### = ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ И ПОЛЯ =

# ИЗМЕРЕНИЕ ОТНОШЕНИЯ ВЫХОДОВ Σ<sup>0</sup>/Λ<sup>0</sup> В *pA*-ВЗАИМОДЕЙСТВИЯХ ПРИ 70 ГэВ

### © 2021 г. А. П. Воробьёв<sup>1)</sup>, А. А. Киряков<sup>1)</sup>, В. М. Роньжин<sup>1)</sup>, В. Н. Рядовиков<sup>1)\*</sup>, Ю. П. Петухов<sup>2)</sup>

Поступила в редакцию 30.07.2020 г.; после доработки 30.07.2020 г.; принята к публикации 30.08.2020 г.

Активная мишень из пластинок углерода, кремния и свинца облучалась протонами с энергией 70 ГэВ от ускорителя У-70. На статистике 10695 событий с одновременным рождением  $\Lambda^0$ -гиперона и  $\gamma$ -кванта выделен сигнал (270 соб.) от распада  $\Sigma^0 \rightarrow \Lambda^0 + \gamma$  с использованием данных детектора  $\gamma$ -квантов установки СВД-2. Измерено отношение выходов  $\Sigma^0/\Lambda^0$ , величина которого составила  $0.34 \pm 0.08$  (C),  $0.32 \pm 0.06$  (Si) и  $0.10 \pm 0.09$  (Pb). Результаты сравниваются с данными других экспериментов.

DOI: 10.31857/S0044002721030168

#### ВВЕДЕНИЕ

К настоящему времени экспериментальной информации об образовании  $\Sigma^0$ -гиперонов в протонядерных столкновениях существует немного. В то же время, имея одинаковый кварковый состав с  $\Lambda^0$ -гиперонами (uds), но разный изотопический спин, исследования реакций их рождения могут дать информацию о влиянии спина на протекание ядерных реакций. Такая информация необходима не только для разработки теоретических моделей сильных взаимодействий [1-3] и генераторов событий [4]. При экспериментальных исследованиях поляризации  $\Lambda^0$ -гиперонов, как правило, не учитывается факт образования части  $\Lambda^0$  от распада  $\Sigma^0$ , других частиц и резонансов, что размывает картину поляризационных явлений, наблюдаемую при сильных взаимодействиях. Рождение странных адронов в нуклон-нуклонных взаимодействиях изучалось во многих экспериментах для разных энергий. Накоплено много данных по рождению  $\Lambda^0$ -гиперона, в сечении которого имеется существенный вклад от распада  $\Sigma^0$ -гиперона. С выделением распада  $\Sigma^0$  ситуация хуже, данных значительно меньше. Реконструкция распадов  $\Sigma^0$ -гиперонов выполняется по каналу  $\Sigma^0 \to \Lambda^0 + \gamma$ , с  $\gamma$ -квантом, имеющим в экспериментах низкую эффективность регистрации. Предполагается, что отношение выходов  $\Sigma^0/\Lambda^0$ , согласно числу проекций их изоспинов, должно быть близко к 1/3. Но экспериментальные измерения отношения  $\Sigma^0/\Lambda^0$  в реакциях на ядрах показывают, что эта величина может отличаться от значения 0.3. Измеренное значение  $\Sigma^0/\Lambda^0 = 0.16$  в d + Au-столкновениях при 200 ГэВ [5], а в *p*Ne-взаимодействиях при 300 ГэВ [6] оно равно 0.75. Предполагается, что это может быть связано с разным влиянием на процессы образования странных гиперонов составляющих ядра нуклонов, рождающихся резонансов и обменных взаимодействий между частицами.

Предсказания моделей для отношения  $\Sigma^0/\Lambda^0$ также различаются. Например, генератор HIJING/BBbar [4] дает  $\Sigma^0/\Lambda^0 = 0.37$  для d + + Au-столкновений при  $(s_{NN})^{1/2} = 200$  ГэВ; статистическая термальная модель THERMUS [1] —  $\Sigma^0/\Lambda^0 = 0.36$  при T = 160 МэВ и  $\gamma_S = 1.0$ ; модель слипания кварков ALCOR [3] —  $\Sigma^0/\Lambda^0 =$ = 0.20. Моделирование C + C-столкновений в программе UrQMD показывает, что  $\Sigma^0/\Lambda^0$  может быть от 0.3 до 0.6 [7].

Цель настоящей работы — выделить события с распадом  $\Sigma^0 \to \Lambda^0 + \gamma$ , используя выборку событий в эксперименте на установке СВД-2 [8] с зарегистрированными распадами  $\Lambda^0$ -гиперонов в *pA*взаимодействиях на ядрах углерода (С), кремния (Si) и свинца (Pb) при импульсе протона 70 ГэВ/*c*, и данные с детектора  $\gamma$ -квантов (ДЕГА) [9]. Оценить отношение выходов  $\Sigma^0/\Lambda^0$ -гиперонов.

## РЕГИСТРАЦИЯ РАСПАДОВ $\Sigma^0 \to \Lambda^0 + \gamma$

Для выделения распадов  $\Sigma^0$  использовалась часть статистики эксперимента с рождением  $\Lambda^0$ -гиперона (24717 событий) в интервале масс 1.1 <

<sup>&</sup>lt;sup>1)</sup>НИЦ "Курчатовский институт" – ИФВЭ, Протвино, Россия.

<sup>&</sup>lt;sup>2)</sup>Объединенный институт ядерных исследований, Дубна, Россия.

<sup>\*</sup>E-mail: riadovikov@ihep.ru

| Мишень | $\chi^2/{\rm ndf}$ | $M(\Lambda^0\gamma),$ ГэВ $/c^2$ | Сигнал (соб.) ±<br>± стат. ошибка | Ширина (сигма)<br>пика, МэВ | Фон, соб.    | Значимость ( $\sigma$ ) |
|--------|--------------------|----------------------------------|-----------------------------------|-----------------------------|--------------|-------------------------|
| С      | 2.9/4              | $1.189\pm0.003$                  | $84\pm21$                         | 8.8                         | $373 \pm 19$ | 3.9                     |
| Si     | 6.3/4              | $1.195\pm0.005$                  | $166\pm30$                        | 7.1                         | $740\pm27$   | 5.5                     |
| Pb     | 6.4/4              | $1.198 \pm 0.008$                | $20\pm18$                         | 6.4                         | $306\pm17$   | 1.1                     |

Таблица 1. Результаты аппроксимации гистограмм (рис. 3) функциями Гаусса

 $< M(p\pi^{-}) < 1.13$  ГэВ (рис. 1*a*), в которых было найдено 10695 событий с одновременно зарегистрированным рождением  $\Lambda^0$  и  $\gamma$ , что составляет 50% от первоначальной выборки (см. рис. 1*б*).

Гамма-детектор установки СВД-2 подробно описан в работах [9, 10]. Детектирующий элемент ДЕГА состоит из блока свинцового стекла (38 ×  $\times 38 \times 505$  мм<sup>3</sup>) и фотоумножителя (ФЭУ-84). Почти вся (>90%) энергия электромагнитного ливня от  $\gamma$ -кванта выделяется в ячейке из (3  $\times$ × 3) блоков свинцового стекла. При этом энергия, выделяемая в центральном элементе ячейки, составляет в среднем 77% от энергии всего ливня. Количество элементов в ДЕГА равно 32 (вертикаль)  $\times$  42 (горизонталь) = 1344. Калибровка ДЕГА проводилась с помощью облучения центра каждого элемента узким (Ø3 мм) пучком электронов с энергией 15 ГэВ. Обработка данных с ДЕГА заключается в поиске кластеров сигналов в  $(3 \times 3)$  ячейке и применения к ним критериев отбора ливней от  $\gamma$ -квантов. Основные критерии следующие:

- Кластер (3 × 3) должен содержать не менее 2 каналов с сигналом выше порога, равного 10 отсчетам АЦП. При отсутствии сигналов в соседних от центрального канала из-за наличия "нерабочих" каналов или сигнала ниже порога суммарная энергия ливня корректируется. Используется экспериментальный факт, что в среднем сигнал в центральном элементе ячейки кластера составляет ~80% от общего, поэтому энергия в каждом соседнем элементе должна быть ~2.5% от полной [11].
- Значение параметра a5, которое равно отношению энергии электромагнитного ливня в центральном канале к суммарной энергии всех 9 каналов, для *γ*-кванта должно быть больше 0.6. Оно тем больше, чем ближе к центру стекла попадает *γ*-квант. Для адронного ливня от заряженных частиц эта величина меньше 0.5 [11].

ЯДЕРНАЯ ФИЗИКА том 84 № 4 2021

Для используемой в работе выборки событий среднее число восстановленных в ДЕГА  $\gamma$ -квантов равно 2.2, средняя энергия  $E_{\gamma} = 3.5$  ГэВ, минимальная энергия регистрации равна 100 МэВ.

Анализ массовых спектров системы ( $\Lambda^0 \gamma$ ) для событий в каждой мишени показал, что сигнал от распада  $\Sigma^0$  виден, но на очень большой фоновой подложке. Для уменьшения фона использовались результаты моделирования методом Монте-Карло (MK) событий с распадом  $\Sigma^0 \rightarrow \Lambda^0 + \gamma$  (100000 шт. для каждой мишени), полученные с помощью программы FRITIOF7.02 для *pA*-взаимодействий при импульсе пучка 70 ГэВ/*c*. Кинематика распада такова, что распределение по поперечным импульсам  $\Lambda^0$  и  $\gamma$ -кванта от распада  $\Sigma^0$  в аксептансе CBД-2 имеет характерную форму (рис. 2) и может быть использовано для выделения нужных событий.

Из данных моделирования были оптимизированы критерии отбора  $\Sigma^0$  в эксперименте по параметрам регистрируемых частиц  $\Lambda^0$  и  $\gamma$ . Область поперечных импульсов  $P_t(\gamma)$  и  $P_t(\Lambda^0)$  задается двумя прямыми линиями  $P_t(\gamma) = 0.08 + 0.1P_t(\Lambda^0)$ и  $P_t(\gamma) = 0.06 - 0.05P_t(\Lambda^0)$  (рис. 2). Полученные после такого отбора событий спектры эффективных масс системы ( $\Lambda^0\gamma$ ) для мишеней C, Si и Pb приведены на рис. 3.

Видно, что сигнал от распада  $\Sigma^0$  в интервале масс  $1.17 < M(\Lambda^0 \gamma) < 1.21$  ГэВ выделяется над фоном для мишеней из углерода и кремния. Для мишени из свинца сигнал от распада  $\Sigma^0$  сравним с фоном. При этом количество отобранных событий, в которых число комбинаций ( $\Lambda^0\gamma$ ), удовлетворяющих критериям отбора, превышает 1, составляет менее 5%, то есть комбинаторика в отобранных событиях практически отсутствует. Для оценки фона под сигнальным пиком использовался следующий способ. Из моделирования с помощью программы GEANT (см. ниже) известны параметры сигнального пика, и после нормировки его на число экспериментальных событий вычитается пик из массового спектра. Оставшийся экспериментальный фон фитируется полиномом 3-й степени. Значения



**Рис.** 1.  $a - Эффективная масса системы (<math>p\pi^-$ ), заштрихована область выделения распадов  $\Lambda^0$ ,  $\delta$  — распределение событий с  $\Lambda^0 + \gamma$  по пластинам мишени (Z — координата первичной вершины). Заштрихованные гистограммы для выделенных распадов  $\Lambda^0$ -гиперонов.

полученной гладкой кривой используются для построения разностной гистограммы (см. рис. 3) и вычисления параметров сигнала от распада  $\Sigma^0$ .

Результаты анализа полученных распределений и фита сигнала от распада  $\Sigma^0$  функцией Гаусса приведены в табл. 1. Значимость сигнала вычисляется по формуле  $\sigma = S/(S+B)^{1/2}$ , где S — сигнал, B — фон. Статистическая ошибка величины сигнала  $\Delta_S = (S+B)^{1/2}$ .

Из табл. 1 видно, что значимый результат получен только для ядер кремния и углерода, статистика эксперимента для ядер свинца недостаточна.

#### ОТНОШЕНИЕ ВЫХОДОВ $\Sigma^0/\Lambda^0$

Для вычисления отношения выходов используем формулу

$$\Sigma^0 / \Lambda^0 = [N_s(\Sigma^0) / \varepsilon(\gamma)] / [N_s(\Lambda^0)],$$

где  $N_s(\Sigma^0)$  — число событий с распадом  $\Sigma^0$ гиперонов в массовом спектре системы ( $\Lambda^0\gamma$ ) (табл. 1);  $\varepsilon(\gamma)$  — эффективность регистрации  $\gamma$ квантов от распада  $\Sigma^0 \to \Lambda^0 + \gamma$ ;  $N_s(\Lambda^0)$  — число  $\Lambda^0$  в выборке событий для поиска распадов  $\Sigma^0 \to$  $\to \Lambda^0 + \gamma$ .

Полная эффективность регистрации  $\Sigma^0$ -гиперонов равна произведению эффективностей  $\varepsilon(\Lambda^0) \times \varepsilon(\gamma)$ . Так как эффективность регистрации  $\Lambda^0$ -



Рис. 2. Плот МК-событий для определения критериев отбора — зависимость поперечных импульсов  $\Lambda^0$  и  $\gamma$  (• — эксперимент, • — моделирование). Линии ограничивают используемые в эксперименте области для выделения распадов  $\Sigma^0$ .

гиперонов  $\varepsilon(\Lambda^0)$  входит в числитель и в знаменатель формулы, то эта эффективность сокращается. Моделирование показывает равенство эффективности регистрации всех  $\Lambda^0$  и  $\Lambda^0$  от распада  $\Sigma^0 \rightarrow \Lambda^0 + \gamma$ . Вероятность распада  $\text{Br}(\Lambda \rightarrow p\pi) =$ = 0.64 в вычислениях отношения  $\Sigma^0/\Lambda^0$  также не учитывается, так как при регистрации распадов  $\Sigma^0$ используется та же мода распада  $\Lambda^0$ -гиперонов. Число  $N_s(\Lambda^0)$  в выборке событий, используемое для поиска распадов  $\Sigma^0 \rightarrow \Lambda^0 + \gamma$  в эксперименте для разных мишеней, равно соответственно 5273 событий (C), 13070 событий (Si), 6356 событий (Pb).

Оценка эффективности  $\varepsilon(\gamma)$  получена моделированием по программе GEANT3.21. В программе GEANT для установки СВД-2 имеется процедура восстановления  $\gamma$ -квантов в калориметре ДЕГА, в которой используются геометрия детектора и информация, полученная при калибровке ДЕГА (чувствительность каналов и порог регистрации амплитуд). В качестве входных данных в GEANT использовались МК-события из FRITIOF с образованием  $\Sigma^0$ -гиперонов. Спектры эффективных масс системы ( $\Lambda^0 \gamma$ ) для восстановленных в ДЕГА *γ*-квантов приведены на рис. 4 (гистограмма без штриховки). Так как энергия восстановленных үквантов отличается от истинной по разным причинам (шумы, обрезания амплитуд, алгоритм восстановления и т.д.), то строился спектр эффективных масс системы  $(\Lambda^0 \gamma)$  для восстановленных по программе GEANT зарегистрированных в ДЕГА уквантов после применения к системе ( $\Lambda^0\gamma$ ) критериев отбора, таких же как для экспериментальных событий (гистограмма со штриховкой). Эффективность  $\varepsilon(\gamma)$  вычисляется делением числа событий этой гистограммы на число  $\Sigma^0$ -гиперонов на входе в программу GEANT. Параметры гистограмм для каждой мишени после аппроксимации сигналов функцией Гаусса и нормировки использовались для определения фона на рис. 3.

После анализа результатов моделирования в

ЯДЕРНАЯ ФИЗИКА том 84 № 4 2021



**Рис. 3.** Массовые спектры системы ( $\Lambda^0 \gamma$ ) для разных мишеней (a - C,  $\delta - Si$ , a - Pb) после применения критериев отбора (см. текст). Сплошной линией обозначена аппроксимация сигнала функцией Гаусса, штрихпунктирной линией — аппроксимация фона полиномом 3-й степени. Внизу рисунка — разность двух гистограмм (сигнал-фон) и ее аппроксимация функцией Гаусса (штриховая кривая).

GEANT'е (11816 событий для углерода, 10039 событий для кремния и 13548 событий для свинца) были получены отношения выходов  $\Sigma^0/\Lambda^0$  (табл. 2). В графе для  $\varepsilon(\gamma)$  приведены отношения чисел событий в гистограмме со штриховкой ( $N_G(\Sigma^0)$ ) на рис. 4 к числу событий на входе в GEANT. Относительные ошибки  $\Sigma^0/\Lambda^0$ : статистическая —  $\Delta_S/S(\Sigma^0)$ , систематическая —  $1/N_G^{1/2}(\Sigma^0)$ .

Измерение отношений выходов  $\Sigma^0/\Lambda^0$  в реакциях на ядерных мишенях интересно тем, что при этом исследуются взаимодействия нуклонов в ядрах. Модели нуклон-ядерных процессов чувствительны

к значению этой величины. Появляется еще одна возможность их проверки.

Приведем рисунок из работы [5], на котором

**Таблица 2.** Отношения выходов  $\Sigma^0/\Lambda^0$ , ошибки =  $=(\text{стат.}^2 + \text{сист.}^2)^{1/2}$ 

| Мишень | $N_s(\Lambda^0)$ | $N_s(\Sigma^0)$ , соб. | $\varepsilon(\gamma)$ | $\Sigma^0/\Lambda^0$ |
|--------|------------------|------------------------|-----------------------|----------------------|
| С      | 5273             | $84\pm21$              | 0.0474                | $0.34\pm0.08$        |
| Si     | 13070            | $166\pm30$             | 0.0394                | $0.32\pm0.06$        |
| Pb     | 6356             | $20\pm18$              | 0.0364                | $0.10\pm0.09$        |



**Рис. 4.** Массовые МК-спектры системы ( $\Lambda^0 \gamma$ ) для восстановленных в ДЕГА  $\gamma$ -квантов до и после (заштриховано) применения критериев отбора для мишеней: a - C,  $\delta - Si$ , b - Pb.



Рис. 5. Зависимость отношения выходов  $\Sigma^0/\Lambda^0$  от энергии в с.ц.м. из работы [5] с добавлением результатов, полученных на установке СВД-2, и результата для pN из [6]. Штриховая линия показывает величину отношения  $\Sigma^0/\Lambda^0 = 1/3$ .

ЯДЕРНАЯ ФИЗИКА том 84 № 4 2021

отмечены результаты, полученные на установке СВД-2 для мишеней из углерода и кремния (рис. 5). Результат для свинца не показан по причине его статистической необеспеченности.

#### ЗАКЛЮЧЕНИЕ

На статистике 10695 событий с одновременным рождением  $\Lambda^0$ -гиперона и  $\gamma$ -кванта выделен сигнал (270 соб.) от распада  $\Sigma^0 \rightarrow \Lambda^0 + \gamma$  с использованием данных детектора  $\gamma$ -квантов установки СВД-2. Значимый результат получен только для ядер кремния и углерода, статистика для ядер свинца недостаточна, результаты для этой мишени можно рассматривать как справочные. Измерено отношение выходов  $\Sigma^0/\Lambda^0$ , величина которого составила 0.34  $\pm$  0.08 (C), 0.32  $\pm$  0.06 (Si). Результаты в пределах ошибок сравнимы с данными других экспериментов и указывают на согласие с предположением, что отношение выходов  $\Sigma^0/\Lambda^0$  близко к 1/3 в соответствии с числом проекций их изоспинов.

#### СПИСОК ЛИТЕРАТУРЫ

- S. Wheaton and J. Cleymans, J. Phys. G 31, 1069 (2005); hep-ph/0407174.
- 2. T. S. Biró and J. Zimányi, Nucl. Phys. A **395**, 525 (1983).
- T. S. Biró, P. Lévai, and J. Zimányi, Phys. Lett. B 347, 6 (1995).
- 4. S. E. Vance, M. Gyulassy, and X.-N. Wang, Phys. Lett. B 443, 45 (1998).
- G. Van Buren (for the STAR Collab.), J. Phys. G 31, 1127 (2005); Rom. Rep. Phys. 58, 069 (2006); https://arxiv.org/abs/nucl-ex/0512018
- B. S. Yuldashev, S. M. Aliev, M. A. Alimov, K. K. Artykov, S. O. Edgorov, S. V. Inogamov, A. V. Khaneles, E. A. Kosonowski, S. L. Lutpullaev, N. Rasulov, T. P. Rodionova, K. T. Turdaliev, E. Turumov, A. A. Yuldashev, R. J. Loveless, and D. D. Reeder, Phys. Rev. D 43, 2792 (1991).

- N. Zhigareva and A. Stavinskiy (Baldin ISHEPP XXIV), EPJ Web Conf. 204, 03016 (2019); https://doi.org/10.1051/epjconf/201920403016
- А. А. Киряков, В. М. Роньжин, Препринт № 2020-04, ИФВЭ (Протвино, 2020).
- 9. S. Golovnya, J. Instrum. 9, C09016 (2014).
- В. В. Авдейчиков, А. Н. Алеев, Е. Н. Ардашев, С. Г. Басиладзе, Г. А. Богданова, А. М. Вишневская, В. Ю. Волков, А. П. Воробьев, А. Г. Воронин, С. Н. Головня, В. Ф. Головкин, С. А. Горохов, Я. В. Гришкевич, П. Ф. Ермолов, Е. Г. Зверев, С. А. Зоткин и др., ПТЭ, № 1, 14 (2013) [Instrum. Exp. Tech. 56, 9 (2013)].
- В. Н. Рядовиков (от имени Сотрудничества СВД-2), ЯФ 75, 1050 (2012) [Phys. At. Nucl. 75, 989 (2012)].

# MEASUREMENT OF THE $\Sigma^0/\Lambda^0$ RATIO IN *pA* INTERACTIONS AT 70 GeV

#### A. P. Vorobiev<sup>1</sup>), A. A. Kiryakov<sup>1</sup>), V. M. Ronjin<sup>1</sup>), V. N. Ryadovikov<sup>1</sup>), Yu. P. Petukhov<sup>2</sup>)

<sup>1)</sup>NRC "Kurchatov Institute — IHEP, Protvino, Russia <sup>2)</sup>Joint Institute for Nuclear Research, Dubna, Russia

The active target with C, Si and Pb plates was irradiated in 70-GeV proton beam at U-70 accelerator. The signal (270 events) from  $\Sigma^0 \rightarrow \Lambda^0 + \gamma$  decays was selected in 10695 events with  $\Lambda^0$  and  $\gamma$  using gamma-detector data. The following values of the  $\Sigma^0/\Lambda^0$  ratio were obtained:  $0.34 \pm 0.08$  (C),  $0.32 \pm 0.06$  (Si) and  $0.10 \pm 0.09$  (Pb). The comparison of the results with other experiments is presented.