пределах $\pm (1.5-2)\%$ совпадают, см. разд. 1.2.

3. Недавно впервые в эксперименте с хорошей точностью получены сечения σ_f^5 и σ_f^9 [22–24], см. также [37]. Оказалось, что измеренное сечение σ_f^5 на 8.5% меньше ожидаемого σ_f^5 , предсказанного Huber–Mueller-моделью. Между тем, величины измеренного и ожидаемого сечения σ_f^9 совпадают [24].

						1
	$\sigma_{\Sigma}^{1)}$	σ_f^5	σ_f^9	σ_f^8	σ_f^1	σ_f^5/σ_f^9
1. Эксперимент:						1.44^{2}
Daya Bay [24]	5.94 ± 0.09	6.10 ± 0.15	4.32 ± 0.25	—	—	1.412
RENO [23]	—	6.15 ± 0.19	4.18 ± 0.26	—	_	1.471
2. Расчет:						1.44^{2}
[10]	6.00	6.28	4.42	10.1	6.23	1.421
[28]	6.16	6.49	4.49	10.2	6.4	1.445
$[15]^{3)}$	6.09	6.50	4.50	9.07	6.48	1.444
3. Конверсия:						$1.52^{2)}$
Huber-Mueller	6.22	6.69	4.40	10.1	6.10	1.520
Mueller	6.16	6.61	4.34	10.1	6.04	1.523
ILL-Vogel	5.93	6.44	4.22	9.07	5.81	1.526
4. Конверсия с поправкой:						1.44^{2}
Huber-Mueller	6.02	6.33	4.40	10.1	6.10	1.439
Mueller	5.96	6.26	4.34	10.1	6.04	1.442
ILL-Vogel	5.73	6.09	4.22	9.07	5.81	1.443

Таблица 1. Сечения реакции $\bar{\nu}_e + p \rightarrow n + e^+$ в спектрах $\bar{\nu}_e$ делящихся изотопов σ_f^i (²³⁵U, ²³⁹Pu, ²³⁸U и ²⁴¹Pu, i = 5, 9, 8, 1) и в спектре реакторных антинейтрино σ_{Σ} , а также отношение сечений σ_f^5 / σ_f^9 , полученные из экспериментов, по расчетным и конверсионным спектрам $\bar{\nu}_e$ (сечения представлены в единицах 10^{-43} см² дел⁻¹)

¹⁾ Для состава топлива ²³⁵U, ²³⁹Pu, ²³⁸U и ²⁴¹Pu в долях делений (Daya Bay): α5 = 0.564, α9 = 0.304, α8 = 0.076, α1 = 0.056.
 ²⁾ Средняя величина.

³⁾ Данные по сечению реакции (1) отнормированы на время жизни свободного нейтрона 880.2 с.

Из данных измерений настоящей работы, измерений σ_{f}^{5} и σ_{f}^{9} [22-24] и взаимосвязи отношений σ_f^5/σ_f^9 и $\rho_\beta^5/\rho_\beta^9$ следует, что подъем кривой $(\rho_{\beta}^{5}/\rho_{\beta}^{9})_{\rm ILL}$ относительно $(\rho_{\beta}^{5}/\rho_{\beta}^{9})_{\rm KI}$, см. рис. 3, обусловлен тем, что кривая спектра β -частиц 235 U группы ILL $(
ho_{eta}^5)_{
m ILL}$ ошибочно завышена примерно на 5%. Реальный, отвечающий действительности спектр ho_{eta}^5 может быть получен из спектра $(\rho_{\beta}^{5})_{\text{ILL}}$ путем умножения последнего на поправочный спектральный множитель, показанный на рис. 36. Реальный конверсионный спектр ρ_{ν}^{5} может быть получен таким же способом из спектра $(\rho_{\nu}^{5})_{H-M}$ Huber-Mueller с помощью поправочного спектрального множителя, см. рис. 36, выраженного в полной энергии электронов. Аналогично вводятся поправки в конверсионные спектры $\bar{\nu}_e$ моделей ILL–Vogel и Mueller.

Заметим, что статистические ошибки распределения $(\rho_{\beta}^5/\rho_{\beta}^9)_{\rm KI}$ в области >6 МэВ, см. рис. 3, еще велики и требуется продолжение измерений.

ЯДЕРНАЯ ФИЗИКА том 84 № 1 2021

4.2. Обсуждение и анализ

В табл. 1 приведены сечения обратного β распада (1) в спектрах $\bar{\nu}_e$ делящихся изотопов σ_f^i и в спектре $\bar{\nu}_e$ реактора σ_{Σ} . Показано отношение сечений σ_f^5/σ_f^9 , полученных из экспериментов, а также по расчетным и конверсионным спектрам $\bar{\nu}_e$. Они размещены в первых трех строках. В четвертой строке "Конверсия с поправкой" сечения σ_f^5 рассчитаны по реальным спектрам $\bar{\nu}_e^{235}$ U конверсионных моделей после введения поправок, см. разд. 4.1.

Прежде чем перейти к анализу таблицы, отметим следующее. В работе [28] найдено, что отношение спектров $\rho_{\nu}^5/\rho_{\nu}^9$ и отношение сечений σ_f^5/σ_f^9 незначительно меняются и обладают хорошей устойчивостью при разумных изменениях в гипотезах, которые делаются в процессе конверсии спектров β -частиц ρ_{β}^5 и ρ_{β}^9 в спектры антинейтрино ρ_{ν}^5 и ρ_{ν}^9 . При этом сами спектры ρ_{ν}^5 и ρ_{ν}^9 , а также сечения σ_f^5 и σ_f^9 могут изменяться на несколько процентов. Таким образом, отношение сечений $\sigma_{f}^{5}/\sigma_{f}^{9}$ и спектров $\rho_{\nu}^{5}/\rho_{\nu}^{9}$ строго определяется отношением спектров β -частиц $\rho_{\beta}^{5}/\rho_{\beta}^{9}$ [28].

Это подтверждается данными табл. 1, представленными в третьей строке "Конверсия". Здесь отношения σ_f^5/σ_f^9 для всех трех моделей близки друг к другу, хотя сечения σ_f^5 и σ_f^9 для разных моделей заметно отличаются. Усредненная величина σ_f^5/σ_f^9 равна 1.52 и соответствует завышенным данным ILL $(\rho_{\beta}^5/\rho_{\beta}^9)_{\rm ILL}$. Эта величина на 5% выше усредненной величины 1.44 для отношения сечений в первых двух строках "Эксперимент" и "Расчет". После введения поправок в конверсионный спектр $\bar{\nu}_e^{235}$ U (разд. 4.1), усредненная величина отношения σ_f^5/σ_f^9 становится равной 1.44, см. "Конверсия с поправкой" в табл. 1.

Термин "reactor antineutrino anomaly" был введен в 2011 г. [8] в связи с обнаруженным дефицитом измеренного сечения σ_{Σ} (выхода реакции) по отношению к ожидаемому σ_{Σ} , полученному по данным моделей Mueller и Huber—Mueller. После включения поправок в спектр $\bar{\nu}_e^{235}$ U предсказанное сечение σ_{Σ} (см. "Конверсия с поправкой" в табл. 1) уже хорошо согласуется с экспериментом. Таким образом, эффект "reactor antineutrino anomaly" объясняется ошибочным 5% завышением спектра β -частиц ²³⁵U в измерениях группы ILL.

5. ЗАКЛЮЧЕНИЕ

Анализ нейтринных экспериментов на реакторах ведется путем сопоставления измеренных характеристик нейтринных процессов с их ожидаемыми значениями, полученными на основании знания спектра $\bar{\nu}_e$ реактора. Неопределенности спектра $\bar{\nu}_e$ ограничивают чувствительность экспериментальной методики, а систематические погрешности в $\bar{\nu}_e$ -спектре могут имитировать (или маскировать) новые эффекты. Можно сказать, что все здание физики нейтрино на реакторах опирается на данные спектроскопии $\bar{\nu}_e$ как на свою метрологическую базу.

Повышение точности нейтринных измерений на реакторах всегда являлось стимулом для развития спектроскопии реакторных $\bar{\nu}_e$. Постановка ряда крупных экспериментов в последнее десятилетие потребовала уточнений в знании спектра $\bar{\nu}_e$. Тщательное моделирование спектров $\bar{\nu}_e$ изотопов урана и плутония, выполненное в 2011 г. [2, 3] по данным измерений ILL спектров β -частиц этих изотопов [4–7], неожиданно вскрыло дефицит измеренного потока реакторных $\bar{\nu}_e$ по отношению к предсказанному в работах [2, 3] ("reactor antineutrino anomaly"), а сопоставление измеренного и предсказанного спектра $\bar{\nu}_e$ выявило локальный ~10% подъем в области $E_{\nu} = 5-7$ МэВ измеренного спектра над предсказанным ("bump effect"). Также стало неожиданностью, что впервые полученное из эксперимента сечение σ_f^5 реакции (1) в потоке $\bar{\nu}_e$ ²³⁵U [22–24] оказалось существенно заниженным по отношению к предсказанному σ_f^5 [2, 3]. Перечисленные расхождения привели к необходимости проверки спектров β -частиц ILL [9, 13, 21, 28].

С этой целью в настоящей работе выполнены измерения отношения кумулятивных спектров β частиц основных изотопов топлива ²³⁵U/²³⁹Pu. Анализ полученных данных и результатов измерения сечений σ_f^5 и σ_f^9 реакции (1) в спектрах $\bar{\nu}_e$ ²³⁵U и ²³⁹Pu [22–24] привел к выводу об ошибочном завышении примерно на 5% спектра β частиц ²³⁵U в измерениях ILL. Последнее означает, что восстановленный в работах [2, 3] "спектр $\bar{\nu}_e$ ²³⁵U в момент рождения" также переоценен на 5%. Полученные данные объясняют переоценку предсказанного сечения σ_f^5 , а также эффект "reactor antineutrino anomaly" ошибками в измерениях ILL спектра β -частиц ²³⁵U.

Авторы благодарят М.Д. Скорохватова за внимание к работе и полезные обсуждения, К.А. Балыгина, А.И. Климова, Е.А. Мелешко за разработку электронной схемы, В.А. Куркина за измерение кадмиевого отношения на пучке нейтронов, А.В. Чернова за помощь в восстановлении установки.

СПИСОК ЛИТЕРАТУРЫ

- F. Reines and C. L. Cowan, Jr., Phys. Rev. 92, 830 (1953).
- 2. P. Huber, Phys. Rev. C 84, 024617 (2011).
- Th. A. Mueller, D. Lhuillier, M. Fallot, A. Letourneau, S. Cormon, M. Fechner, L. Giot, T. Lasserre, J. Martino, G. Mention, A. Porta, and F. Yermia, Phys. Rev. C 83, 054615 (2011).
- 4. K. Schreckenbach, H. R. Faust, F. von Feilitzsch, A. A. Hahn, K. Hawerkamp, and J. L. Vuilleumier, Phys. Lett. B **99**, 251 (1981).
- 5. F. Feilitzsch, A. A. Hahn, and K. Schreckenbach, Phys. Lett. B **118**, 162 (1982).
- 6. K. Schreckenbach, G. Colvin, W. Gelletly, and F. von Feilitzsch, Phys. Lett. B **160**, 325 (1985).
- A. A. Hahn, K. Schreckenbach, W. Gelletly, F. von Feilitzsch, G. Colvin, and B. Krusche, Phys. Lett. B 218, 365 (1989).
- G. Mention, M. Fechner, Th. Lasserre, Th. A. Mueller, D. Lhuillier, M. Cribier, and A. Letourneau, Phys. Rev. D 83, 073006 (2011).
- A. C. Hayes, J. L. Friar, G. T. Garvay, D. Ibeling, G. Jungman, T. Kawano, and Robert W. Mills, Phys. Rev. D 92, 033015 (2015).

ЯДЕРНАЯ ФИЗИКА том 84 № 1 2021

- M. Estienne, M. Fallot, A. Algora, J. Briz-Monago, V. M. Bui, S. Cormon, W. Gelletly, L. Giot, V. Guadilla, D. Jordan, L. Le Meur, A. Porta, S. Rice, B. Rubio, J. L. Taín, E. Valencia, and A.-A. Zakari-Issoufou, Phys. Rev. Lett. **123**, 022502 (2019).
- А. А. Боровой, В. И. Копейкин, Л. А. Микаэлян, С. В. Толоконников, ЯФ **36**, 400 (1982).
- 12. A. C. Hayes and P. Vogel, Ann. Rev. Nucl. Part. Sci. **66**, 219 (2016); arXiv: 1605.02047 [hep-ph].
- В. И. Копейкин, М. Д. Скорохватов, ЯФ 80, 142 (2017) [Phys. At. Nucl. 80, 266 (2017)].
- 14. В. И. Копейкин, ЯФ **75**, 165 (2012) [Phys. At. Nucl. **75**, 143 (2012)].
- 15. P. Vogel, G. K. Schenter, F. M. Mann, and R. E. Schenter, Phys. Rev. C 24, 1543 (1981).
- А. И. Афонин, С. Н. Кетов, В. И. Копейкин, Л. А. Микаэлян, М. Д. Скорохватов, С. В. Толоконников, ЖЭТФ 94, 1 (1988).
- В. Г. Алексанкин, С. В. Родичев, П. М. Рубцов и др., Бета- и антинейтринное излучение радиоактивных ядер: Справочник (Энергоатомиздат, Москва, 1989).
- 18. N. Haag, F. von Feilitzsch, L. Oberauer, W. Potzel, and K. Schreckenbach, arXiv: 1405.3501 [nucl-ex].
- N. Haag, A. Gütlein, M. Hofmann, L. Oberauer, W. Potzel, K. Schreckenbach, and F. M. Wagner, Phys. Rev. Lett. **112**, 122501 (2014).
- 20. P. Vogel, Phys. Rev. C 76, 025504 (2007).
- 21. D. A. Dwyer and T. J. Langford, Phys. Rev. Lett. **114**, 012502 (2015).
- 22. F. P. An *et al.* (Daya Bay Collab.), Phys. Rev. Lett. **118**, 251801 (2017); arXiv: 1704.01082 [hep-ex].
- 23. G. Bak *et al.* (RENO Collab.), Phys. Rev. Lett. **122**, 232501 (2019); arXiv: 1806.00574v4 [hep-ex].
- 24. D. Adey *et al.* (Daya Bay Collab.), Phys. Rev. Lett. **123**, 111801 (2019); arXiv: 1904.07812v3 [hep-ex].

- 25. Daya Bay Collab. (D. Adey *et al.*), arXiv: 1902.08241 [physics.ins-det].
- А. А. Боровой, Ю. Л. Добрынин, В. И. Копейкин, ЯФ 25, 264 (1977) [Sov. J. Nucl. Phys. 25, 144 (1977)].
- А. А. Боровой, Ю. В. Климов, В. И. Копейкин, ЯФ 37, 1345 (1983) [Sov. J. Nucl. Phys. 37, 801 (1983)]; Препринт ИАЭ-3465/2, Москва, 1981.
- 28. A. C. Hayes, G. Jungman, E. A. McCutchan, A. A. Sonzogni, G. T. Garvey, and X. B. Wang, Phys. Rev. Lett. **120**, 022503 (2018); arXiv: 1707.07728 [nucl-th].
- 29. К. А. Балыгин, М. Д. Каретников, А. И. Климов, В. И. Копейкин и др., ПТЭ, № 1, 27 (2014).
- 30. N. Tsoulfanidis, B. W. Wehring, and M. E. Wyman, Nucl. Instrum. Methods **73**, 98 (1969).
- А. А. Боровой, Ю. В. Климов, В. И. Копейкин, ЯФ 32, 1203 (1980) [Sov. J. Nucl. Phys. 32, 621 (1980)].
- 32. H. V. Klapdor and J. Metzinger, Phys. Lett. B **112**, 22 (1982).
- 33. H. V. Klapdor and J. Metzinger, Phys. Rev. Lett. 48, 127 (1982).
- 34. С. С. Бугорков, А. С. Кривохатский, К. А. Петржак и др., Атомная энергия **21**, 508 (1966).
- 35. Т. С. Беланова, А. В. Игнатюк, А. Б. Пащенко, В. И. Пляскин, *Радиационный захват нейтронов. Справочник* (Энергоатомиздат, Москва, 1986).
- 36. В. Ф. Украинцев, Эффекты реактивности в энергетических реакторах (Обнинский институт атомной энергетики, Обнинск, 2000).
- 37. STEREO Collab. (H. Almazán *et al.*), arXiv: 2004.04075 [hep-ex].

MEASUREMENT OF THE RATIO OF CUMULATIVE BETA-PARTICLE SPECTRA OF ²³⁵U AND ²³⁹Pu FISSION PRODUCTS FOR SOLVING PROBLEMS OF REACTOR ANTINEUTRINO PHYSICS

V. I. Kopeikin¹⁾, Yu. N. Panin¹⁾, A. A. Sabelnikov¹⁾

¹⁾National Research Center Kurchatov Institute, Moscow, Russia

Absolute measurements of the ratio of cumulative β spectra of ²³⁵U and ²³⁹Pu thermal neutron fission products were performed. It was found that the curve of the ratio of β -particle spectra ²³⁵U/²³⁹Pu, measured in this paper, is 5% lower than the same curve obtained from the ILL group measurements. The analysis showed that this is due to an erroneous overestimation of the spectrum of ²³⁵U β particles measured by the ILL group by 5%. As a result, the " $\bar{\nu}_e$ spectrum of ²³⁵U at birth", which is recovered from the cumulative spectrum of ²³⁵U β particles, was also overestimated by 5%. The obtained data explain the effect of the "reactor antineutrino anomaly".