= ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ И ПОЛЯ =

ИЗМЕРЕНИЕ СЕЧЕНИЯ ПРОЦЕССА $e^+e^- \to K^+K^-\pi^0$ НА ДЕТЕКТОРЕ СНД ПРИ ЭНЕРГИИ В СИСТЕМЕ ЦЕНТРА МАСС $\sqrt{s}~=~1.3-2.0~$ ГэВ

© 2021 г. М. Н. Ачасов^{1),2)}, А. Ю. Барняков¹⁾, М. Ю. Барняков¹⁾, К. И. Белобородов^{1),2)}, А. В. Бердюгин^{1),2)}, А. Г. Богданчиков¹⁾, А. А. Ботов¹⁾, А. Р. Бузыкаев¹⁾, В. Б. Голубев¹⁾, Т. В. Димова^{1),2)}, В. П. Дружинин^{1),2)}, Л. В. Кардапольцев^{1),2)}, Д. П. Коврижин¹⁾, А. А. Король^{1),2)}, Е. А. Кравченко^{1),2)}, А. С. Купич¹⁾, К. А. Мартин¹⁾, Н. А. Мельникова¹⁾, А. Е. Образовский¹⁾, А. П. Онучин¹⁾, Е. В. Пахтусова^{1)*}, К. В. Пугачев^{1),2)}, С. И. Середняков^{1),2)}, З. К. Силагадзе^{1),2)}, И. К. Сурин¹⁾, Ю. В. Усов¹⁾, А. Г. Харламов^{1),2)}, Д. А. Штоль¹⁾

Поступила в редакцию 22.04.2020 г.; после доработки 22.04.2020 г.; принята к публикации 22.04.2020 г.

В эксперименте с детектором СНД на e^+e^- -коллайдере ВЭПП-2000 в диапазоне энергии в системе центра масс $\sqrt{s}=1.28-2.00$ ГэВ измерены сечения процессов $e^+e^- \to K^+K^-\pi^0$ и $e^+e^- \to \phi\pi^0$. Результаты согласуются с предыдущими измерениями в эксперименте BABAR и имеют сравнимую точность.

DOI: 10.31857/S0044002721010050

1. ВВЕДЕНИЕ

Реакция $e^+e^- \to K^+K^-\pi^0$ является одним из трех зарядовых состояний процесса $e^+e^- \to K\bar K\pi$, который дает значимый вклад (около 12% при энергии в системе центра масс $\sqrt s \approx 1.65~$ ГэВ) в полное сечение e^+e^- -аннигиляции в адроны и является ключевым процессом для измерения параметров резонанса $\phi(1680)$. Реакция $e^+e^- \to K^+K^-\pi^0$ впервые наблюдалась в эксперименте DM2 [1]. Точность измерения ее сечения была существенно улучшена в эксперименте BABAR [2], в котором процесс $e^+e^- \to K^+K^-\pi^0$ исследовался методом радиационного возврата. В этой же работе было показано, что при $\sqrt s < 2~$ ГэВ процесс $e^+e^- \to K^+K^-\pi^0$ идет через промежуточные состояния $K^{*\pm}(892)K^\mp$ и $\phi(1020)\pi^0$.

2. ДЕТЕКТОР И ЭКСПЕРИМЕНТ

Детектор СНД [3] представляет собой немагнитный детектор общего назначения и состоит из трековой системы, системы идентификации

частиц на основе порогового аэрогелевого черенковского счетчика, трехслойного сферического калориметра, состоящего из 1640 кристаллов NaI(TI), и мюонной системы. Для анализа использовались данные с интегральной светимостью $26.4~\rm nGh^{-1}$, накопленные на e^+e^- -коллайдере $\rm B \ni \Pi\Pi - 2000~n$ при сканировании области энергии $\sqrt{s} = 1.28 - 2.00~\rm F \ni B$.

3. ОТБОР СОБЫТИЙ

События процесса $e^+e^- o K^+K^-\pi^0$ регистрируются как пара заряженных частиц, сопровождаемая двумя фотонами от распада π^0 . Отбирались события с двумя заряженными частицами, вылетающими из области встречи пучков и идентифицированными как каоны, и двумя и более фотонами. Для идентификации каонов используется информация о срабатывании пороговых черенковских счетчиков и об удельных ионизационных потерях в дрейфовой камере. Отобранные события подвергались процедуре кинематической реконструкции в гипотезе, что они происходят от процесса $e^+e^- \to K^+K^-\gamma\gamma$. Качество реконструкции описывалось параметром $\chi^2(KK2\gamma)$. По параметрам фотонов, подправленным в результате кинематической реконструкции, вычислялась инвариантная масса $m_{\gamma\gamma}$. Проводилась также кинематическая реконструкция в гипотезах $\pi^+\pi^-\gamma\gamma$ и $\pi^+\pi^-\pi^0\pi^0$, вычислялись соответ-

¹⁾Институт ядерной физики им. Г.И. Будкера СО РАН, Новосибирск, Россия.

²⁾Новосибирский государственный университет, Новосибирск, Россия.

^{*}E-mail: E.V.Pakhtusova@inp.nsk.su

ствующие χ^2 . В анализе использовались события с $\chi^2(KK2\gamma) < 40, \, \chi^2(\pi\pi2\gamma) > 20$ и $\chi^2(\pi\pi2\pi^0) > 20$.

Для подавления фона от многоадронных процессов отбрасывались события с энерговыделением дополнительных фотонов больше $0.15\sqrt{s}$ и вводились ограничения на минимальный и максимальный импульсы каонов, полученные при кинематической реконструкции. Отбрасывались также события с двумя коллинеарными заряженными частицами.

4. ПРОЦЕСС
$$e^+e^- \to K^{*\pm}(892)K^\mp \to K^+K^-\pi^0$$

При изучении процесса $e^+e^- o K^+K^-\pi^0$ события процесса $e^+e^- o \phi\pi^0$ исключались из рассмотрения с помощью условия $m_{\rm rec} > 1.05~{\rm FpB}/c^2$, где $m_{\rm rec}$ — масса отдачи пары фотонов, вычисленная после кинематической реконструкции.

Распределение отобранных событий по массе $m_{\gamma\gamma}$ для $\sqrt{s}=1.60-1.72$ ГэВ приведено на рис. 1. Это распределение аппроксимировалось суммой распределений для сигнала и фона. Распределение для сигнала было получено по моделированию процесса $e^+e^- \to K^+K^-\pi^0$. Распределение для фона являлось суммой вычисленных по моделированию вкладов многоадронных процессов и неучтенного фона, который описывался линейной функцией. Результат аппроксимации показан на рис. 1.

Видимое сечение процесса $e^+e^- o K^+K^-\pi^0$ вычисляется как $\sigma_{{
m vis},i}=N_{{
m exp},i}/(L_iarepsilon_i)$, где $N_{{
m exp},i}$ число отобранных событий изучаемого процесса, L_i — интегральная светимость, а ε_i — эффективность регистрации для i-той энергетической точки. Эффективность регистрации событий процесса $e^+e^- \to K^+K^-\pi^0$ как функция \sqrt{s} определялась по моделированию и корректировалась, чтобы учесть неидеальность моделирования. Она растет от 1% при $\sqrt{s} = 1.2$ ГэВ до 9% при $\sqrt{s} = 1.6$ ГэВ, а затем уменьшается до 4% при $\sqrt{s} = 2$ ГэВ. Для получения экспериментальных значений борновского сечения σ_0 измеренная энергетическая зависимость видимого сечения аппроксимировалась выражением, в котором для борновского сечения использовалась упрощенная двухрезонансная модель. В результате аппроксимации определялись параметры модели и вычислялась радиационная поправка $1 + \delta(s) = \sigma_{\text{vis}}(s)/\sigma_0(s)$.

Полученные значения борновского сечения и теоретическая кривая приведены на рис. 2. Там же приведены результаты эксперимента BABAR [2]. Два измерения неплохо согласуются и сравнимы по точности.

Рис. 1. Распределение по инвариантной массе двух фотонов для отобранных экспериментальных событий при $\sqrt{s}=1.6-1.72\,$ ГэВ (точки с ошибками). Гистограмма — результат аппроксимации экспериментального распределения суммой эффекта и фона. Штриховая гистограмма показывает распределение фона. Сплошная гистограмма — вклад линейного фона.

Рис. 2. Сечение процесса $e^+e^- \to K^+K^-\pi^0$, измеренное в эксперименте СНД (кружки), в сравнении с данными BABAR [2] (квадраты). Кривая — результат аппроксимации сечения.

5. ПРОЦЕСС
$$e^+e^- o \phi\pi^0 o K^+K^-\pi^0$$

Условия отбора событий процесса $e^+e^- o \phi \pi^0 o K^+K^-\pi^0$ близки к условиям, описанным в разд. 3. Анализировались события с массой

Рис. 3. Распределения по параметру m_{rec} для экспериментальных событий (точки с ошибками) и расчетного по моделированию фона (гистограмма).

Рис. 4. Сечение процесса $e^+e^- o \phi \pi^0$, измеренное в эксперименте СНД, в сравнении с результатами эксперимента ВАВАR [2, 4]. Сплошная и штриховая кривые показывают результаты аппроксимации в моделях 1 и 2 соответственно.

отдачи пары фотонов $m_{\rm rec} < 1.11~$ ГэВ $/c^2$. При этом мы отказались от требований на величину минимального и максимального импульсов заряженной частицы, восстановленных в модели $e^+e^- \to K^+K^-\gamma\gamma$. Для подавления фона от процесса радиационного возврата на резонанс $e^+e^- \to$

 $ightarrow \phi(1020)\gamma
ightarrow K^+K^-\gamma$ было дополнительно введено ограничение на энергию наиболее энергичного фотона в событии. На рис. З приведено распределение по $m_{\rm rec}$, полученное при ограничении $0.1 < < m_{\gamma\gamma} < 0.17$ ГэВ/ c^2 , в котором ясно виден пик от $\phi(1020)$. На рис. З приведено также ожидаемое по моделированию распределение фона. Доминирующими источниками фона являются процессы $e^+e^-
ightarrow K^*K
ightarrow K^+K^-\pi^0$ и $e^+e^-
ightarrow K^+K^-(\gamma)$. Видно, что моделирование хорошо воспроизводит как полное число фоновых событий, так и форму фонового распределения.

В распределении по $m_{\rm rec}$ выделялись две области: сигнальная $1.00 < m_{\rm rec} < 1.04~ \Gamma {\rm pB}/c^2$ и фоновая $1.04 < m_{\rm rec} < 1.08~ \Gamma {\rm pB}/c^2$. Используя соотношения числа событий эффекта и фона в сигнальной и фоновой областях, полученные по моделированию, определялось число событий процесса $e^+e^- \to \phi \pi^0 \to K^+K^-\pi^0$ в каждой точке по энергии.

Для вычисления радиационных поправок и получения борновского сечения процесса $e^+e^- \rightarrow$ $\rightarrow \phi \pi^0$ проводилась совместная аппроксимация данных СНД и данных двух измерений BABAR [2, 4]. Борновское сечение описывалось когерентной суммой вкладов резонансов $\rho(1450)$ и $\rho(1700)$ (модель 1). В этой модели массы и ширины резонансов фиксировались на табличных значениях [5], а сечения в максимуме резонансов и относительная фаза между их амплитудами были свободными параметрами. Полученное борновское сечение процесса $e^{+}e^{-} o \phi \pi^{0}$ показано на рис. 4 вместе с измерениями BABAR и аппроксимирующей кривой. Видно, что все три измерения неплохо согласуются друг с другом ниже 1.75 ГэВ. В диапазоне 1.75-2 ГэВ имеется не статистический разброс измерений. Аппроксимирующая кривая описывает поведение сечения, наблюдаемое в эксперименте, везде, кроме узкого интервала вблизи $\sqrt{s} = 1.58$ ГэВ, где превышение над кривой наблюдается во всех трех измерениях. В целом качество аппроксимации является неудовлетворительным ($\chi^2/\text{ndf} = 50/28$). Лучшее описание данных дает модель с двумя резонансами, в которой масса и ширина одного из них фиксировалась на табличных значениях для $\rho(1700)$, а параметры второго были свободными (модель 2). В результате аппроксимации были получены следующие значения массы и ширины для этого резонанса: $1585 \pm 15 \,\mathrm{M}$ эВ и $75 \pm 30 \,\mathrm{M}$ эВ. Для этой модели $\chi^2/\text{ndf} = 38/26$ ($P(\chi^2) = 6\%$). Аппроксимирующая кривая для модели 2 также показана на рис. 4. Следует отметить, что векторный резонанс с такими параметрами в таблице свойств частиц [5] отсутствует.

6. ЗАКЛЮЧЕНИЕ

В данной работе представлены результаты изучения процесса $e^+e^- \to K^+K^-\pi^0$ в диапазоне энергий в системе центра масс от 1.28 до 2 ГэВ в эксперименте СНД на e^+e^- -коллайдере ВЭПП-2000. В работе показано, что в исследуемом диапазоне энергий процесс $e^+e^- \to K^+K^-\pi^0$ идет в основном через промежуточное состояние $K^*(892)^\pm K^\mp$. Имеется также сигнал от промежуточного состояния $\phi\pi^0$. Отдельно измерены сечения процессов $e^+e^- \to K^+K^-\pi^0$ (без $\phi\pi^0$) и $e^+e^- \to \phi\pi^0$. Измеренные сечения неплохо согласуются с предыдущими измерениями в эксперименте BABAR и имеют сравнимую точность.

Работа выполнена на базе УНУ "Комплекс ВЭПП-4 — ВЭПП-2000".

СПИСОК ЛИТЕРАТУРЫ

D. Bisello, G. Busetio, A. Castro, M. Nigro, L. Pescara,
 P. Sartori, L. Stanco, A. Antonelli, R. Baldini,

- M. E. Biagini, M. Schioppa, J. E. Augustin, A. Calcaterra, G. Cosme, F. Couchot, F. Fulda, *et al.*, Z. Phys. C **52**, 227 (1991).
- 2. B. Aubert *et al.* (BABAR Collab.), Phys. Rev. D 77, 092002 (2008).
- 3. M. N. Achasov *et al.* (SND Collab.), Nucl. Instrum. Methods Phys. Res., Sect. A **598**, 31 (2009); V. M. Aulchenko *et al.* (SND Collab.), Nucl. Instrum. Methods Phys. Res., Sect. A **598**, 102 (2009); A. Yu. Barnyakov *et al.* (SND Collab.), Nucl. Instrum. Methods Phys. Res., Sect. A **598**, 163 (2009); V. M. Aulchenko *et al.* (SND Collab.), Nucl. Instrum. Methods Phys. Res., Sect. A **598**, 340 (2009).
- 4. J. P. Lees *et al.* (BABAR Collab.), Phys. Rev. D **95**, 052001 (2017).
- 5. M. Tanabashi *et al.* (Particle Data Group), Phys. Rev. D **98**, 030001 (2018).

MEASUREMENT OF THE $e^+e^- \to K^+K^-\pi^0$ CROSS SECTION WITH THE SND DETECTOR IN THE CENTER-OF-MASS ENERGY

 $\sqrt{s} = 1.3 - 2.0 \, \mathrm{GeV}$

M. N. Achasov^{1),2)}, A. Yu. Barnyakov¹⁾, M. Yu. Barnyakov¹⁾, K. I. Beloborodov^{1),2)},
A. V. Berdyugin^{1),2)}, A. G. Bogdanchikov¹⁾, A. A. Botov¹⁾, A. R. Buzykaev¹⁾, T. V. Dimova^{1),2)},
V. P. Druzhinin^{1),2)}, V. B. Golubev¹⁾, L. V. Kardapoltsev^{1),2)}, A. G. Kharlamov^{1),2)},
A. A. Korol^{1),2)}, D. P. Kovrizhin¹⁾, E. A. Kravchenko¹⁾, A. S. Kupich¹⁾, K. A. Martin¹⁾,
N. A. Melnikova¹⁾, A. E. Obrazovsky¹⁾, A. P. Onuchin¹⁾, E. V. Pakhtusova¹⁾,
K. V. Pugachev^{1),2)}, S. I. Serednyakov^{1),2)}, D. A. Shtol¹⁾, Z. K. Silagadze^{1),2)}, I. K. Surin¹⁾,
Yu. V. Usov¹⁾

1) Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia 2) Novosibirsk State University, Novosibirsk, Russia

The $e^+e^- \to K^+K^-\pi^0$ and $e^+e^- \to \phi\pi^0$ cross sections have been measured with the SND detector in the center-of-mass energy range $\sqrt{s}=1.28-2.00$ GeV. The results are consistent with previous measurements in the BABAR experiment and have comparable accuracy.