= ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ И ПОЛЯ =

О ВЗАИМОДЕЙСТВИИ *п*-МЕЗОНОВ С ЯДЕРНОЙ СРЕДОЙ

© 2022 г. А. А. Туринге^{1)*}, В. Г. Недорезов¹⁾, Н. В. Руднев¹⁾

(для коллаборации ГРААЛЬ)

Поступила в редакцию 11.10.2021 г.; после доработки 24.11.2021 г.; принята к публикации 24.11.2021 г.

В настоящей работе измерена прозрачность ядра углерода по отношению к η -мезонам с энергией от 25 до 95 МэВ. Мезоны с такой энергией образовывались в результате фоторождения на квазисвободных протонах ядра углерода ($\gamma p \rightarrow \eta p$) под действием фотонов с энергией 720–770 МэВ. По измеренной прозрачности ядра определены неупругие сечения ηN -взаимодействия в ядерной среде. Обсуждается отсутствие нуклонных резонансов в измеренном сечении, в частности S_{11} -резонанса, который связывают обычно с предположением о существовании η -мезонных ядер.

DOI: 10.31857/S0044002722020088

1. ВВЕДЕНИЕ

Изучение взаимодействия нестабильных, короткоживущих мезонов с ядерной средой остается одной из актуальных задач теоретической и экспериментальной ядерной физики. Для *п*-мезонов такие исследования представляют особый интерес, потому что затрагивают многие аспекты физики нуклонных резонансов в ядрах и динамики ядерных возбуждений. *п*-мезон не имеет электрического заряда и, находясь в поле ядра, может образовывать квазистабильный уровень в результате сильного взаимодействия с ядром [1]. При этом возбуждается $S_{11}(1535)$ -нуклонный резонанс, который может приводить к образованию η -мезонных ядер [1, 2]. Очевидно, такой резонанс должен быть виден в сечении взаимодействия *п*-мезонов с ядрами и прямое измерение этого сечения представляет большой интерес. Помимо упомянутых работ следует отметить работу [3], в которой подробно описано образование η - и η' -мезонов в реакциях, индуцированных фотонами и адронами, на свободных и квазисвободных нуклонах и на ядрах, и работу [4], в которой изучались свойства нуклонного резонанса $S_{11}(1535)$ в среде и поглощение ядерной материей η -мезонов. Во всех работах было показано, что никаких необъяснимых модификаций $S_{11}(1535)$ в ядерной среде не наблюдается.

Имеющиеся к настоящему времени экспериментальные и теоретические данные по этой теме очень многочисленны (опубликованы сотни статей), но данные по сечениям взаимодействия *η*мезонов с ядрами представлены только в нескольких из них. Так, например, в работе [5] измерены полное и дифференциальное сечения фоторождения η -мезонов на ядрах углерода, кальция и свинца.

Поскольку создание пучков η -мезонов является неразрешимой экспериментальной задачей, все данные по сечениям получены путем измерения прозрачности ядер. Прозрачность определяется как отношение нормированных выходов мезонов из ядра и от свободного нуклона. В работе [6] вводилось понятие "in-medium ηN cross section" сечение ηN -взаимодействия в ядерной среде. Тем самым подчеркивалось отличие используемого метода от традиционного ядерного эксперимента на пучках падающих частиц.

Во всех работах, где измерялась прозрачность ядер, анализ экспериментальных данных проводился с помощью модели Глаубера [7]. Сравнение измеренных в настоящей работе сечений взаимодействия η -мезонов с нуклонами ядра углерода с результатами работ [5, 6] показало, что имеется значительное (примерно в 2 раза) расхождение в абсолютных значениях измеренных сечений. Поэтому, кроме модели Глаубера, в настоящей работе был использован безмодельный подход, используемый в обычных фотоядерных экспериментах.

В настоящей работе предпринята попытка определения сечений взаимодействия *η*-мезонов с внутриядерными нуклонами на основе результатов, полученных на установке GRAAL [8] на ядре ¹²С в 2008 г. [9].

2. ЭКСПЕРИМЕНТ

В эксперименте GRAAL использовался пучок гамма-квантов с энергией 700-1500 МэВ,

¹⁾Институт ядерных исследований Российской академии наук, Москва, Россия.

^{*}E-mail: turinge56@mail.ru

Рис. 1. Энергетические (*a*) и угловые (б) распределения нуклонов, сопутствующих фоторождению *η*-мезонов в ядре углерода при энергии фотонов от 700 до 1500 МэВ. Квадраты и круги соответствуют фоторождению первичных и вторичных нуклонов соответственно.

полученных методом обратного комптоновского рассеяния. Энергетическое разрешение системы мечения составляло ~16 МэВ. Для регистрации продуктов реакций использовался детектор LAGRANGe с телесным углом, близким к 4π . Основная часть детектора представляет собой шар из 480 кристаллов BGO толщиной в 21 радиационную длину каждый, что обеспечивает энергетическое разрешение 0.0244 ГэВ. Для разделения нейтральных и заряженных частиц между BGO и мишенью помещался ΔE -детектор, состоящий из 32 полос пластика толщиной 5 мм, а также две цилиндрические пропорциональные камеры, позволяющие находить с высокой точностью (1 мм) точку взаимодействия гамма-квантов с мишенью. Эти детекторы обеспечивали разрешение по времени пролета на уровне 0.5 нс (FWHM).

В переднем направлении (при углах рассеяния менее 25°) регистрация частиц производилась с помощью плоских пропорциональных камер, двух стен из пластиковых сцинтилляторов площадью 9 м² и электромагнитного калориметра из слоев пластика и свинца той же площади. Две стены пластиковых сцинтилляторов с разрешением на уровне 0.5 нс (FWHM) состоят из 26 горизонтальных и 26 вертикальных полос толщиной 5 мм.

Для решения поставленной задачи существенно, что установка позволяла отделять η -мезоны от π^0 -мезонов и нуклонов отдачи. В боковом направлении идентификация проводилась на основании анализа инвариантной массы двух нейтральных кластеров, интерпретируемых как фотоны, а в случае фоторождения η -мезона еще и на основе анализа инвариантных масс трех пар нейтральных кластеров, которые образовывались при распаде η -мезона на три π^0 -мезона. Также была возможность отделять нейтроны от гамма-квантов в BGO-калориметре по числу кристаллов в кластере. Размер кластера для нейтронов был практически равен единице, а для гамма-квантов благодаря образованию лавины размер кластера был в 5 раз больше. Подробно методика обработки данных описана в работе [10], посвященной измерению полных сечений фотопоглощения методом суммирования сечений парциальных реакций.

Поскольку протоны, образовавшиеся в результате реакции фоторождения *п*-мезонов, имеют, как правило, небольшую энергию (<250 МэВ), они в большинстве случаев застревают в BGOдетекторе, что позволяет с ограниченным разрешением (~10-20%) измерять их энергию. Существенной особенностью используемого алгоритма является выделение первичного нуклона отдачи при фоторождении мезона. Вторичные нуклоны могут образовываться в результате внутриядерных каскадных соударений. Подробно этот процесс был изучен экспериментально [11] и теоретически [12]. Было показано, что первичные нуклоны доминируют на уровне 90% по отношению к полному выходу и могут быть использованы для идентификации парциальных каналов.

На рис. 1 показан спектр и угловое распределение первичных и вторичных нуклонов от фоторождения η -мезонов. Видно, что первичные нуклоны обладают существенно большей энергией по сравнению с каскадными нуклонами. Именно для таких нуклонов вычисляется энергия недостающей массы. Угловое распределение первичных нуклонов направлено вперед вдоль импульса фотона, а для каскадных нуклонов оно практически изотропно.

Рис. 2. Результаты заключительного этапа (по балансу энергий) отбора экспериментальных событий фоторождения η мезона для углеродной (круги, штриховая кривая) и водородной (квадраты, сплошная кривая) мишеней соответственно.

3. РАСЧЕТ ПРОЗРАЧНОСТЕЙ

Прозрачность ядра углерода по отношению к η -мезонам определялась как отношение полного (проинтегрированного по всем углам в лабораторной системе и при энергиях фотонов, принадлежащих заданному интервалу) нормированного на число протонов в ядре выхода η -мезона при наличии протона отдачи из углеродной мишени к аналогичному выходу на водородной мишени при равных аксептансах и равных дозах облучения.

Сечение фоторождения η-мезонов имеет ярко выраженный максимум вблизи порога их фоторождения, близкого к 720 МэВ. При этом его абсолютная величина мала по сравнению с сечениями многих других реакций. Поэтому при отборе событий энергия налетающих фотонов ограничивалась интервалом 720–770 МэВ. При таких энергиях фотонов протоны отдачи летят вперед.

Отбор событий фоторождения *η*-мезонов производился стандартным образом с выделением протона отдачи с помощью кинематических характеристик [13]: по инвариантной массе двух нейтральных кластеров, идентифицируемых как фотоны, соответствующей им недостающей массе, углу между протоном и недостающей массой и разности энергий протона и недостающей массы. Критерии, по которым выставлялись границы отбора (выход на уровень 10% от максимума или выход на плато), были одни и те же для углеродной и водородной мишеней.

Для наглядной иллюстрации на рис. 2 приведены результаты последнего, четвертого этапа отбора экспериментальных событий (по разности энергий протона и недостающей массы) для углеродной и

ЯДЕРНАЯ ФИЗИКА том 85 № 2 2022

водородной мишеней. Полученная прозрачность, средняя по энергии η -мезонов 25–95 МэВ, определенная как отношение площадей под соответствующими кривыми, получилась равной 0.7 \pm 0.1, что хорошо согласуется со значением, полученным в работе [13]. Согласно моделированию фон, оставшийся после всех этапов отбора, составляет от 21 до 25% в зависимости от энергии η -мезона.

Имеющиеся экспериментальные данные позволяют построить зависимость прозрачности ядра от энергии η -мезона. Для этого весь диапазон энергий η -мезонов при расчете инвариантных масс разбивается на интервалы с шириной 10 МэВ. Соответствующие распределения приведены на рис. 3.

Окончательные результаты расчета прозрачности ядра 12 С по отношению к η -мезонам с заданной энергией приведены на рис. 4. На основе этих данных рассчитаны неупругие сечения, которые приводятся ниже.

На рис. 4 точки получены из экспериментальных данных путем деления нормированных выходов η -мезонов из углеродной и водородной мишеней.

4. РАСЧЕТ СЕЧЕНИЙ

В работах [5, 6] сечение взаимодействия η мезонов с ядром углерода определялось с помощью модели BUU (Boltzmann–Uehling–Uhlenbeck) [14], но аналитических формул, связывающих сечения с прозрачностью, там не приводится. Поэтому мы воспользовались результатами работы [15], выполненной для η' -мезонов, полагая, что и для η -мезонов эта формула, основанная на

Рис. 3. Распределения инвариантной массы двух нейтральных кластеров вблизи массы η -мезона для различных энергий η -мезона. Ромбы, сплошная кривая — $E_{\eta} = 25-35$ МэВ (a), $E_{\eta} = 65-75$ МэВ (b); квадраты, штриховая кривая — $E_{\eta} = 35-45$ МэВ (a), $E_{\eta} = 75-85$ МэВ (b), треугольники, точечная кривая — $E_{\eta} = 45-55$ МэВ (a), $E_{\eta} = 85-95$ МэВ (b); круги, штрихпунктирная кривая — $E_{\eta} = 55-65$ МэВ.

Рис. 4. Зависимость прозрачности ядра углерода от энергии *η*-мезонов.

использовании модели Глаубера и эйконального приближения, должна быть применима:

$$T_{A} = \frac{\pi R^{2}}{A\sigma_{\eta N}} \Biggl\{ 1 + \left(\frac{\lambda}{R}\right) \exp\left[-2\frac{R}{\lambda}\right] + \qquad(1)$$
$$+ \frac{1}{2} \left(\frac{\lambda}{R}\right)^{2} \left(\exp\left[-2\frac{R}{\lambda}\right] - 1\right) \Biggr\},$$

где $\sigma_{\eta N}$ — сечение взаимодействия мезона с нуклонами ядра, λ — средний свободный пробег мезона в ядре, R — радиус ядра.

Напомним, что модель Глаубера [7] была изначально предназначена для описания взаимодействия релятивистских ионов с ядрами, где основным параметром является геометрический размер ядер или прицельный параметр. Возможность применения этой модели для описания взаимодействия мезонов с ядрами вызывает много вопросов, поскольку механизмы взаимодействия релятивистских ядер и мезонов существенно различаются. Эйкональное приближение означает, что используемый метод является приближенным при учете связи между волновой и геометрической оптикой.

ЯДЕРНАЯ ФИЗИКА том 85 № 2 2022

Рис. 5. Энергетическая зависимость сечения взаимодействия η -мезонов с нуклонами для ядра ¹²С. Точки: треугольники — модель Глаубера, квадраты — данные, полученные в рамках безмодельного подхода. По оси абсцисс кинетическая энергия η -мезонов (*a*) и полная энергия взаимодействующих частиц в системе центра масс (δ).

Поэтому представляло интерес вычислить сечение модельно независимым способом, который был использован ранее при анализе каскадных процессов в ядрах. В этом случае сечение σ и прозрачность T связаны следующим образом:

$$T = \exp\left(-\sigma na\right),\tag{2}$$

где n — объемная плотность в мишени частиц, на которых происходит реакция (в данном случае нуклонов, ибо мы считаем, что реакция происходит на отдельном нуклоне), a — толщина мишени.

Отсюда

$$\sigma = \frac{\ln\left(T^{-1}\right)}{na},\tag{3}$$

n есть отношение числа нуклонов в ядре углерода к объему ядра:

$$n = \frac{12}{4/3\pi R^3} = \frac{9}{\pi R^3}.$$
 (4)

Считая, что точка рождения η -мезона равномерно распределена по объему ядра, вычисляем среднюю толщину внутриядерной материи, которую предстоит преодолеть η -мезону до вылета из ядра (среднюю толщину мишени)

$$a = \frac{2\pi \int_{0}^{R} r dr \int_{-\sqrt{R^2 - r^2}}^{\sqrt{R^2 - r^2}} \left(\sqrt{R^2 - r^2} - z\right) dz}{V} = (5)$$

143

ЯДЕРНАЯ ФИЗИКА том 85 № 2 2022

$$=\frac{4\pi\int\limits_{0}^{R} \left(R^{2}-r^{2}\right) r dr}{4/3\pi R^{3}}=\frac{\pi R^{4}}{4/3\pi R^{3}}=\frac{3}{4}R.$$

Значения сечений, полученные согласно формулам (3)—(5), а также согласно модели Глаубера, на основе прозрачностей, представленных на рис. 4, приведены на рис. 5. Видно, что значения, полученные в рамках модели Глаубера, лежат систематически ниже, чем полученные модельно независимым способом, хотя это различие невелико и лежит в пределах ошибок. Приведенные на рис. 5 ошибки статистические.

Согласно приведенным на рис. 5 данным сечение взаимодействия η -мезона с ядром так же, как и в работах [5, 6], практически от энергии не зависит. Однако по абсолютной величине данные различаются примерно в 2 раза. Поэтому показать их на одном рисунке затруднительно. Стрелкой отмечена энергия ожидаемого $S_{11}(1535)$ -резонанса. Существенно то, что сечение имеет нерезонансный характер. Поэтому говорить о существенном вкладе $S_{11}(1535)$ -нуклонного резонанса в это сечение нет оснований.

5. ЗАКЛЮЧЕНИЕ

В настоящей работе реализован метод измерения сечений взаимодействия η -мезонов с нуклонами ядра на примере углерода. Он основан на измерении прозрачности ядра при фоторождении мезонов в ядрах, моделировании полных и парциальных сечений фоторождения мезонов и сравнении выходов реакции фоторождения η -мезонов на углеродной и водородной мишенях. Такой подход стал возможен благодаря тому, что в фотоядерных экспериментах проводится полная идентификация всех наблюдаемых каналов реакции и определение фона.

В результате измерено сечение взаимодействия η -мезонов с нуклонами ядра углерода в интервале энергий η -мезонов от 25 до 95 МэВ. Физическая интерпретация полученных данных пока вряд ли обоснована, потому что данных по сечениям получено еще слишком мало и они плохо согласуются между собой. Для этого необходимы эксперименты для большего числа ядер и новые теоретические и модельные подходы.

Эксперименты по исследованию взаимодействия нестабильных мезонов с ядрами в рамках нового метода могут быть реализованы в Бонне на установке BGO-OD [16], которая позволяет более чем на порядок улучшить разрешение по импульсам протонов отдачи благодаря наличию дипольного магнита в переднем направлении. Такое улучшение позволит выделять события фоторождения η -мезонов на квазисвободных протонах ядра и регистрировать продукты взаимодействия *η*-мезонов с ядрами.

СПИСОК ЛИТЕРАТУРЫ

- 1. Q. Haider and L.-C. Liu, Int. J. Mod. Phys. E 24, 1530009 (2015).
- Г. А. Сокол, Т. А. Айбергенов, А. В. Кольцов, А. В. Кравцов, Ю. И. Крутов, А. И. Львов, Л. Н. Павлюченко, В. П. Павлюченко, С. С. Сидорин, Письма в ЭЧАЯ 5, 102 (2000).
- 3. B. Krusche and C. Wilkin, Prog. Part. Nucl. Phys. 80, 43 (2015).
- 4. The CBELSA/TAPS Collab. (T. Mertens *et al.*), Eur. Phys. J. A **38**, 195 (2008).
- M. Rőbig-Landau, J. Ahrens, G. Anton, R. Averbeck, R. Beck, M. Fuchs, A. R. Gabler, F. Härter, P. D. Harty, V. Hejny, B. Krusche, I. J. D. MacGregor, J. C. McGeorge, V. Metag, R. Novotny, J. Peise, *et al.*, Phys. Lett. B **373**, 45 (1996).
- M. Effenberger and A. Sibirtsev, Nucl. Phys. A 632, 99 (1998).
- M. L. Miller, K. Reygers, S. J. Sanders, and P. Steinberg, Ann. Rev. Nucl. Part. Sci. 57, 205 (2007).
- 8. C. Schaerf, Nucl. Phys. News 2 (1), 7 (1992).
- 9. GRAAL Collab. (A. Turinge *et al.*), Prog. Part. Nucl. Phys. **67**, 406 (2012).
- O. Bartalini, V. Bellini, J. P. Bocquet, P. Calvat, A. D'Angelo, J.-P. Didelez, R. Di Salvo, A. Fantini, F. Ghio, B. Girolami, M. Guidal, A. Giusa, E. Hourany, A. S. Ignatov, R. Kunne, A. M. Lapik, *et al.*, Phys. At. Nucl. **71**, 75 (2008).
- V. Nedorezov, A. D'Angelo, O. Bartalini, V. Bellini, M. Capogni, L. E. Casano, M. Castoldi, F. Curciarello, V. De Leo, J.-P. Didelez, R. Di Salvo, A. Fantini, D. Franco, G. Gervino, F. Ghio, G. Giardina, *et al.*, Nucl. Phys. A **940**, 264 (2015).
- 12. I. A. Pshenichnov, V. G. Nedorezov, and A. Turinge, PoS(Baldin ISHEPP XXII) 046 (2015).
- 13. A. Ignatov *et al.*, Prog. Part. Nucl. Phys. **61**, 253 (2008).
- 14. M. Nanova *et al.* (BGO-OD Collab.), Phys. Lett. B **710**, 600 (2012).
- M. Effenberger, A. Hombach, S. Teis, and U. Mosel, Nucl. Phys. A 614, 501 (1997).
- B. Bantes *et al.* (The BGO-OD Collab.), Int. J. Mod. Phys. Conf. Ser. 26, 1460093 (2014).

О ВЗАИМОДЕЙСТВИИ *п*-МЕЗОНОВ

INTERACTION OF η MESONS WITH A NUCLEAR MEDIUM

A. Turinge¹⁾, V. Nedorezov¹⁾, N. Rudnev¹⁾ for GRAAL collaboration

¹⁾Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia

The transparency of the carbon nucleus with respect to η mesons with energies from 25 to 95 MeV was measured. Mesons with such an energy were formed as a result of photoproduction on quasi-free protons of a carbon nucleus ($\gamma p \rightarrow \eta p$) under the action of photons with an energy of 720–770 MeV. The measured transparency of the nucleus was used to determine the inelastic cross sections of ηN of interaction in the nuclear medium. The absence of nucleon resonances in the measured cross section, in particular the S_{11} resonance, which is usually associated with the assumption of existence of η -mesonic nuclei, is discussed.