= ЯДРА =

ИЗМЕРЕНИЕ СЕЧЕНИЙ РЕАКЦИЙ ²³²Th(³He, *p*4*n*)²³⁰Pa, ²³²Th(³He, *p*2*n*)²³²Pa, ²³²Th(³He, 2*p* + *pn*)²³³Pa ПРИ ОБЛУЧЕНИИ МИШЕНИ ИЗ ThO₂ ЯДРАМИ ³He

© 2022 г. М. Н. Герман¹⁾, В. А. Загрядский¹⁾, А. В. Курочкин¹⁾, К. А. Маковеева^{1)*}, Т. Ю. Маламут¹⁾, В. И. Новиков¹⁾, И. И. Скобелин¹⁾, В. Н. Унежев¹⁾

Поступила в редакцию 21.05.2021 г.; после доработки 21.05.2021 г.; принята к публикации 21.05.2021 г.

Статья посвящена оценке эффективности использования пучка ядер ³Не средних энергий для наработки на мишенях из природного тория радиоизотопа ²³⁰Pa, используемого для получения терапевтического α -эмиттера ²³⁰U. В работе активационным методом в диапазоне энергий ядер ³He 39– 58 МэВ впервые измерено сечение реакции ²³²Th(³He, *p*4*n*)²³⁰Pa и сечения сопутствующих реакций ²³²Th(³He, *p*2*n*)²³²Pa и ²³²Th(³He, 2*p* + *pn*)²³³Pa. Экспериментальные результаты сопоставлялись с данными библиотеки TENDL-2019. В эксперименте не получено подтверждение приведенного в TENDL-2019 высокого значения (до ~400 мбн) сечения реакции ²³²Th(³He, *p*4*n*)²³⁰Pa, что не позволяет рассматривать эту реакцию в качестве альтернативы реакциям на протонах и дейтронах для получения ²³⁰Pa. Сечения реакций ²³²Th(³He, *p*2*n*)²³²Pa и ²³²Th(³He, 2*p* + *pn*)²³³Pa в TENDL-2019 также значительно отличаются от эксперимента.

DOI: 10.31857/S0044002721060052

1. ВВЕДЕНИЕ

Благодаря короткому пробегу и высоким удельным потерям энергии α -частиц в тканях, терапия онкологических заболеваний с применением α -эмиттеров является одним из наиболее перспективных направлений ядерной медицины. Перспективной считается радиоиммунная терапия с применением таких α -эмиттеров, как ²¹¹At, ²¹²Bi, ²¹³Bi, ²²⁵Ac, ²²³Ra [1–5]. Широкому применению α -эмиттеров препятствуют сложность и высокая стоимость способов их получения.

В последнее время в литературе появилось много публикаций, посвященных получению относительно нового α -эмиттера 230 U [6–9]. Радиоизотоп 230 U ($T_{1/2} = 20.8\,$ сут) распадается каскадом из пяти α -распадов (до долгоживущего 210 Pb) по цепочке: 230 U($T_{1/2} = 20.8\,$ сут) $\rightarrow \,^{226}$ Th($T_{1/2} = 30.9\,$ мин) $\rightarrow \,^{222}$ Ra($T_{1/2} = 38\,$ с) $\rightarrow \,^{218}$ Rn($T_{1/2} = 0.035\,$ с) $\rightarrow \,^{214}$ Po($T_{1/2} = 1.6 \times 10^{-4}\,$ с) $\rightarrow \,^{210}$ Pb($T_{1/2} = 22.3\,$ год). Общая энергия α -частиц в пяти распадах составляет около 33.5 МэВ. В указанных публикациях 230 U предлагается получать генераторным способом при распаде предшественника 230 Pa($T_{1/2} = 17.4\,$ сут) $\rightarrow \,^{230}$ U($T_{1/2} = 1.6 \times 10^{-4}\,$ с) $\rightarrow \,^{230}$ U($T_{1/2} = 1.6 \times 10^{-4}\,$ с) $\rightarrow \,^{210}$ Pb($T_{1/2} = 22.3\,$ год). Общая энергия α -частиц в пяти распадах составляет около 33.5 МэВ.

= 20.8 сут). В свою очередь ²³⁰Ра предлагается нарабатывать путем облучения природного тория ядрами ¹Н или ²Н по реакциям соответственно 232 Th $(^{1}$ H, $p2n)^{230}$ Pa или 232 Th $(^{2}$ H, $p3n)^{230}$ Pa. Преимуществом ²³⁰U по сравнению с указанными выше а-эмиттерами является использование в качестве сырья для его получения доступного и не дорогого природного тория и ускорителей средних энергий. Для длительных терапевтических процедур может быть использован непосредственно долгоживущий *α*-эмиттер ²³⁰U. Для ограниченных во времени процедур может быть применен дочерний α -эмиттер ²²⁶Th, извлекаемый из ²³⁰U/²²⁶Th изотопного генератора. На циклотроне У-150 НИЦ "Курчатовский институт" радиоизотоп ²³⁰Ра может быть, кроме того, получен путем облучения мишени из природного тория ядрами ³Не. Согласно данным, приведенным в библиотеке TENDL-2019 [10], сечение реакции 232 Th $({}^{3}$ He, $x){}^{230}$ Pa может достигать нескольких сотен мбар, что сопоставимо с сечением реакции получения ²³⁰Ра на протонах. Вместе с тем экспериментальные данные о сечении реакции 232 Th $({}^{3}$ He, $x){}^{230}$ Pa в литературе отсутствуют.

Учитывая это, в настоящей работе предпринята попытка частично восполнить этот пробел. Работа посвящена измерению сечения реакции 232 Th(3 He, p4n) 230 Pa и сечений сопутствующих

¹⁾НИЦ "Курчатовский институт", Москва, Россия.

^{*}E-mail: makoveeva_ka@nrcki.ru

Рис. 1. Сечение реакции 232 Th $(^{3}$ He, $p4n)^{230}$ Pa. Кривые: штрихпунктирная — TENDL-2019, сплошная — эксперимент.

реакций 232 Th $(^{3}$ He, $p2n)^{232}$ Pa и 232 Th $(^{3}$ He, $2p + pn)^{233}$ Pa в области энергий ядер 3 He 39– 58 МэВ. Полученные в работе экспериментальные результаты были сопоставлены с данными библиотеки TENDL-2019.

2. ЭКСПЕРИМЕНТАЛЬНАЯ МЕТОДИКА

Для измерения сечений реакций была использована активационная методика. Кратко суть методики заключалась в следующем. Мишени из порошка оксида тория, нанесенного методом седиментации на подложки из алюминия, облучали ядрами ³Не с энергией 58 МэВ на циклотроне У-150 НИЦ "Курчатовский институт". После облучения и выдержки в мишенях измеряли активности радиоизотопов ²³⁰Pa, ²³²Pa и ²³³Pa. По измеренным активностям из уравнения активации определяли сечения реакций.

Методика (седиментации) нанесения порошка оксида тория на алюминиевую подложку состояла в следующем. Из порошка оксида тория и ацетона готовили суспензию. В полученную суспензию добавляли коллодий (нитрат целлюлозы) в количестве 1–2% по массе по отношению к оксиду тория. Осаждение проводили в тефлоновом сосуде на подложке из алюминия толщиной 30 мкм. Ацетон испарялся при комнатной температуре в течение 4–5 ч. В результате были получены механически устойчивые и визуально равномерные по толщине слои оксида тория с толщинами 7– 11 мг/см². Диаметр нанесенного пятна составлял 20 мм. Мишени не изменяли свой первоначальный вид после облучения пучком заряженных частиц.

Мишени на подложках в количестве 11 штук собирали в единую стопку. Между мишенями в

стопке размещали замедлители заряженных частиц в виде алюминиевых фольг с толщинами 9 и 30 мкм. Перед первой мишенью в стопке был установлен детектор сопровождения в виде титановой фольги толщиной 2 мкм, а перед ним — вторая титановая фольга толшиной 2 мкм для компенсации снижения активности детектора сопровождения вследствие выхода из него ядер отдачи. Стопку устанавливали в мишенную камеру циклотрона и облучали пучком ядер ³Не. Энергия ядер ³Не задавалась параметрами циклотрона и составляла 58 ± 1 МэВ. Облучение проводили при среднем токе 0.1 мкА до достижения величины суммарного заряда ~0.3 мкА ч. Интегральный поток ядер ³Не, падающих на мишень, определяли с помощью интегратора тока. Дополнительно оценку интегрального потока заряженных частиц проводили активационным методом по титановому детектору сопровождения, измеряя активность ⁴⁸V. Суммарная толщина мишеней на подложках, замедлителей и детектора сопровождения обеспечивала торможение ядер ³Не в стопке со стартовых 58 до 39 МэВ. Соответствие энергии ядер ³Не положению конкретной мишени в стопке и, следовательно, ее активности определяли по программе SRIM [11].

После облучения и выдержки определяли активности радиоизотопов протактиния в мишенях по пикам полного поглощения гамма-квантов: ²³⁰ Ра по линии $E_{\gamma} = 951.88 \text{ кэВ} (K_{\gamma} = 29.6\%) [12], ^{232}$ Ра по линии $E_{\gamma} = 894.35 \text{ кэВ} (K_{\gamma} = 19.6\%) [13], ^{233}$ Ра по линий $E_{\gamma} = 311.9 \text{ кэВ} (K_{\gamma} = 38.2\%) [14].$ Измерения проводили с помощью гамма-спектрометра с детектором из сверхчистого германия ORTEC GEM серии 35Р4. Мишени во время измерений устанавливали на расстоянии 6–40 см над по-

Рис. 2. Сечение реакции 232 Th $(^{3}$ He, $p2n)^{232}$ Pa. Кривые: штрихпунктирная — TENDL-2019, сплошная — эксперимент.

Рис. 3. Сечение реакции 232 Th $(^{3}$ He, $2p + pn)^{233}$ Pa. Кривые: штрихпунктирная — TENDL-2019, сплошная — эксперимент.

верхностью детектора в зависимости от загрузки спектрометра. Мертвое время при измерениях не превышало 5%. Энергетическую зависимость эффективности регистрации гамма-квантов детектором определяли экспериментально с помощью образцовых спектрометрических гамма-источников из комплекта ОСГИ. Максимальное время набора аппаратурных гамма-спектров не превышало 1 ч. Активность каждого радиоизотопа протактиния измеряли несколько раз в течение ~3 периодов полураспада. Сечения реакций определяли по формуле:

$$\sigma = \frac{A}{(1 - \exp^{-\lambda T})NF}.$$

Здесь σ — сечение реакции (см²), A — активность радиоизотопа в мишени, приведенная к концу облучения (Бк), λ — постоянная распада (с⁻¹), T — время облучения (с), N — количество ядер ²³²Th, F — поток ядер ³He (с⁻¹ см⁻²).

3. ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ

В табл. 1 приведены экспериментальные значения сечений реакций 232 Th $(^{3}$ He, $p4n)^{230}$ Pa, 232 Th $(^{3}$ He, $p2n)^{232}$ Pa, 232 Th $(^{3}$ He, $2p + pn)^{233}$ Pa в области энергий ядер 3 He 39–58 МэВ. На рис. 1–3 представлены экспериментальные значения сечений реакций в сравнении с данными из библиотеки

ЯДЕРНАЯ ФИЗИКА том 85 № 1 2022

Е, МэВ	232 Th $(^{3}$ He, $p4n)^{230}$ Pa	232 Th $(^{3}$ He, $p2n)^{232}$ Pa	232 Th $(^{3}$ He, $2p + pn)^{233}$ Pa
57.1	46 ± 7	53 ± 11	38 ± 9
55.5	37 ± 8	43 ± 9	46 ± 11
53.8	39 ± 7	54 ± 10	47 ± 10
52.1	43 ± 9	67 ± 12	64 ± 14
50.4	34 ± 8	59 ± 10	58 ± 12
48.5	34 ± 8	88 ± 15	75 ± 14
46.7	24 ± 6	80 ± 13	67 ± 12
45.1	20 ± 5	94 ± 15	75 ± 13
43.3	12 ± 3	84 ± 13	62 ± 10
41.5	8 ± 2	97 ± 15	65 ± 12
39.5	5 ± 1	105 ± 16	65 ± 11

Таблица 1. Сечения реакций 232 Th $({}^{3}$ He, x), мбн

TENDL-2019. Погрешности экспериментальных сечений реакций находятся в пределах 13–25% при доверительной вероятности 68%. Составляющими погрешности являлись: погрешность определения эффективности детектора 8–12%; погрешность определения площадей пиков полного поглощения гамма-квантов в аппаратурном спектре 10–15%; погрешность использованных для определения активностей квантовых выходов 3–18%. Показанные на графиках погрешности энергии ядер ³Не в точках измерения сечений определяли по программе SRIM, исходя из разброса ± 1 МэВ стартовой энергии ядер ³Не, задаваемой параметрами циклотрона.

4. ЗАКЛЮЧЕНИЕ

В настоящей работе в широком диапазоне энергий ядер ³Не впервые получены экспериментальные значения сечений реакций 232 Th $(^{3}$ He, $p4n)^{230}$ Pa, ²³²Th(³He, p2n)²³²Pa и ²³²Th(³He, 2p + pn)²³³Pa. Сечение реакции 232 Th $(^{3}$ He, $p4n)^{230}$ Pa в рассматриваемом диапазоне энергий возрастает с увеличением энергии, достигая ~50 мбн при 57 МэВ. Сечение реакции 232 Th $({}^{3}$ He, $p2n)^{232}$ Pa практически линейно уменьшается со 100 мбн при 40 МэВ до ~50 мбн при 57 МэВ. Сечение реакции 232 Th $(^{3}$ He, $2p+pn)^{233}$ Pa плавно достигает максимума ~70 мбн в области 45 МэВ, снижаясь до ~40 мбн к 57 МэВ. Измеренные сечения реакций сопоставляли с данными из библиотеки TENDL-2019. В эксперименте не получено подтверждение приведенного в TENDL-2019 высокого значения (до ~400 мбн) сечения реакции

ЯДЕРНАЯ ФИЗИКА том 85 № 1 2022

 232 Th(3 He, p4n) 230 Pa, что не позволяет рассматривать эту реакцию в качестве альтернативы реакциям на протонах и дейтронах для получения 230 Pa. Сечения реакций 232 Th(3 He, p2n) 232 Pa и 232 Th(3 He, 2p + pn) 233 Pa в TENDL-2019 также значительно отличаются от эксперимента. Полученные в работе экспериментальные результаты могут быть использованы в дальнейшем для корректировки соответствующих сечений в библиотеках оцененных ядерных данных.

Работа выполнена при поддержке НИЦ "Курчатовский институт", приказ № 1918 от 24.09.2020.

СПИСОК ЛИТЕРАТУРЫ

- D. Cordier, F. Forrer, F. Bruchertseifer, A. Morgenstern, C. Apostolidis, S. Good, J. Müller-Brand, H. Mäcke, J. C. Reubi, and A. Merlo, Eur. J. Nucl. Med. Mol. Imag. 37, 1335 (2010).
- M. R. Zalutsky, D. A. Reardon, G. Akabani, R. E. Coleman, A. H. Friedman, H. S. Friedman, R. E. McLendon, T. Z. Wong, and D. D. Bigner, J. Nucl. Med. 49, 30 (2008).
- R. F. Meredith, J. Torgue, M. T. Azure, S. Shen, S. Saddekni, E. Banaga, R. Carlise, P. Bunch, D. Yoder, and R. Alvarez, Cancer Biotherapy Radiopharm. 29, 12 (2014).
- A. K. H. Robertson, B. L. McNeil, H. Yang, D. Gendron, R. Perron, V. Radchenko, S. Zeisler, P. Causey, and P. Schaffer, Inorg. Chem. 59, 12156 (2020).
- C. Parker, S. Nilsson, D. Heinrich, S. I. Helle, J. M. O'Sullivan, S. D. Fosså, A. Chodacki, P. Wiechno, J. Logue, M. Seke, A. Widmark, D. C. Johannessen, P. Hoskin, D. Bottomley, N. D. James, A. Solberg, *et al.*, N. Engl. J. Med. **369**, 213 (2013).

- A. Morgenstern, C. Apostolidis, F. Bruchertseifer, R. Capote, T. Gouder, F. Simonelli, M. Sin, and K. Abbas, Appl. Radiat. Isot. 66, 1275 (2008).
- V. Radchenko, J. W. Engle, J. J. Wilson, J. R. Maassen, M. F. Nortier, E. R. Birnbaum, K. D. John, and M. E. Fassbender, Radiochim. Acta 104, 291 (2016).
- M. T. Friend, T. Mastren, T. G. Parker, C. E. Vermeulen, M. Brugh, E. R. Birnbaum, F. M. Nortier, and M. E. Fassbender, Appl. Radiat. Isot. 156, 108973 (2020).
- G. F. Steyn, M. A. Motetshwane, F. Szelecsényi, and J. W. Brümmer, Appl. Radiat. Isot. 168, 109514

(2021).

- 10. A. Koning and D. Rochman, Nucl. Data Sheets **113**, 2841 (2012).
- 11. J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, Nucl. Instrum. Methods B **268**, 1818 (2010).
- 12. E. Browne and J. K. Tuli, Nucl. Data Sheets 113, 2113 (2012).
- 13. E. Browne, Nucl. Data Sheets 107, 2579 (2006).
- 14. B. Singh, J. K. Tuli, and E. Browne, Nucl. Data Sheets **170**, 499 (2020).

MEASUREMENT OF CROSS SECTIONS 232 Th $(^{3}$ He, $p4n)^{230}$ Pa, 232 Th $(^{3}$ He, $p2n)^{232}$ Pa, AND 232 Th $(^{3}$ He, $2p + pn)^{233}$ Pa REACTIONS UPON IRRADIATION OF A ThO₂ TARGET WITH ³He NUCLEI

M. N. German¹⁾, V. A. Zagryadskiy¹⁾, A. V. Kurochkin¹⁾, K. A. Makoveeva¹⁾, T. Yu. Malamut¹⁾, V. I. Novikov¹⁾, I. I. Skobelin¹⁾, V. N. Unezhev¹⁾

¹⁾ NRC "Kurchatov Institute", Moscow, Russia

The article is devoted to the assessment of the efficiency of using a beam of medium-energy ³He nuclei for the production of the ²³⁰Pa radioisotope on targets from natural thorium, which is used to obtain the ²³⁰U therapeutic α emitter. In this work, the cross section for the reaction ²³²Th(³He, *p*4*n*)²³⁰Pa and the cross sections for the accompanying reactions ²³²Th(³He, *p*2*n*)²³²Pa and ²³²Th(³He, *2p* + *pn*)²³³Pa were measured by the activation method in the energy range of ³He nuclei from 39 to 58 MeV for the first time. The experimental results were compared with the data from the TENDL-2019 library. The experiment did not confirm the high value (up to ~400 mb) of the cross section for the ²³²Th(³He, *p*4*n*)²³⁰Pa reaction given in TENDL-2019. This does not allow to consider this reaction as an alternative to the reactions on protons and deuterons to obtain ²³⁰Pa. The cross sections for the reactions ²³²Th(³He, *p*2*n*)²³²Pa and ²³²Th(³He, 2*p* + *pn*)²³³Pa in TENDL-2019 also differ significantly from the experiment.