= ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ И ПОЛЯ =

ИЗМЕРЕНИЕ УГЛА ВАЙНБЕРГА В ЭКСПЕРИМЕНТЕ НА СУПЕР С-ТАУ-ФАБРИКЕ С ПОЛЯРИЗОВАННЫМ ПУЧКОМ

© 2021 г. В. С. Воробьев^{1)*}

Поступила в редакцию 07.06.2020 г.; после доработки 07.06.2020 г.; принята к публикации 07.06.2020 г.

В работе обсуждается измерение эффективного угла смешивания электрослабого взаимодействия $\theta_{\rm eff}$ в эксперименте на Супер С-тау-фабрике с продольной поляризацией электронов. Рассмотрен недавно предложенный метод измерения средней степени поляризации электронов с помощью анализа дифференциального сечения процесса $J/\psi \to [\Lambda \to p\pi^-][\bar{\Lambda} \to \bar{p}\pi^+]$. При светимости коллайдера 10^{35} см⁻²с⁻¹ и степени поляризации 0.8 параметр sin² $\theta_{\rm eff}$ может быть измерен с относительной точностью лучше 1%, что позволит наблюдать отклонение от значения этого параметра в пике Z-бозона.

DOI: 10.31857/S0044002721010232

ВВЕДЕНИЕ

Угол Вайнберга θ_W является параметром $SU(2)_L \times U(1)_Y$ модели электрослабого взаимодействия [1], определяющим связь полей фотона и Z-бозона с полями калибровочных бозонов B и W^3

$$A \equiv B\cos\theta_{\rm W} + W^3 \sin\theta_{\rm W},\tag{1}$$

$$Z \equiv -B\sin\theta_{\rm W} + W^3\cos\theta_{\rm W}.$$

Угол Вайнберга входит в векторную часть нейтрального слабого взаимодействия

$$g_V^f \equiv I_3^f - 3Q_f \sin^2 \theta_W, \tag{2}$$

где I_3 и Q_f обозначают слабый изоспин и электрический заряд фермионного поля f соответственно. Поправки к основному вкладу приводят к тому, что в экспериментах наблюдается эффективное значение

$$\sin^2 \theta_{\rm eff} \equiv \kappa_Z^f \sin^2 \theta_{\rm W},\tag{3}$$

где коэффициент κ_Z^f зависит от переданного импульса. Значение κ_Z^f достаточно точно вычисляется: неопределенность при малых импульсах составляет 2×10^{-5} [2].

Значение $\sin^2 \theta_{\text{eff}}$ измерено с относительной точностью 0.1% в пике *Z*-бозона в экспериментах на коллайдерах LEP и SLC [3]. При энергиях $\mathcal{O}(1 \, \Gamma$ эВ) и ниже ожидается отличие величины $\sin^2 \theta_{\text{eff}}$ от значения в пике *Z* на уровне 4% [4]. Измерения $\sin^2 \theta_{\text{eff}}$ на низких энергиях выполнялись различными способами: по нарушению четности в атомах, рассеянию Моллера, рассеянию Мотта, глубоконеупругому рассеянию нейтрино и электронов на ядрах атомов [5]. Результаты измерений согласуются с предсказанием стандартной модели, однако точность экспериментов на низких энергиях пока значительно уступает результатам, полученным в пике Z.

Измерение $\sin^2 \theta_{\text{eff}}$ на низких энергиях представляет интерес с точки зрения проверки электрослабой модели. Прецизионные измерения чувствительны к нестандартным вкладам в κ_Z^f , например, к расширенной электрослабой модели с дополнительными калибровочными бозонами.

ЭКСПЕРИМЕНТ НА СУПЕР С-ТАУ-ФАБРИКЕ

В настоящее время обсуждаются проекты "Супер С-тау-фабрик" — симметричных e^+e^- коллайдеров с высокой светимостью 10^{35} см⁻²с⁻¹ и диапазоном энергий \sqrt{s} от 2 до 6 ГэВ [6, 7]. Проекты предусматривают высокую степень продольной поляризации электронов в месте встречи. В таком эксперименте параметр $\sin^2 \theta_{\rm eff}$ может быть измерен по асимметрии полного сечения в пике J/ψ :

$$\mathcal{A}_{LR} = \mathcal{P}_e \cdot \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} \equiv \mathcal{P}_e \cdot \mathcal{A}_{LR}^0, \qquad (4)$$

где $\sigma_R(\sigma_L)$ обозначает полное сечение для электронов с правой (левой) поляризацией и \mathcal{P}_e — степень поляризации электронов ($0 \leq \mathcal{P}_e \leq 1$). Для измерения сечений σ_R и σ_L можно использовать

¹⁾Институт ядерной физики им. Г.И. Будкера СО РАН, Новосибирск, Россия.

^{*}E-mail: vvorob@inp.nsk.su

адронные распады J/ψ . Количество зарегистрированных адронных распадов J/ψ при определенной поляризации (N_L или N_R) связано с соответствующим сечением следующим образом:

$$\sigma_{\alpha} = \frac{N_{\alpha}}{\mathcal{L}_{\alpha}\varepsilon_{\alpha}}, \quad \alpha \in \{L, R\},$$
(5)

где параметры ε_{α} описывают эффективность реконструкции событий в детекторе и вероятность распада J/ψ в рассматриваемые адронные состояния, а \mathcal{L}_{α} обозначают соответственные интегралы светимости. Характерные значения N_{α} в эксперименте на Супер С-тау-фабрике имеют порядок 10^{12} . Интегралы светимости \mathcal{L}_{α} при этом должны быть известны с относительной статистической точностью не хуже 10^{-6} . Обсуждение подходов к прецизионному измерению интеграла светимости в таком эксперименте можно найти в работе [8].

Асимметрия \mathcal{A}_{LR}^0 возникает из-за интерференции процессов $e^+e^- \rightarrow \gamma^* \rightarrow c\bar{c}$ и $e^+e^- \rightarrow Z^* \rightarrow c\bar{c}$ и выражается через $\sin^2 \theta_{\text{eff}}$ следующим образом [9]:

$$\mathcal{A}_{LR}^{0} = \frac{-\sin^{2}\theta_{\text{eff}} + 3/8}{2\sin^{2}\theta_{\text{eff}}(1 - \sin^{2}\theta_{\text{eff}})} \left(\frac{m_{J/\psi}}{m_{Z}}\right)^{2} \approx (6)$$
$$\approx 4.7 \times 10^{-4}.$$

Для получения величины $\sin^2 \theta_{\text{eff}}$ необходимо измерить асимметрию \mathcal{A}_{LR} и степень поляризации \mathcal{P}_e . Из выражений (4) и (6) получаем соотношение для относительных неопределенностей

$$\frac{\sigma\left(\sin^2\theta_{\rm eff}\right)}{\sin^2\theta_{\rm eff}} =$$
(7)
$$= C_{\mathcal{A}_{LR}} \frac{\sigma\left(\mathcal{A}_{LR}\right)}{\mathcal{A}_{LR}} \oplus C_{\mathcal{P}_e} \frac{\sigma\left(\mathcal{P}_e\right)}{\mathcal{P}_e} \approx 0.3\%,$$

где $C_{\mathcal{P}_e} = -C_{\mathcal{A}_{LR}} \approx 0.44$. Значение 0.3% получено для одного сезона работы эксперимента, степени поляризации $\mathcal{P}_e = 0.8$ и в предположении о том, что точность измерения ограничена статистической неопределенностью измерения асимметрии \mathcal{A}_{LR} . Среднюю степень поляризации электронов \mathcal{P}_e при этом необходимо контролировать с относительной точностью лучше 0.1%.

Лазерные мониторы поляризации могут обеспечить достаточную статистическую точность, однако систематическая неопределенность может составить серьезную проблему. Альтернативным решением является измерение \mathcal{P}_e из анализа тех же данных, в которых измеряется асимметрия \mathcal{A}_{LR} . Такой подход, видимо, является оптимальным с точки зрения контроля систематических неопределенностей. Далее мы покажем, что процесс

$$e^+e^- \to J/\psi \to [\Lambda \to p\pi^-][\bar{\Lambda} \to \bar{p}\pi^+]$$
 (8)

может быть использован для контроля \mathcal{P}_e .

ДИФФЕРЕНЦИАЛЬНОЕ СЕЧЕНИЕ ПРОЦЕССА $e^+e^- \rightarrow J/\psi \rightarrow [\Lambda \rightarrow p\pi^-][\bar{\Lambda} \rightarrow \bar{p}\pi^+]$

Диаграмма процесса $e^+e^- \rightarrow J/\psi \rightarrow [\Lambda \rightarrow p\pi^-][\bar{\Lambda} \rightarrow \bar{p}\pi^+]$ показана на рис. 1. Описание этого процесса содержит следующие компоненты:

• Лептонный ток с поляризованным электроном

$$j_e^{\mu} \equiv \bar{v}_{-\xi} \gamma^{\mu} u_{\xi} = \sqrt{s} \left(0, \xi \cos \theta, i, -\xi \sin \theta \right), \quad (9)$$

где $\xi = \pm 1$ обозначает удвоенную спиральность электрона и ось z выбрана в направлении импульса Λ .

• Вершина $J/\psi \to \Lambda \bar{\Lambda}$ описывается двумя формфакторами

$$-ie_{g}\bar{u}_{\Lambda}(p_{1})\left[G_{M}^{\psi}\gamma^{\mu}-(10)\right]$$

$$\frac{2m_{\Lambda}}{Q^{2}}\left(G_{M}^{\psi}-G_{E}^{\psi}\right)Q^{\mu}v_{\bar{\Lambda}}(p_{2}),$$

где p_1 и p_2 обозначают импульсы Λ и $\overline{\Lambda}$ соответственно и $Q \equiv p_1 - p_2$.

• Вершина распада $\Lambda \to p\pi^- (\bar{\Lambda} \to \bar{p}\pi^+)$ $\bar{u}_p \left[A + B\gamma^5 \right] u_\Lambda, \quad (\bar{v}_{\bar{\Lambda}} \left[A' + B'\gamma^5 \right] v_{\bar{p}}).$ (11)

Выражение для дифференциального сечения получается посредством свертки лептонного и адронного тензоров:

$$\frac{d\sigma}{d\zeta} \propto L^{\mu\nu} H_{\mu\nu} \propto a(\zeta) + \xi b(\zeta), \qquad (12)$$

где ζ обозначает набор из пяти кинематических параметров, количество которых соответствует размерности фазового пространства. Симметричная часть лептонного тензора не зависит от поляризации, в то время как его антисимметричная часть пропорциональна спиральности электрона:

$$L^{\mu\nu} \equiv (j_e^{\nu})^{\dagger} j_e^{\mu} = k_+{}^{\mu}k_-{}^{\nu} + k_-{}^{\mu}k_+{}^{\nu} - \qquad (13)$$
$$-\frac{s}{2}g^{\mu\nu} - \xi i\varepsilon^{\mu\nu\alpha\beta}k_{-\alpha}k_{+\beta},$$

где k_{-} (k_{+}) обозначает импульс электрона (позитрона). Детали вычислений приведены в работе [8], здесь же мы сразу приведем результат.

Дифференциальное сечение (12) зависит от четырех параметров:

$$\alpha \equiv \frac{s \left| G_M^{\psi} \right|^2 - 4m_{\Lambda^2} \left| G_E^{\psi} \right|^2}{s \left| G_M^{\psi} \right|^2 + 4m_{\Lambda^2} \left| G_E^{\psi} \right|^2}, \qquad (14)$$

ЯДЕРНАЯ ФИЗИКА том 84 № 2 2021

Рис. 1. Диаграмма процесса $J/\psi \to [\Lambda \to p\pi^-][\bar{\Lambda} \to \bar{p}\pi^+].$

$$\Delta \Phi \equiv \arg\left(rac{G_E^\psi}{G_M^\psi}
ight), \quad lpha_1, \quad lpha_2,$$

где α_1 и α_2 — параметры распада $\Lambda \to p\pi^-$ и $\bar{\Lambda} \to \bar{p}\pi^+$ соответственно. Эти параметры измерены в эксперименте BESIII [10]:

$$\Delta \Phi = (42.4 \pm 0.6 \pm 0.5)^{\circ}, \qquad (15)$$

$$\alpha = 0.461 \pm 0.006 \pm 0.007, \qquad (15)$$

$$\alpha_1 = 0.750 \pm 0.009 \pm 0.004, \qquad (15)$$

$$\alpha_2 = -0.758 \pm 0.010 \pm 0.007. \qquad (15)$$

Явный вид сечения (12) удобно записывать в комбинированной системе отсчета, показанной на рис. 2, а в качестве кинематических переменных выбрать: полярный угол (θ) импульса Λ в системе центра масс; полярный и азимутальные углы (θ_1 и ϕ_1) импульса протона в системе покоя Λ ; аналогичные параметры (θ_2 и ϕ_2) для антипротона определены в системе $\overline{\Lambda}$. Таким образом,

$$\zeta = \{\cos\theta, \cos\theta_1, \phi_1, \cos\theta_2, \phi_2\}, \quad (16)$$
$$d\zeta = d\cos\theta d\Omega_1 d\Omega_2, \quad \Omega_i = d\cos\theta_i d\phi_i.$$

Функции *a* и *b* в этих переменных имеют следующий вид:

$$a(\zeta) = \mathcal{F}_0 + \alpha \mathcal{F}_5 +$$
(17)
+ $\alpha_1 \alpha_2 \left(\mathcal{F}_1 + \sqrt{1 - \alpha^2} \cos(\Delta \Phi) \mathcal{F}_2 + \alpha \mathcal{F}_6 \right) +$
+ $\sqrt{1 - \alpha^2} \sin(\Delta \Phi) \left(\alpha_1 \mathcal{F}_3 + \alpha_2 \mathcal{F}_4 \right),$

где

$$\mathcal{F}_{0} = 1, \quad \mathcal{F}_{1} = \sin^{2}\theta\sin\theta_{1}\sin\theta_{2}\cos\phi_{1}\cos\phi_{2} + \\ + \cos^{2}\theta\cos\theta_{1}\cos\theta_{2}, \\ \mathcal{F}_{2} = \sin\theta\cos\theta(\sin\theta_{1}\cos\theta_{2}\cos\phi_{1} + \\ + \cos\theta_{1}\sin\theta_{2}\cos\phi_{2}), \\ \mathcal{F}_{3} = \sin\theta\cos\theta\sin\theta_{1}\sin\phi_{1}, \\ \mathcal{F}_{4} = \sin\theta\cos\theta\sin\theta_{2}\sin\phi_{2}, \end{aligned}$$

ЯДЕРНАЯ ФИЗИКА том 84 № 2 2021

$$\mathcal{F}_5 = \cos^2 \theta, \quad \mathcal{F}_6 = \cos \theta_1 \cos \theta_2 - -\sin^2 \theta \sin \theta_1 \sin \theta_2 \sin \phi_1 \sin \phi_2,$$

$$b(\zeta) = (1+\alpha)(\alpha_1 \mathcal{G}_1 + \alpha_2 \mathcal{G}_2) + (19) + \sqrt{1-\alpha^2} \cos(\Delta \Phi) (\alpha_1 \mathcal{G}_3 + \alpha_2 \mathcal{G}_4) + + \sqrt{1-\alpha^2} \alpha_1 \alpha_2 \sin(\Delta \Phi) \mathcal{G}_5,$$

где

И

$$\mathcal{G}_1 = \cos\theta\cos\theta_1, \quad \mathcal{G}_2 = \cos\theta\cos\theta_2, \\ \mathcal{G}_3 = \sin\theta\sin\theta_1\cos\phi_1, \quad \mathcal{G}_4 = \sin\theta\sin\theta_2\cos\phi_2, \\ \mathcal{G}_5 = \sin\theta\left(\sin\theta_1\cos\theta_2\sin\phi_1 + \cos\theta_1\sin\theta_2\sin\phi_2\right).$$

Результат (17) был получен в работе [11]; часть дифференциального сечения (19), связанная с поляризацией электронов, впервые опубликована в работе [8].

За год работы эксперимента на Супер Стау-фабрике будет зарегистрировано около $0.8 \times \times 10^9 \varepsilon_{det}$ событий процесса (8), где ε_{det} — эффективность регистрации. Описывая измеренное угловое распределение с помощью выражения (12), можно измерить формфакторы (14) и степень поляризации \mathcal{P}_e . Идея этого подхода была изучена с помощью простого Монте-Карло-моделирования. Оптимизация параметров модели выполнялась с помощью небинированного метода максимального правдоподобия. В табл. 1 приведены результаты для трех рассмотренных процедур:

- 1. Пятимерный анализ без поляризации ($\mathcal{P}_e = = 0$);
- 2. Пятимерный анализ с поляризацией ($\mathcal{P}_e = = 0.8$);
- 3. Трехмерный анализ с поляризацией ($\mathcal{P}_e = = 0.8$).

Рис. 2. Комбинированная система отсчета. Базис $(e_{x_0}, e_{y_0}, e_{z_0})$ определен в системе центра масс и фиксирован, орт e_{z_0} направлен вдоль пучка электронов. Базис (e_x, e_y, e_z) определен в системе Λ следующим образом: $e_z = p_1/|p_1|$, $e_y = \frac{1}{\sin \theta} \left(e_z \times \frac{k_-}{|k_-|} \right)$, $e_x = e_y \times e_z$.

Процедура 3 основана на возможности проведения анализа с частичной реконструкцией событий, при которой регистрируется только один из Абарионов (для отбора необходимых событий можно использовать массу отдачи). В этом случае мы приходим к трехмерному дифференциальному сечению

$$\frac{d\sigma}{d\cos\theta d\Omega_1} \propto 1 + \alpha\cos^2\theta + \tag{21}$$

$$+ \alpha_1 \sqrt{1 - \alpha^2} \sin(\Delta \Phi) \sin \theta \cos \theta \sin \theta_1 \sin \phi_1 + \\ + \xi \Big[(1 + \alpha) \alpha_1 \cos \theta \cos \theta_1 + \\ + \alpha_1 \sqrt{1 - \alpha^2} \cos(\Delta \Phi) \sin \theta \sin \theta_1 \cos \phi_1 \Big],$$

которое получается после интегрирования выражения (12) по $d\Omega_2$.

Процедура 2 обеспечивает статистическую точность измерения степени поляризации \mathcal{P}_e на уровне 10^{-4} , заведомо достаточную для измерения $\sin^2 \theta_{\text{eff}}$. Процедура 3 также позволяет получить достаточную точность измерения \mathcal{P}_e . Обратим внимание на то, что процедура 3 позволяет измерить все четыре параметра (14) только при наличии поляризации.

Следствием наличия поляризации является увеличение точности измерения формфакторов (14) в процедуре 2 по сравнению с процедурой 1. Сильнее всего уменьшаются неопределенности параметров α_1 и α_2 , что имеет ясное объяснение. В отсутствие поляризации Λ и $\overline{\Lambda}$ выступают в роли поляриметров друг для друга; с поляризованным пучком дифференциальное сечение распада каждого бариона несет более полную информацию, позволяя развязать корреляции и увеличить точность. Действительно, в процедуре 1 коэффициент корреляции между α_1 и α_2 равен 0.9, в то время как в процедуре 2 он равен -0.1. Поляризация, таким образом, значительно увеличивает чувствительность к *СР*-нарушающему параметру

$$A_{\Lambda} \equiv \frac{\alpha_1 + \alpha_2}{\alpha_1 - \alpha_2}.$$
 (22)

В рамках Стандартной модели $A_\Lambda \lesssim 0.5 imes 10^{-4}$. За один сезон работы эксперимента при $\mathcal{P}_e=0.8$ этот

Таблица 1. Статистическая точность измерения степени поляризации \mathcal{P}_e и формфакторов (14), соответствующая одному сезону работы эксперимента на Супер С-тау-фабрике

Процедура	$\sigma(10^{-4})$			
	\mathcal{P}_{e}	α	$\Delta \Phi,$ рад	α_i
5D анализ при $\mathcal{P}_e=0$		1.5	3.1	2.8
5D анализ при $\mathcal{P}_e=0.8$	1.3	1.2	1.6	0.9
$3\mathrm{D}$ анализ при $\mathcal{P}_e=0.8$	4.3	1.2	2.4	3.4

параметр может быть ограничен на уровне $1.2\times \times 10^{-4}.$

ЗАКЛЮЧЕНИЕ

Эксперимент на Супер С-тау-фабрике с поляризованным пучком предоставляет уникальную возможность измерить слабое взаимодействие *с*-кварка при передаче импульса $m_{J/\psi}c$. В данной работе был описан метод измерения $\sin^2 \theta_{\rm eff}$ в пике J/ψ , с помощью которого может быть достигнута относительная статистическая точность 0.3%. Столь прецизионное измерение неизбежно поставит вопросы, касающиеся контроля систематических неопределенностей. Подробный анализ факторов, которые необходимо будет учесть, еще предстоит выполнить. Обсуждение этих вопросов начато в работе [8].

Распад (8) может служить инструментом для прецизионного контроля средней поляризации электронов. В то же время измерение формфакторов барионов и поиск нарушения *CP*-симметрии в их распадах представляют самостоятельный интерес. Наличие поляризованного пучка усиливает эту часть физической программы эксперимента. Дальнейший анализ физики барионов с поляризованным пучком, включая каскадные распады и распады очарованных барионов, будет являться естественным развитием описанных в данной работе результатов.

СПИСОК ЛИТЕРАТУРЫ

- 1. A. L. Glashow, Nucl. Phys. 22, 579 (1961).
- M. Tanabashi *et al.* (Particle Data Group), https://doi.org/10.1103/PhysRevD.98.030001, Phys. Rev. D 98, 030001 (2018), and 2019 update, https://pdg.lbl.gov

- 3. ALEPH, DELPHI, L3, OPAL, SLD Collabs., LEP Electroweak Working Group, SLD Electroweak and Heavy Flavour Groups (S. Schael *et al.*), https://doi.org/10.1016/j.physrep.2005.12.006; Phys. Rept. **427**, 257 (2006).
- J. Erler and R. Ferro-Hernández, https://doi.org/10.1007/JHEP03(2018)196; JHEP 1803, 196 (2018) [https://arxiv.org/abs/-1712.09146; arXiv: 1712.09146 [hep-ph]].
- K. S. Kumar, S. Mantry, W. J. Marciano, and P. A. Souder, https://doi.org/10.1146/annurev-nucl-102212-170556, Ann. Rev. Nucl. Part. Sci. 63, 237 (2013) [https://arxiv.org/abs/1302.6263; arXiv: 1302.6263 [hep-ex]].
- А. Е. Бондарь (от имени Коллаборации проекта Супер-чарм-тау-фабрики), ЯФ 76, 1132 (2013) [Phys. At. Nucl. 76, 1072 (2013)].
- 7. Q. Luo and D. Xu, in *Proceedings of the 9th International Particle Accelerator Conference (IPAC 2018), Vancouver, BC Canada, 2018,* p. MOPML013.
- A. Bondar, A. Grabovsky, A. Reznichenko, A. Rudenko, and V. Vorobyev, https://doi.org/10.1007/JHEP03(2020)076; JHEP 2003, 076 (2020) [https://arxiv.org/abs/1912.09-760; arXiv: 1912.09760 [hep-ph]].
- Ю. И. Сковпень, И. Б. Хриплович, ЯФ **30**, 589 (1979).
- BESIII Collab. (M. Ablikim et al.), https://doi.org/10.1038/s41567-019-0494-8, Nature Phys. 15, 631 (2019) [https://arxiv.org/abs/1808.08917; arXiv: 1808.08917 [hep-ex]].
- G. Fäldt and A. Kupse, https://doi.org/10.1016/j.physletb.2017.06.011; Phys. Lett. B 772, 16 (2017) [https://arxiv.org/abs/1702.07288; arXiv: 1702.07288 [hep-ph]].

THE WEINBERG ANGLE MEASUREMENT AT A SUPER CHARM-TAU FACTORY WITH POLARIZED BEAM

V. Vorobyev¹⁾

¹⁾Budker Institute of Nuclear Physics of Siberian Branch Russian Academy of Sciences, Novosibirsk, Russia

Measurement of the effective weak mixing angle θ_{eff} in an experiment at Super charm-tau factory is discussed. A method for measuring the average electron beam polarization via angular analysis of the $J/\psi \rightarrow [\Lambda \rightarrow p\pi^{-}][\bar{\Lambda} \rightarrow \bar{p}\pi^{+}]$ decay is proposed. The parameter $\sin^{2} \theta_{\text{eff}}$ can be measured with relative precision better than 1% given the collider luminosity 10^{35} cm⁻²s⁻¹ and polarization level 0.8. This precision is enough to observe the shift of the $\sin^{2} \theta_{\text{eff}}$ relative to the value at Z peak.