## = ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ И ПОЛЯ =

# А-ЗАВИСИМОСТЬ ОБРАЗОВАНИЯ В ПЕРЕДНЕМ НАПРАВЛЕНИИ ЗАРЯЖЕННЫХ АДРОНОВ И ЯДЕРНЫХ ФРАГМЕНТОВ В СРЬ- И СС-ВЗАИМОДЕЙСТВИЯХ ПРИ ЭНЕРГИИ ПУЧКА 19.6 ГэВ/НУКЛОН

© 2021 г. А. Г. Афонин<sup>1)</sup>, М. Ю. Боголюбский<sup>1)\*</sup>, А. А. Волков<sup>1)</sup>, Д. К. Елумахов<sup>1)</sup>,
 В. Н. Запольский<sup>1)</sup>, А. А. Иванилов<sup>1)</sup>, А. Ю. Калинин<sup>1)</sup>, А. Н. Криницын<sup>1)</sup>,
 Н. В. Кулагин<sup>1)</sup>, В. И. Крышкин<sup>1)</sup>, Д. И. Паталаха<sup>1)</sup>, К. А. Романишин<sup>1)</sup>,
 В. Скворцов<sup>1)</sup>, В. В. Талов<sup>1)</sup>, Л. К. Турчанович<sup>1)</sup>, Ю. А. Чесноков<sup>1)</sup>

Поступила в редакцию 26.12.2020 г.; после доработки 19.01.2021 г.; принята к публикации 19.01.2021 г.

Измерены инклюзивные дифференциальные сечения образования  $\pi^{\pm}$ -,  $k^{-}$ -мезонов, протонов, антипротонов с импульсами от 6 до 50 ГэВ/с и ядерных фрагментов с атомным номером  $1 \le A \le 10$  в интервале импульсов 20–220 ГэВ/с в СРb-столкновениях при кинетической энергии пучка 19.6 ГэВ/нуклон ( $\sqrt{S_{NN}} = 6.3$  ГэВ). Приведены сравнение с сечениями в СС-взаимодействиях и оценка A-зависимости от ядра мишени. Анализ показывает, что наблюдаемые частицы образуются в основном в периферических взаимодействиях.

DOI: 10.31857/S0044002721040048

#### 1. ВВЕДЕНИЕ

В рассматриваемой статье представлены сравнения инклюзивных сечений образования заряженных адронов и ядерных фрагментов в СРЬи СС-столкновениях при кинетической энергии углеродного пучка 19.6 ГэВ/нуклон ( $\sqrt{S_{NN}} =$ = 6.3 ГэВ). Работа выполнена на ускорительном комплексе У-70 (НИЦ "Курчатовский институт" — ИФВЭ) и является продолжением цикла исследований образования частиц и фрагментов в переднем направлении в *АА*- и *pА*взаимодействиях [1–3].

В указанных работах было отмечено, что полученные сечения образования частиц и фрагментов близки к аналогичным результатам других экспериментов при более низких энергиях, что согласуется с гипотезой предельной фрагментации [4].

Помимо слабой зависимости от энергии взаимодействия согласно данной гипотезе ожидается слабая *А*-зависимость от ядра мишени в области фрагментации пучка, выходящая на плато с ростом импульса вторичной частицы. Это связано с тем, что образование под углом 0° в основном происходит или в результате диссоциации ядра, или в периферических взаимодействиях с малыми передачами импульса. Таким образом, измеренные импульсные распределения ядерных фрагментов в области, соответствующей средней энергии на

**Таблица 1.** Инвариантные сечения в CPb-взаимодействиях в зависимости от лабораторного импульса для протонов и  $\pi^+$ -мезонов (только статистические ошибки)

| $P_{\text{lab}},$ | $Ed^2\sigma/(p^2dpd\Omega),$ мбн/(ГэВ $^2~c^{-3}$ ср) |                                             |  |  |
|-------------------|-------------------------------------------------------|---------------------------------------------|--|--|
| ГэВ/с             | p                                                     | $\pi^+$                                     |  |  |
| 20.00             | $8.91\text{e}{+}04 \pm 3.55\text{e}{+}02$             | $1.09e+01 \pm 4.20e+00$                     |  |  |
| 20.50             | $7.23\mathrm{e}{+04} \pm 3.81\mathrm{e}{+02}$         |                                             |  |  |
| 24.00             | $1.12\text{e}{+}04 \pm 7.58\text{e}{+}01$             |                                             |  |  |
| 25.00             | $5.39\mathrm{e}{+03} \pm 4.49\mathrm{e}{+01}$         | $1.34\mathrm{e}{+00}\pm8.32\mathrm{e}{-01}$ |  |  |
| 26.75             | $2.30\text{e}{+}03 \pm 3.32\text{e}{+}01$             |                                             |  |  |
| 30.00             | $4.20\mathrm{e}{+02} \pm 1.78\mathrm{e}{+01}$         |                                             |  |  |
| 33.50             | $1.57\mathrm{e}{+02} \pm 7.38\mathrm{e}{+00}$         |                                             |  |  |
| 34.25             | $7.59\mathrm{e}{+01} \pm 6.45\mathrm{e}{+00}$         |                                             |  |  |
| 35.00             | $3.44\text{e}{+}01 \pm 5.35\text{e}{+}00$             |                                             |  |  |
| 46.75             | $2.83\mathrm{e}{-01} \pm 4.42\mathrm{e}{-01}$         |                                             |  |  |
| 48.00             | $2.63\mathrm{e}{-01} \pm 2.11\mathrm{e}{-01}$         |                                             |  |  |
| 50.25             | $1.24\mathrm{e}{-02}\pm4.18\mathrm{e}{-02}$           |                                             |  |  |

<sup>&</sup>lt;sup>1)</sup>Национальный исследовательский центр "Курчатовский институт" — ИФВЭ, Протвино, Россия.

<sup>\*</sup>E-mail: Mikhail.Bogolyubsky@ihep.ru



Рис. 1. Отношения инвариантных сечений образования протонов и антипротонов в CPb- и CC-столкновениях в зависимости от их импульса в лабораторной системе.



**Рис.** 2. Отношения инвариантных сечений образования  $\pi^-$ -,  $\pi^+$ -,  $k^-$ -мезонов в CPb- и CC-столкновениях в зависимости от их импульса в лабораторной системе.

нуклон в пучке и выше, близки к энергетическим распределениям нуклонов и их кластеров в ядре.

В данном эксперименте вторичные частицы регистрируются в переднем направлении и область фрагментации пучка хорошо разделяется с областью фрагментации мишени и центральной областью [3], что делает его весьма выгодным для изучения данных процессов.

### 2. ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА

Экспериментальная установка состояла из канала, формирующего вторичный пучок частиц вы-



**Рис. 3.** Отношения инвариантных сечений в CPb- и CC-столкновениях образования ядерных фрагментов в зависимости от их импульса в лабораторной системе.

| Таблица 2  | . Инвај           | эиантные | сечения   | В    | CPb-взаимодействиях    | В | зависимости | OT | лабораторного | импульса | ДЛЯ |
|------------|-------------------|----------|-----------|------|------------------------|---|-------------|----|---------------|----------|-----|
| антипротон | ов, $k^-$ , $k^-$ | π−-мезон | юв (тольк | 0 C' | статистические ошибки) |   |             |    |               |          |     |

| $B = \Gamma_{2} B/c$ | $Ed^2\sigma/(p^2dpd\Omega),$ мбн $/(Гэ{ m B}^2~c^{-3}$ ср $)$ |                                               |                                                 |  |  |
|----------------------|---------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------|--|--|
|                      | $\pi^-$                                                       | $k^-$                                         | $ar{p}$                                         |  |  |
| 8.00                 | $9.27\mathrm{e}{+02} \pm 2.14\mathrm{e}{+00}$                 | $2.46e{+}01 \pm 1.01e{+}00$                   | $4.63\mathrm{e}{+00} \pm 1.62\mathrm{e}{-01}$   |  |  |
| 11.00                | $3.47e{+}02 \pm 8.87e{-}01$                                   | $8.64\mathrm{e}{+00} \pm 2.76\mathrm{e}{-01}$ | $1.81\mathrm{e}{+00}\pm6.86\mathrm{e}{-02}$     |  |  |
| 16.00                | $4.81e+01 \pm 1.50e-01$                                       | $1.13e+00 \pm 3.58e-02$                       | $1.53e{-}01 \pm 1.23e{-}02$                     |  |  |
| 21.00                | $5.63e{+}00 \pm 1.50e{-}02$                                   | $1.00e-01 \pm 1.86e-02$                       | $1.59\mathrm{e}{-02} \pm 2.57\mathrm{e}{-03}$   |  |  |
| 26.00                | $8.86\mathrm{e}{-01}\pm8.32\mathrm{e}{-03}$                   | $2.79\mathrm{e}{-02} \pm 2.40\mathrm{e}{-03}$ | $2.65\mathrm{e}{-03} \pm 1.07\mathrm{e}{-03}$   |  |  |
| 31.00                | $6.25\mathrm{e}{-02} \pm 4.47\mathrm{e}{-03}$                 | $4.66\mathrm{e}{-03} \pm 5.36\mathrm{e}{-04}$ | $4.82 \mathrm{e}{-04} \pm 1.41 \mathrm{e}{-04}$ |  |  |
| 36.00                | $5.18\mathrm{e}{-03} \pm 3.04\mathrm{e}{-04}$                 |                                               |                                                 |  |  |
| 39.00                | $1.50\mathrm{e}{-03} \pm 1.76\mathrm{e}{-04}$                 |                                               |                                                 |  |  |
| 42.00                | $6.34\mathrm{e}{-04} \pm 9.18\mathrm{e}{-05}$                 |                                               |                                                 |  |  |
| 46.00                | $3.34e-04 \pm 2.12e-04$                                       |                                               |                                                 |  |  |
| 51.00                | $3.51e-04 \pm 3.31e-04$                                       |                                               |                                                 |  |  |

соких энергий [5] с мишенью, установленной в его начале (толщина мишени составляла 0.1 от длины ядерного взаимодействия протона в ее веществе), и детекторов спектрометра ФОДС [6], включающих в себя трековую систему, черенковский спектрометр, набор сцинтилляционных счетчиков и набор пороговых черенковских счетчиков. Проводились также циклы измерений с пустой мишенью для вычитания фона. Вклад пустой мишени относительно углеродной мишени изменялся от 15% до 45% при разных способах вывода (медленный вывод или вывод с помощью изогнутых кристаллов) углеродного пучка из ускорителя.

Тип вторичной частицы или ядерного фрагмента определялся по их заряду и массе. Заряд устанавливался по величине ионизации в сцинтилля-

341



**Рис. 4.** Усредненные по импульсу значения отношений инвариантных сечений для регистрируемых в данном эксперименте частиц и ядерных фрагментов, а также рассчитанный по формуле (1) показатель *A*-зависимости  $\alpha$ . Точечная линия показывает среднее значение для легких фрагментов *p*, *d*, *t*, <sup>3</sup>He, <sup>4</sup>He, <sup>6</sup>He, равное, соответственно,  $\langle \sigma_{CPb} / \sigma_{CC} \rangle = 2.16 \pm \pm 0.03$  и  $\langle \alpha \rangle = 1.10 \pm 0.02$ .



**Рис. 5.** Сравнение *А*-зависимости образования  $\pi^-$ -мезонов и протонов от  $X_F$  в различных экспериментах. • — данные из работ [11, 12], • — [1], □ — эта работа ( $p_{cm}$  — импульс частицы в системе центра масс,  $p_{cm}^{max}$  — его максимальное значение в случае свободных взаимодействующих нуклонов).

ционных счетчиках и выделяемой энергии в адронном калориметре. Масса восстанавливалась в спектрометре колец черенковского излучения при известных магнитной жесткости канала и заряде частицы. Параметры экспериментальной установки и процедура обработки более подробно описаны в статьях [1-3]. Дополнительно отметим, что работа велась на углеродном пучке интенсивностью  $10^9$  ядер за сброс 1.2 с, вторичные частицы и ядерные фрагменты регистрировались под нулевым углом при сравнительно малой апертуре канала:  $d\Omega =$ 



**Рис. 6.** Инвариантные сечения образования вперед протонов и  $\pi^-$ -мезонов в CPb- и CC-взаимодействиях в зависимости от кинетической энергии  $T_{\rm kin}$  в системе покоя фрагментирующего ядра ( $A_b$  и  $A_t$  — атомные номера ядер пучка и мишени). Сплошные кривые — аппроксимации суммой экспонент по формуле (2), штриховые — одной экспонентой.

= 35 мкср, dp/p = 2.4% для отрицательно заряженных частиц и  $d\Omega = 3.4$  мкср, dp/p = 1.2% — для положительных.

Моделирование эксперимента проводилось ме-

**Таблица** 3. Инвариантные сечения в CPbвзаимодействиях в зависимости от лабораторного импульса для ядер дейтерия (*d*) и трития (*t*) (только статистические ошибки)

| $P_{\text{lab}},$ | $Ed^2\sigma/(p^2dpd\Omega),$ мбн/(ГэВ $^2~c^{-3}$ ср) |                                               |  |  |
|-------------------|-------------------------------------------------------|-----------------------------------------------|--|--|
| ГэВ/с             | d                                                     | t                                             |  |  |
| 25.00             | $5.56\mathrm{e}{+01} \pm 5.86\mathrm{e}{+00}$         |                                               |  |  |
| 26.75             | $1.20\mathrm{e}{+02} \pm 9.14\mathrm{e}{+00}$         |                                               |  |  |
| 30.00             | $2.02\text{e}{+}02 \pm 1.45\text{e}{+}01$             |                                               |  |  |
| 33.50             | $8.32\text{e}{+}02 \pm 2.00\text{e}{+}01$             |                                               |  |  |
| 34.25             | $8.48\mathrm{e}{+02} \pm 2.46\mathrm{e}{+01}$         |                                               |  |  |
| 35.00             | $9.00\mathrm{e}{+02} \pm 2.79\mathrm{e}{+01}$         |                                               |  |  |
| 46.75             | $8.59\mathrm{e}{+02} \pm 2.40\mathrm{e}{+01}$         | $3.77e{+}00 \pm 2.60e{+}00$                   |  |  |
| 48.00             | $7.50\mathrm{e}{+02} \pm 1.01\mathrm{e}{+01}$         | $1.10\text{e}{+}01 \pm 1.99\text{e}{+}00$     |  |  |
| 50.25             | $4.88\mathrm{e}{+02} \pm 4.16\mathrm{e}{+00}$         | $1.08\mathrm{e}{+02} \pm 2.16\mathrm{e}{+00}$ |  |  |
| 54.25             | $5.60\mathrm{e}{+01} \pm 1.72\mathrm{e}{+00}$         | $9.19\mathrm{e}{+02}\pm6.75\mathrm{e}{+00}$   |  |  |
| 55.25             | $3.02e{+}01 \pm 1.60e{+}00$                           | $1.20\mathrm{e}{+03} \pm 9.71\mathrm{e}{+00}$ |  |  |
| 60.25             | $3.89\mathrm{e}{+00}\pm8.44\mathrm{e}{-01}$           | $5.82\mathrm{e}{+03} \pm 2.81\mathrm{e}{+01}$ |  |  |
| 62.25             | $2.90\mathrm{e}{+00} \pm 4.57\mathrm{e}{-01}$         | $6.45\mathrm{e}{+03} \pm 1.97\mathrm{e}{+01}$ |  |  |

ЯДЕРНАЯ ФИЗИКА том 84 № 4 2021

тодом Монте-Карло в рамках Geant4 [7] и описано в [8, 9].

#### 3. ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ

Измеренные в СРb-взаимодействиях дифференциальные сечения представлены в табл. 1-6. Анализ инвариантных сечений для разных мишеней показал, что их форма в зависимости от импульса адронов и ядерных фрагментов была практически одинаковая на углеродной и свинцовой мишенях. Поэтому наибольший интерес представляли отношения сечений, которые позволили оценить Азависимость образования заряженных адронов и ядерных фрагментов в переднем направлении. Отношения сечений для протонов и антипротонов, *π*и к-мезонов, ядерных фрагментов в зависимости от их импульса в лабораторной системе координат показаны на рис. 1, 2 и 3 соответственно. Из этих данных видно, что для адронов, за исключением  $k^-$ -мезонов, при импульсах выше 20 ГэВ/c отношение близко к двум, но с увеличением значения отношения при меньших импульсах. Для легких ядерных фрагментов от протонов до гелия включительно отношения сечений также близки к двум и несколько увеличиваются для более тяжелых фрагментов. Это хорошо видно на рис. 4, где представлены усредненные по импульсу отношения инвариантных сечений для разных мишеней.

| $P_{ m lab},$ Гэ ${ m B}/c$ | $Ed^2\sigma/(p^2dpd\Omega)$ , мбн/(Гэ $\mathrm{B}^2~c^{-3}$ ср) |                                               |                                               |  |  |  |
|-----------------------------|-----------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|--|--|--|
|                             | <sup>3</sup> He                                                 | <sup>4</sup> He                               | <sup>6</sup> He                               |  |  |  |
| 40.00                       | $2.36e{+}00 \pm 8.47e{-}01$                                     |                                               |                                               |  |  |  |
| 41.00                       | $3.02e{+}00 \pm 9.98e{-}01$                                     |                                               |                                               |  |  |  |
| 48.00                       | $2.18e+01 \pm 1.67e+00$                                         |                                               |                                               |  |  |  |
| 50.00                       | $5.97e+01 \pm 2.17e+00$                                         |                                               |                                               |  |  |  |
| 53.50                       | $3.70e+02 \pm 5.84e+00$                                         |                                               |                                               |  |  |  |
| 60.00                       | $5.00e+03 \pm 2.36e+01$                                         |                                               |                                               |  |  |  |
| 67.00                       | $1.28e{+}03 \pm 7.87e{+}00$                                     | $2.07e+01 \pm 1.11e+00$                       |                                               |  |  |  |
| 68.50                       | $4.97\mathrm{e}{+}02\pm5.06\mathrm{e}{+}00$                     | $5.02e+01 \pm 1.76e+00$                       |                                               |  |  |  |
| 70.00                       | $2.01e+02 \pm 3.57e+00$                                         | $9.68e+01 \pm 2.69e+00$                       |                                               |  |  |  |
| 93.50                       | $1.84e-01 \pm 1.14e-01$                                         | $4.14e+01 \pm 1.48e+00$                       |                                               |  |  |  |
| 96.00                       |                                                                 | $5.89\mathrm{e}{+00} \pm 3.64\mathrm{e}{-01}$ |                                               |  |  |  |
| 100.50                      |                                                                 | $1.28e{+}00 \pm 7.22e{-}02$                   | $1.36\mathrm{e}{-01} \pm 2.54\mathrm{e}{-02}$ |  |  |  |
| 108.50                      |                                                                 | $3.04e-02 \pm 1.04e-02$                       | $5.69\mathrm{e}{-01} \pm 6.37\mathrm{e}{-02}$ |  |  |  |
| 110.50                      |                                                                 |                                               | $9.13e-01 \pm 1.11e-01$                       |  |  |  |
| 120.50                      |                                                                 |                                               | $5.09e+01 \pm 1.01e+00$                       |  |  |  |
| 124.50                      |                                                                 |                                               | $8.63e+01 \pm 8.55e-01$                       |  |  |  |
| 140.50                      |                                                                 |                                               | $4.97\mathrm{e}{-01} \pm 3.17\mathrm{e}{-02}$ |  |  |  |

**Таблица 4.** Инвариантные сечения в CPb-взаимодействиях в зависимости от лабораторного импульса для ядер <sup>3</sup>He, <sup>4</sup>He, <sup>6</sup>He (только статистические ошибки)

В отношениях сечений сокращаются общая нормировка, связанная с мониторированием пучка, расчет аксептанса канала, учет взаимодействий в веществе канала и детекторов, учет распадов вторичных частиц и эффективности регистрации. Анализ экспериментальных результатов в разных циклах измерений показал наличие систематической погрешности около 15% [2, 3], связанной с нестабильностью положения пучка во время набора физических данных. Везде, кроме таблиц, включая процедуру усреднения, в качестве ошибок приводится квадратный корень из суммы квадратов статистической и данной систематической погрешностей.

В работе [10] была изучена А-зависимость неупругих ядро-ядерных взаимодействий при импульсе ядер фтора в пучке 4 ГэВ/с на нуклон. Эта зависимость хорошо описывалась выражением в рамках геометрической модели столкновений ядер:

$$\sigma = \sigma_0 \cdot (A_1^{1/3} + A_2^{1/3} - 1)^{\alpha}, \tag{1}$$

где  $\sigma_0$  — сечение нуклон-нуклонного рассеяния,  $A_1$  и  $A_2$  — атомные номера ядер пучка и мишени,  $\alpha$  — параметр. Величина последнего была зафиксирована в [10] на значении  $\alpha = 2$  для неупругих взаимодействий, а для периферических процессов  $\alpha = 1$ . Тогда из формулы (1) следует, что отношения сечений на свинцовой мишени к углеродной в пучке ионов углерода равняются, соответственно, 4.05 и 2.01 для неупругих и периферических взаимодействий.

На рис. 4 приведены усредненные по импульсу отношения инвариантных сечений и оценка параметра  $\alpha$ . Для протонов и легких ядер показатель близок к единице. Для остальных фрагментов наблюдается небольшой рост в пределах ошибок.

На рис. 5 приводится сравнение параметра  $\alpha$  для  $\pi^-$ -мезонов и протонов при кинетических энергиях ядер пучка 19.6 ГэВ на нуклон (данный эксперимент), 2.1 ГэВ на нуклон [11, 12], а также в *pA*-взаимодействиях, измеренных в рамках данного цикла исследований [1]. Видно, что *A*-зависимость при различных энергиях и парах ядер ведет себя подобным образом, падая с ростом фейнмановской переменной  $X_F$  с возможным выходом на плато при  $X_F > 1$ .

Так как полученная А-зависимость не является точной константой, интересно проверить, как изменились оценки температур соответствующих

|                         | $Ed^2\sigma/(p^2dpd\Omega)$ , мбн/(ГэВ $^2c^{-3}$ ср) |                         |                                               |  |  |
|-------------------------|-------------------------------------------------------|-------------------------|-----------------------------------------------|--|--|
| $P_{\text{lab}}, 19B/c$ | <sup>7</sup> Li <sup>8</sup> Li                       |                         | <sup>9</sup> Li                               |  |  |
| 140.25                  | $1.18e+03 \pm 7.19e+00$                               |                         |                                               |  |  |
| 144.00                  | $1.16e+03 \pm 4.35e+00$                               |                         |                                               |  |  |
| 150.75                  | $1.92e{+}02 \pm 8.02e{-}01$                           | $1.05e+01 \pm 1.95e-01$ |                                               |  |  |
| 162.75                  | $6.05\mathrm{e}{-01} \pm 5.70\mathrm{e}{-02}$         | $1.06e+02\pm 8.30e-01$  |                                               |  |  |
| 165.75                  |                                                       | $7.71e+01 \pm 8.70e-01$ |                                               |  |  |
| 180.75                  |                                                       | $1.04e-01 \pm 7.13e-02$ | $7.16e+00 \pm 3.71e-01$                       |  |  |
| 186.75                  |                                                       |                         | $1.75e+01 \pm 3.80e-01$                       |  |  |
| $P_{\rm lab},$ ГэВ/ $c$ | <sup>7</sup> Be                                       | <sup>9</sup> Be         | <sup>10</sup> Be                              |  |  |
| 134.00                  | $6.92e+01 \pm 1.86e+00$                               |                         |                                               |  |  |
| 137.00                  | $5.01e+02 \pm 4.66e+00$                               |                         |                                               |  |  |
| 140.00                  | $1.30e+03 \pm 7.74e+00$                               |                         |                                               |  |  |
| 187.00                  |                                                       | $3.58e+02 \pm 3.78e+00$ |                                               |  |  |
| 192.00                  |                                                       | $1.13e+01 \pm 4.48e-01$ | $3.78e+00 \pm 2.82e-01$                       |  |  |
| 201.00                  |                                                       |                         | $1.75\mathrm{e}{+}02\pm8.29\mathrm{e}{-}01$   |  |  |
| 217.00                  |                                                       |                         | $2.53\mathrm{e}{-01} \pm 4.09\mathrm{e}{-02}$ |  |  |

**Таблица 5.** Инвариантные сечения в CPb-взаимодействиях в зависимости от лабораторного импульса для ядер <sup>7</sup>Li, <sup>8</sup>Li, <sup>9</sup>Li, <sup>7</sup>Be, <sup>9</sup>Be, <sup>10</sup>Be (только статистические ошибки)

процессов при переходе от легких мишеней к более тяжелым. В работах [13, 14] показано, что поведение инвариантных сечений  $\sigma_{inv}$  образования частиц в зависимости от их кинетической энергии  $T_{kin}$  в системе покоя фрагментирующего ядра описывается суммой двух экспонент

$$\sigma_{\rm inv} = c_1 \cdot \exp(-T_{\rm kin}/T_1) + \tag{2}$$

**Таблица 6.** Инвариантные сечения в CPbвзаимодействиях в зависимости от лабораторного импульса для ядер <sup>8</sup>В и <sup>10</sup>С (только статистические ошибки)

| $P_{\rm lab},$ | $Ed^2\sigma/(p^2dpd\Omega),$ мбн/(Гэ $\mathrm{B}^2~c^{-3}$ ср) |                                               |  |  |
|----------------|----------------------------------------------------------------|-----------------------------------------------|--|--|
| ГэВ/с          | <sup>8</sup> B                                                 | <sup>10</sup> C                               |  |  |
| 150.00         | $1.69e+00 \pm 4.63e-01$                                        |                                               |  |  |
| 167.50         | $3.28e{+}01 \pm 1.13e{+}00$                                    |                                               |  |  |
| 171.25         | $3.72e{+}00 \pm 4.05e{-}01$                                    |                                               |  |  |
| 175.00         | $3.01e-01 \pm 2.47e-01$                                        |                                               |  |  |
| 201.00         |                                                                | $1.86\mathrm{e}{+02} \pm 2.99\mathrm{e}{+00}$ |  |  |
| 205.50         |                                                                | $1.56\mathrm{e}{+02} \pm 2.63\mathrm{e}{+00}$ |  |  |
| 210.00         |                                                                | $1.46\mathrm{e}{+}01\pm8.79\mathrm{e}{-}01$   |  |  |

## $+c_2 \cdot \exp(-T_{\rm kin}/T_2),$

где коэффициенты c1 и c2 называют мощностями испарительных и кумулятивных процессов, а  $T_1$ и  $T_2$  — их температурой. В нашей работе [2] мы проводили анализ рождения протонов вперед в CA-взаимодействиях ( $A = {}^{3}$ He,  ${}^{9}$ Be,  ${}^{12}$ C) и назад в AA-взаимодействиях ( $A = {}^{12}C, {}^{197}Au$ ) в диапазоне начальной кинетической энергии фрагментирующего ядра 0.3-19.6 ГэВ/нуклон, который подтверждает справедливость выражения (2). На рис. 6 приведено сравнение результатов для рождения вперед протонов и *π*-мезонов в СС- и СРЬвзаимодействиях при кинетической энергии ионного пучка 19.6 ГэВ/нуклон вместе с соответствующими аппроксимациями (2). Полученные значения температур на разных мишенях совпадают в пределах ошибок:

$$\begin{split} \pi^-: \quad T_2^{\rm CC} &= 52.6 \pm 0.9 \text{ M} \text{\tiny >B}, \\ T_2^{\rm CPb} &= 51.9 \pm 0.8 \text{ M} \text{\tiny >B}, \\ p: \quad T_1^{\rm CC} &= 4.9 \pm 0.7 \text{ M} \text{\tiny >B}, \\ T_1^{\rm CPb} &= 5.5 \pm 0.8 \text{ M} \text{\tiny >B}, \\ p: \quad T_2^{\rm CC} &= 29.4 \pm 1.7 \text{ M} \text{\tiny >B}, \\ T_2^{\rm CPb} &= 28.1 \pm 2.5 \text{ M} \text{\tiny >B}. \end{split}$$

Таким образом, приведенные данные показывают, что форма инвариантного сечения фрагментационного рождения в виде выражения (2) является универсальной при разных энергиях для различных регистрируемых частиц и не зависит ни от типа пучка ни от выбора мишени. Значения температур соответствующих процессов определяются свойствами фрагментирующего ядра и типом вторичной частицы и не зависят от мишени (ядра-спектатора).

#### 4. ЗАКЛЮЧЕНИЕ

Представлены измерения инклюзивных сечений образования в переднем направлении заряженных адронов и ядерных фрагментов в CPbстолкновениях при кинетической энергии пучка 19.6 ГэВ/нуклон ( $\sqrt{S_{NN}} = 6.3$  ГэВ) в сравнении с аналогичными данными в CC-взаимодействиях и получена *A*-зависимость изучаемых процессов.

Картины образования вперед частиц и фрагментов подобны друг другу как в данном эксперименте в CPb- и CC-взаимодействиях, так и в других экспериментах, поставленных при более низких энергиях, и демонстрируют слабую *A*-зависимость, соответствующую периферическим процессам. Что, в свою очередь, согласуется с гипотезой предельной фрагментации. Оценки параметров, определяющих форму дифференциальных сечений, совпадают в пределах ошибок на разных мишенях.

Таким образом, можно сделать вывод о том, что форма измеренных сечений образования ядерных фрагментов в основном определяется свойствами ядра углерода, фрагментирующего в периферических процессах с малыми передачами импульса.

#### ДЕКЛАРАЦИЯ О КОНКУРИРУЮЩИХ ИНТЕРЕСАХ

Авторы заявляют, что у них нет конфликта интересов.

#### БЛАГОДАРНОСТИ

Данная работа поддержана грантом РФФИ № 19-02-00278.

#### СПИСОК ЛИТЕРАТУРЫ

- M. Yu. Bogolyubsky, A. Yu. Bordanovsky, A. A. Volkov, D. K. Elumahov, V. P. Efremov, A. A. Ivanilov, A. Yu. Kalinin, A. N. Krinitsyn, V. I. Kryshkin, N. V. Kulagin, D. I. Patalakha, V. V. Skvortsov, V. V. Talov, and L. K. Turchanovich, Phys. At. Nucl. 80, 455 (2017).
- A. G. Afonin, M. Yu. Bogolyubsky, A. A. Volkov, D. K. Elumakhov, V. N. Zapolsky, A. A. Ivanilov,

A. Yu. Kalinin, A. N. Krinitsyn, V. I. Kryshkin, N. V. Kulagin, D. I. Patalakha, K. A. Romanishin, V. V. Skvortsov, V. V. Talov, L. K. Turchanovich, and Yu. A. Chesnokov, Phys. At. Nucl. **83**, 228 (2020). https://doi.org/10.1134/S1063778820020015

- A. G. Afonin, M. Yu. Bogolyubsky, A. A. Volkov, D. K. Elumakhov, V. N. Zapolsky, A. A. Ivanilov, A. Yu. Kalinin, A. N. Krinitsyn, V. I. Kryshkin, N. V. Kulagin, D. I. Patalakha, K. A. Romanishin, V. V. Skvortsov, V. V. Talov, L. K. Turchanovich, and Yu. A. Chesnokov, Nucl. Phys. A 997, 121718 (2020). https://doi.org/10.1016/j.nuclphysa.2020. 1217180375
- 4. J. Benecke, T. T. Chou, C. N. Yang, and E. Yen, Phys. Rev. **188**, 2159 (1969).
- А. Г. Афонин, Н. А. Галяев, В. Н. Гресь, Ю. П. Давиденко, В. И. Дианов, А. С. Дышкант, В. Н. Запольский, В. И. Котов, В. П. Крючков, С. Н. Лапицкий, В. Н. Лебедев, А. В. Максимов, А. В. Минченко, А. Н. Мойбенко, В. С. Селезнев, Р. М. Суляев, В. Н. Терехов, М. А. Холоденко, С. А. Черный, Ю. А. Чесноков, Препринт ИФВЭ 90-38 (Протвино, 1990).
- V. V. Abramov, B. Yu. Baldin, A. F. Buzulutskov, A. A. Volkov, V. Yu. Glebov, P. I. Goncharov, A. N. Gurjiev, A. S. Dyshkant, V. N. Evdokimov, A. O. Efimov, Yu. P. Korneev, A. N. Krinitsyn, V. I. Kryshkin, M. I. Mutafian, V. M. Podstavkov, A. I. Ronjin, R. M. Sulyaev, and L. K. Turchanovich, Instrum. Exp. Tech. 35, 1006 (1992).
- 7. http://geant4.cern.ch/support/ReleaseNotes4.10.2. html
- M. Yu. Bogolyubsky, Instrum. Exp. Tech. 57, 519 (2014).

https://doi.org/10.1134/S0020441214050030

- 9. M. Yu. Bogolyubsky, D. K. Elumakhov, A. I. Ivanilov, and A. N. Krinitsyn, Instrum. Exp. Tech. **62**, 5 (2019). https://doi.org/10.1134/S0020441219050130
- V. M. Golovin, I. A. Golutvin, S. N. Dolia, B. E. Zhilcov, A. V. Zarubin, V. V. Perelygin, V. S. Sviridov, V. V. Tikhomirov, V. I. Tsovbun, and A. G. Fedunov, JINR Rapid Communication 17-86, 13, Dubna (1986).
- L. Anderson, W. Bruckner, E. Moller, S. Nagamiya, S. Nissen-Meyer, L. Schroeder, G. Shapiro, and H. Steiner, Phys. Rev. C. 28, 1224 (1983). https://doi.org/10.1103/PhysRevC.28.1224 https://journals.aps.org/prc/abstract/10.1103/ PhysRevC.28.1224
- L. Anderson, W. Bruckner, E. Moller, S. Nagamiya, S. Nissen-Meyer, L. Schroeder, G. Shapiro, and H. Steiner, Phys. Rev. C. 28, 1246 (1983). https://doi.org/10.1103/PhysRevC.28.1246 https://journals.aps.org/prc/abstract/10.1103/ PhysRevC.28.1246
- V. K. Lukyanov and A. I. Titov, Sov. J. Part. Nucl. 10, 321 (1979).
- 14. V. K. Bondarev, Phys. Part. Nucl. 28, 5 (1997).

# A-DEPENDENCE OF THE FORWARD PRODUCTION FOR CHARGED HADRONS AND NUCLEAR FRAGMENTS IN CPb AND CC-INTERACTIONS AT BEAM ENERGY 19.6 GeV/NUCLEON

# A. G. Afonin<sup>1)</sup>, M. Yu. Bogolyubsky<sup>1)</sup>, A. A. Volkov<sup>1)</sup>, D. K. Elumakhov<sup>1)</sup>, V. N. Zapolsky<sup>1)</sup>, A. A. Ivanilov<sup>1)</sup>, A. Yu. Kalinin<sup>1)</sup>, A. N. Krinitsyn<sup>1)</sup>, V. I. Kryshkin<sup>1)</sup>, N. V. Kulagin<sup>1)</sup>, D. I. Patalakha<sup>1)</sup>, K. A. Romanishin<sup>1)</sup>, V. V. Skvortsov<sup>1)</sup>, V. V. Talov<sup>1)</sup>, L. K. Turchanovich<sup>1)</sup>, Yu. A. Chesnokov<sup>1)</sup>

#### <sup>1)</sup>National Research Center "Kurchatov Institute" — IHEP, Protvino, Russia

The measurements of inclusive differential cross sections in forward direction of  $\pi^{\pm}$ -,  $k^{-}$ -mesons, protons, antiprotons with momenta from 6 to 50 GeV/*c* and nuclear fragments with atomic number  $1 \le A \le 10$  in the range of momenta 20–220 GeV/*c* in CPb-collisions at beam kinetic energy of 19.6 GeV/*n* ( $\sqrt{S_{NN}} = 6.3$  GeV) are presented. A comparison with cross sections in CC-collisions and an estimate of the *A*-dependence on the target nucleus are given. The analysis shows that observed particles are formed mainly in peripheral interactions.