= ЯДРА =

О ТЕНЗОРНЫХ КОРРЕЛЯЦИЯХ В ФОРМИРОВАНИИ ЗАРЯДОВО-ОБМЕННЫХ ГИГАНТСКИХ СПИН-МУЛЬТИПОЛЬНЫХ РЕЗОНАНСОВ В СРЕДНЕТЯЖЕЛЫХ МАГИЧЕСКИХ МАТЕРИНСКИХ ЯДРАХ

© 2022 г. В. И. Бондаренко^{1)*}, М. Г. Урин^{2)**}

Поступила в редакцию 23.11.2021 г.; после доработки 10.12.2021 г.; принята к публикации 16.12.2021 г.

В рамках основанной на континуумной версии приближения случайной фазы частично-дырочной дисперсионной оптической модели предложен подход к учету тензорных корреляций в формировании зарядово-обменных гигантских спин-мультипольных резонансов в среднетяжелых магических материнских ядрах. Подход реализован на примере описания силовых функций гамов-теллеровского резонанса и гигантских спин-монопольных резонансов в материнском ядре ²⁰⁸ Pb. Результаты расчетов сравниваются с имеющимися экспериментальными данными.

DOI: 10.31857/S0044002722030059

1. ВВЕДЕНИЕ

В сферических ядрах гигантские резонансы (ГР), ассоциированные с высокоэнергетическими (изоскалярными и изовекторными) возбуждениями типа частица-дырка (ч-д), наряду с "проносимыми" полным моментом и четностью (квантовые числа J^{π}) характеризуются также орбитальным и спиновым моментами (квантовые числа L и S соответственно). Термины "мультипольный" и "спин-мультипольный" связаны с классификацией ГР по L и S. Однако из-за спин-орбитальной компоненты среднего поля, используемого в любом микроскопическом (или полумикроскопическом) описании ГР, величины L и S не являются точными квантовыми числами. За счет указанной компоненты происходит некоторое смешивание ГР с данными значениями J^{π} и различными значениями L и (или) S. Другими словами, реализуются тензорные корреляции (которые назовем корреляциями первого рода) в формировании рассматриваемого $\Gamma P(J \neq 0)$. В монографии [1] приведены уравнения континуумной версии приближения случайной фазы (кПСФ), полученные с использованием ч-двзаимодействия в виде (центральных) сил Ландау-Мигдала и учитывающие тензорные корреляции первого рода в описании силовых функций ГР. Эти уравнения отвечают так называемому несимметричному (или недиагональному) варианту кПСФ, в котором спин-угловая симметрия эффективного (одночастичного) поля отличается от симметрии соответствующего внешнего поля. Это же утверждение относится к эффективному и свободному ч-д-пропагаторам. В применении к описанию распределения гамов-теллеровской (Г-Т) силы в ядре ²⁰⁸Рb уравнения несимметричного варианта кПСФ использованы в работе [2], в которой отмечена роль тензорных корреляций в формировании низкоэнергетической компоненты упомянутого распределения. Если наряду с центральными силами предположить существование тензорного ч-д-взаимодействия, то последнее также приводит к тензорным корреляциям (которые назовем корреляциями второго рода). В применении к описанию гамов-теллеровской силовой функции в ряде сферических ядер соответствующие сепарабельные тензорные силы использованы в работе [3].

В настоящей работе предложен подход к учету тензорных корреляций в формировании зарядовообменных спин-мультипольных ГР в среднетяжелых магических материнских ядрах. Подход включает тензорную часть ч-д-взаимодействия, выбранную в виде непосредственного обобщения спин-изоспиновой компоненты сил Ландау-Мигдала. Основными объектами исследования являются характеризуемые значениями $J^{\pi} = 1^+$ гамов-теллеровский резонанс (ГТР) и изовекторные гигантские спин-монопольные резонансы в $\beta^{(\mp)}$ -каналах (ИВГСМР^(\mp)). Предлагаемый подход представляет собой модифицированную

¹⁾Институт кристаллографии им. А.В. Шубникова ФНИЦ "Кристаллография и фотоника" РАН, Москва, Россия.

²⁾Национальный исследовательский ядерный университет "МИФИ", Москва, Россия.

^{*}E-mail: vlbondarenko@mail.ru

^{**}E-mail: urin@theor.mephi.ru

за счет учета тензорных корреляций версию частично-дырочной дисперсионной оптической модели (ЧДДОМ). Использованная ранее для описания основных характеристик различных ГР в среднетяжелых магических ядрах базовая версия модели представляет собой обобщение симметричного варианта кПСФ на случай учета (феноменологически и в среднем по энергии) фрагментационного эффекта (см., например, [4] и ссылки в этой работе). Отметим возможность описания в рамках ЧДДОМ (дисперсионного) сдвига энергии максимума ГР за счет фрагментационного эффекта. В настоящей работе в рамках модифицированной версии ЧДДОМ исследуются силовые функции ГТР и ИВГСМР^(\mp) в материнском ядре ²⁰⁸Pb. Выбор объектов исследования объясняется тем, что для компаунд-ядра ²⁰⁸Ві имеется экспериментальная информация относительно характеристик главного максимума ГТР [5], низкоэнергетической компоненты ГТР [6], а также главного максимума обертона ГТР, ИВГСМР⁽⁻⁾ [7].

Описание основных характеристик упомянутых ГР (силовой функции, переходной плотности, вероятностей прямого однонуклонного распада) предложено в [8] в рамках базовой версии ЧДДОМ. К не изученным в [8] вопросам можно отнести отсутствие анализа низкоэнергетической компоненты ГТР и некоторой недооценки энергии главного максимума ИВГСМР⁽⁻⁾ при условии, что безразмерный параметр g' спин-изоспиновой компоненты сил Ландау-Мигдала определяется из описания в рамках модели наблюдаемой энергии максимума ГТР. Отметим в этой связи, что нахождение представляющего интерес для астрофизических приложений параметра g^\prime из анализа возбуждения ГТР в зарядово-обменных реакциях является определенным трендом (см., например, [9]).

2. ОСНОВНЫЕ СООТНОШЕНИЯ

Исходными величинами в микроскопическом (или полумикроскопическом) описании произвольного ГР являются среднее поле ядра и взаимодействие в канале частица—дырка. В модифицированной версии ЧДДОМ ч—д-взаимодействие выбирается в виде суммы (центральных) сил Ландау— Мигдала и соответствующих тензорных сил. Ответственную за формирование зарядово-обменных спин-мультипольных ГР спин-изоспиновую компоненту указанного взаимодействия можно представить в виде:

$$F_{s-is}(x_1, x_2) = \tau_1 \tau_2 (r_1 r_2)^{-1} \,\delta(r_1 - r_2) \,\times \quad (1)$$
$$\times \left[G' \sum_{JLM} T^+_{JLSM}(\mathbf{n}_1) \,T_{JLSM}(\mathbf{n}_2) + \right]$$

$$+G_{t}^{\prime}\sum_{JLM}T_{JLSM}^{+}\left(\mathbf{n}_{1}\right)T_{J\bar{L}SM}\left(\mathbf{n}_{2}\right)\right]$$

Здесь *х* — совокупность одночастичных координат, включая спиновые и изоспиновые переменные; $G' = g' 300 \text{ МэВ } \Phi \text{м}^3$ и $G'_t = g'_t 300 \text{ МэВ } \Phi \text{м}^3$ — силовые параметры, относящиеся к центральной и тензорной частям ч-д-взаимодействия; $T_{JLSM}\left(\mathbf{n}\right)$ — спин-тензорные операторы, выбранные для значения S = 1. Второе слагаемое в (1), ответственное за тензорные корреляции второго рода, содержит сумму по таким значениям Ј и L, которые отвечают "тензорным партнерам" зарядово-обменных спин-мультипольных ГР, характеризуемых значениями L (равными $L_{<}$ или $L_{>}$) и $ar{L}$ (равными $L_>$ или $L_<$), где $L_<=J-S,~L_>=$ = J + S. Так, для 1⁺ ГР "тензорными партнерами" являются ГТР, ИВГСМР(∓) и соответствующие спин-квадрупольные ГР ($L_{<} = 0$ и $L_{>} = 2$); для 2^{-} ГР — соответствующие спин-дипольные и спиноктупольные ГР ($L_{<}=1$ и $L_{>}=3$) и т.д. Как отмечено во Введении, тензорные корреляции первого рода формируются за счет центральной части ч-д-взаимодействия при учете спин-орбитальной компоненты среднего поля. Отметим также, что в реализованных версиях ЧДДОМ изоскалярная часть среднего поля (включая спин-орбитальную компоненту) является феноменологической величиной, и потому в рамках модели отсутствует связь между указанной компонентой и тензорной частью взаимодействия (1). Другими словами, тензорные корреляции первого и второго рода являются независимыми и учитываются совместно.

Одной из основных характеристик произвольного ГР является силовая функция $S_V(\omega)$, отвечающая подходящему одночастичному внешнему полю (пробному оператору) V(x) (ω — энергия возбуждения). В применении к зарядово-обменным спин-мультипольным ГР поле V(x) можно пред- $V_{JLSM}^{(\mp)}(x) =$ в виде ставить $= \tau^{(\mp)} V_{JLS}(r) T_{JLSM}(\mathbf{n})$. Выбор радиальной зависимости внешнего поля диктуется условием максимального исчерпывания рассматриваемым ГР соответствующей этому полю силы. Так, для описания основных характеристик рассматриваемых в работе ГТР и обертона ГТР, ИВГСМР⁽⁻⁾ (и, следовательно, ИВГС $MP^{(+)}$), в качестве $V_{101}(r)$ удобно выбрать $V_{\text{G-T}}(r) = 1$ и $V_{\text{S-M}}(r) = r^2 - \eta$, где параметр η находится из условия минимального возбуждения ГТР полем $V_{\text{S-M}}^{(-)}(x)$. Это условие, следуя [4], представим в виде $\min \int S_{\text{S-M}}^{(-)}(\omega) d\omega$, где интегрирование ведется по непосредственной окрестности ГТР. В качестве радиальной зависимости внешнего поля для возбуждения гипо-

ЯДЕРНАЯ ФИЗИКА том 85 № 3 2022

тетических 1⁺ ИВГСКР^(\mp) выбираем $V_{121}(r) = r^2$, как это обычно делается при описании квадрупольных ГР. Из-за тензорных корреляций силовые функции $S_{J(L)L'S}^{(<math>\mp$)}(\omega), отвечающие внешнему полю $V_{JLSM}^{(<math>\mp$)}(x), имеют симметричную (L' = L) и несимметричную ($L' = \bar{L}$) компоненты. Указанные силовые функции удовлетворяют слабо зависящему от модели неэнергетически взвешенному правилу сумм NEWSR_{J(L)L'S}:

NEWSR_{J(L)L'S} =
$$\int_{Q^{(-)}}^{\infty} S_{J(L)L'S}^{(-)}(\omega) d\omega - \qquad (2)$$
$$-\int_{Q^{(+)}}^{\infty} S_{J(L)L'S}^{(+)}(\omega) d\omega =$$

$$= \delta_{LL'} \int_{0}^{\infty} V_{JL'S}(r) V_{JLS}(r) n^{(-)}(r) r^2 dr.$$

Здесь $\omega = E_x + Q^{(\mp)}$ — энергия возбуждения, отсчитанная от основного состояния материнского ядра $(Z, N), E_x$ — энергия возбуждения компаундядер $(Z \mp 1, N \pm 1), Q^{(\mp)}$ — разность энергий основных состояний соответствующего компаунд- и материнского ядер, $n^{(-)}$ — плотность нейтронного избытка в материнском ядре. Качество расчетов симметричных (знакоопределенных) компонент силовых функций, $S_{J(L)LS}^{(\mp)}(\omega)$, можно характеризовать степенью близости к единице параметра "исчерпывания" правила сумм

$$x_{J(L)LS}^{*} = \left(\int_{Q^{(-)}}^{\omega^{*}} S_{J(L)LS}^{(-)}(\omega) d\omega - \int_{Q^{(+)}}^{\omega^{*}} S_{J(L)LS}^{(+)}(\omega) d\omega\right) / \text{NEWSR}_{J(L)LS} = x_{J(L)LS}^{(-),*} - x_{J(L)LS}^{(+),*}, \quad (3)$$

вычисленного для достаточно большого значения граничной энергии возбуждения ω^* . Результаты расчетов несимметричных (знаконеопределенных) компонент силовых функций, $S_{J(L)\bar{L}S}^{(\mp)}(\omega)$, можно характеризовать малостью, по сравнению с единицей, параметра

$$x_{J(L)\bar{L}S}^{*} = \left(\int_{Q^{(-)}}^{\omega^{*}} S_{J(L)\bar{L}S}^{(-)}(\omega)d\omega - \int_{Q^{(+)}}^{\omega^{*}} S_{J(L)\bar{L}S}^{(+)}(\omega)d\omega\right) / \int_{0}^{\infty} V_{J\bar{L}S}(r)V_{JLS}(r)n^{(-)}(r)r^{2}dr,$$
(4)

определенного по аналогии с параметром $x_{J(L)LS}$. В анализе силовых функций представляют интерес параметры исчерпывания $x_{J(L)L'S}^{(\mp)}(\delta)$, определенные для различных энергетических интервалов $\delta = \omega_1 - \omega_2$.

Для вычисления силовых функций $S_V(\omega)$ в рамках ЧДДОМ (или кПСФ) вместо базового метода ч-д-функции Грина (эффективного ч-дпропагатора) можно использовать более "экономный" метод эффективного поля [1, 4]. Метод был введен в ядерную физику А.Б. Мигдалом [10]. Упомянутые выше силовые функции $S_{J(L)L'S}^{(\mp)}(\omega)$ определяются соответствующими эффективными полями $\tilde{V}_{J(L)SM}^{(\mp)}(x,\omega)$, индуцированными за счет взаимодействия (1) внешними полями $V_{JLSM}^{(\mp)}(x)$. С учетом тензорных корреляций выражение для эффективных полей можно представить в виде:

$$\tilde{V}_{J(L)SM}^{(\mp)}(x,\omega) =$$

$$= \tau^{(\mp)} \sum_{L'=L,\bar{L}} \tilde{V}_{J(L)L'S}^{(\mp)}(r,\omega) T_{JL'SM}(\mathbf{n}).$$
(5)

ЯДЕРНАЯ ФИЗИКА том 85 № 3 2022

Радиальные компоненты эффективного поля (5) удовлетворяют системе интегральных уравнений:

$$\tilde{V}_{J(L)L'S}^{(\mp)}(r,\omega) = V_{JLS}(r)\delta_{LL'} +$$

$$+ \frac{2}{r^2} \int \sum_{L''=L,\bar{L}} \left[G' A_{J,L'S,L''S}^{(\mp)}(r,r',\omega) + \right] \\
+ G'_t A_{J,\bar{L}'S,L''S}^{(\mp)}(r,r',\omega) \left] \tilde{V}_{J(L)L''S}^{(\mp)}(r',\omega) dr'.$$
(6)

Здесь $(rr')^{-2}A_{J,L'S,L''S}^{(\mp)}(r,r',\omega)$ — радиальные компоненты зарядово-обменного "свободного" ч—дпропагатора. Будучи базовой величиной в приложениях ЧДДОМ, "свободный" пропагатор отвечает модели невзаимодействующих и независимо затухающих (фрагментирующих) ч—д-состояний. В пренебрежении фрагментационным эффектом, т.е. в рамках кПСФ, явное выражение для радиальных компонент свободного пропагатора (включая недиагональные по *L*, *S* элементы) приведено в [1]. Это выражение содержит числа заполнения одночастичных состояний, радиальные волновые функции этих состояний, а также функции Грина радиального уравнения Шредингера.

В рамках ЧДДОМ фрагментационный эффект описывается феноменологически в терминах усредненного по энергии ч-д массового оператора (или собственно-энергетической части), ответственного за указанный эффект. Интенсивность среднего массового оператора, $-iW(E_x) +$ $+ P(E_x)$, имеет мнимую и действительную части, причем последняя определяется (феноменологической) величиной $W(E_x)$ с помощью некоторого дисперсионного соотношения (см. [4] и ссылки в этой работе). В применении к описанию в рамках базовой версии ЧДДОМ зарядовообменных монопольных ч-д-возбуждений выражения для радиальных компонент "свободного" чд-пропагатора, т.е. для величин $A_{0,00,00}^{(\mp)}\left(r,r',\omega
ight)$ детально описаны в работе [11]. Эти величины можно непосредственно использовать, чтобы получить выражения для компонент $A_{J,L'S,L''S}^{(\mp)}(r,r',\omega)$ в (6) путем замены соответствующих кинематических факторов:

$$\left(t^{000}_{(\pi)(\nu)} \right)^2 = \frac{1}{4\pi} \left(2j_{\nu} + 1 \right) \delta_{(\pi)(\nu)} \to$$
(7)

$$\rightarrow t^{JL'S}_{(\pi)(\nu)} t^{JL''S}_{(\pi)(\nu)} = \frac{1}{2J+1} \times$$

$$\times \langle (\pi) ||T_{JL'S}||(\nu) \rangle \langle (\pi) ||T_{JL''S}||(\nu) \rangle.$$

Здесь приведенные матричные элементы спинтензорных операторов определены для переходов между однонейтронными и однопротонными состояниями, характеризуемыми, в частности, совокупностями квантовых чисел $(\nu) \equiv j_{\nu}, l_{\nu}$ и $(\pi) \equiv$ $\equiv j_{\pi}, l_{\pi},$ где j и l — квантовые числа полного и орбитального моментов нуклона. Завершая комментарии к основному динамическому соотношению модели, отметим, что тензорные корреляции в формировании зарядово-обменных спинмультипольных возбуждений реализуются за счет совместного учета в (6) как недиагональных по Lкомпонент ч-д-пропагатора, так и тензорной части ч-д-взаимодействия (1). При отсутствии такого учета (как это имеет место в базовых версиях ЧДДОМ и кПСФ) соответствующие эффективное и внешнее поля имеют, согласно (6), (5), одинаковую спин-угловую симметрию.

В рамках ЧДДОМ эффективное поле определяет основные характеристики ГР, такие как силовая функция и "проецированная" (одночастичная) переходная плотность, отвечающие подходящему пробному оператору, а также вероятности прямого однонуклонного распада. Для различных ГР указанные характеристики проанализированы в рамках базовой версии модели (см. [4] и ссылки в этой работе). В применении к описанию зарядовообменных спин-мультипольных ГР в рамках модифицированной версии ЧДДОМ выражения для силовых функций $S_{J(L)L'S}^{(\mp)}(\omega)$, отвечающих пробному оператору заданной симметрии (квантовые числа *J*, *L*, *S*), в терминах радиальных компонент эффективного поля (5), (6) имеют вид ($L' = L, \bar{L}$):

$$S_{J(L)L'S}^{(\mp)}(\omega) = -\frac{1}{\pi} \text{Im} \sum_{L''=L,\bar{L}} \int V_{L'}(r) \times$$
(8)
 $\times A_{J,L'S,L''S}^{(\mp)}(r,r',\omega) \tilde{V}_{J(L)L''S}^{(\mp)}(r',\omega) dr dr'.$

Силовые функции $S_{J(L)L'S}^{(\mp)}(\omega)$ удовлетворяют правилу сумм (2) и позволяют вычислить параметры "исчерпывания" $x_{J(L)L'S}^*$ (3), (4) для достаточно большого энергетического интервала.

Радиальные компоненты проецированной переходной плотности, $\rho_{J(L)L'S}^{(\mp)}(r,\omega)$, удовлетворяют соотношениям:

$$\left[S_{J(L)L'S}^{(\mp)}(\omega)\right]^{1/2} = \int V_{L'}(r)\rho_{J(L)L'S}^{(\mp)}(r,\omega)dr.$$
 (9)

Эти соотношения позволяют получить выражения для указанных компонент в терминах эффективного поля, если воспользоваться равенствами (8), почленно умноженными на величину $\left[S_{J(L)L'S}^{(\mp)}(\omega)\right]^{-1/2}$. Как и силовые функции (8), переходные плотности имеют симметричную и несимметричную компоненты.

СИЛОВЫЕ ФУНКЦИИ ГТР И ИВГСМР^(∓)

Приведенные выше соотношения модифицированной версии ЧДДОМ применены для количественного анализа в различных приближениях монопольных компонент силовых функций ГТР (включая низко- и высокоэнергетические "хвосты" этого резонанса), а также ИВГСМР^(∓) в материнском ядре ²⁰⁸ Pb. В проведенном анализе используются следующие ингредиенты модели.

- Феноменологическое частично самосогласованное с учетом изобарической симметрии модельного гамильтониана среднее поле ядра с параметрами, найденными из независимых данных (среднее поле и выбор параметров поля детально описаны в [4]).
- 2. Мнимая часть интенсивности усредненного по энергии ч-д массового оператора, ответственного за фрагментационный эффект, $W(E_x)$, причем параметризация этой величины принята той же, что и в работе [4] для

Рис. 1. Монопольная компонента силовой функции ГТР в ядре ²⁰⁸Ві, вычисленная в рамках ЧДДОМ в симметричном ($g'_t = 0$, штриховая кривая) и несимметричном ($g'_t = -0.15$, сплошная кривая) приближениях для низких энергий (a), в окрестности главного максимума ГТР (δ), для высоких энергий (a).

величины $W(\omega)$, использованной для описания ряда изоскалярных гигантских мультипольных резонансов в ядре ²⁰⁸ Pb:

$$W(E_x) = \begin{cases} 0, \quad E_x < \Delta \\ \alpha \left(E_x - \Delta\right)^2 / \left[1 + (E_x - -\Delta)^2 / B^2\right], \quad E_x \ge \Delta. \end{cases}$$

Феноменологические параметры щели (Δ),

ЯДЕРНАЯ ФИЗИКА том 85 № 3 2022

насыщения (*B*) и силы (α) в зависимости $W(E_x)$ выбраны следующим образом: $\Delta = = 3$ МэВ, а величины α и *B* подобраны так, чтобы описать в рассматриваемом приближении наблюдаемые полные ширины главных максимумов ГТР и ИВГСМР⁽⁻⁾. Значения указанных параметров приведены в табл. 1.

Модель	Приближение	g'	α , Мэ B^{-1}	<i>В</i> , МэВ	
кПСФ	Симм. $g'_t = 0$	0.78	—	_	
	Несимм. $g'_t = 0$	0.77	—	—	
ЧДДОМ	Несимм. $g'_t = -0.15$	0.76	—	—	
	Симм. $g'_t = 0$	0.71	0.27	4.88	
	Несимм. $g'_t = 0$	0.69	0.33	4.36	
_	Несимм. $g'_t = -0.15$	0.68	0.26	4.90	

Таблица 1. Параметры спин-изоспиновой компоненты взаимодействия Ландау—Мигдала и мнимой части интенсивности усредненного массового оператора

- 3. Параметр сил Ландау—Мигдала g' выбран в каждом из вариантов расчета симметричной (монопольной) компоненты силовой функции $S_{\text{G-T}}^{(-)}(E_x)$ из условия описания наблюдаемой энергии главного максимума ГТР в ядре ²⁰⁸Ві, $(E_x)_{\text{max}} = 15.6 \pm 0.2$ МэВ [5]. Использованные в расчетах значения приведены в табл. 1.
- Величина параметра η в выражении для радиальной части спин-монопольного (C-M) пробного оператора V_{S-M} (r) найдена в рамках базовой версии ЧДДОМ из условия минимального возбуждения главного максимума ГТР этим оператором и равна 38.79 Фм².
- Параметр интенсивности тензорных сил g'_t варьировался с целью выяснения возможности описания в рамках модели имеющихся экспериментальных данных относительно изучаемых силовых функций. Приемлемой оказалась величина g'_t = −0.15.

В соответствии с обозначенными во Введении целями исследования монопольные компоненты (Г-Т и С-М) силовых функций в материнском ядре ²⁰⁸ Pb анализируются ниже в рамках базовых и модифицированных версий кПСФ и ЧДДОМ. В табл. 2 наряду с некоторыми экспериментальными данными приведены следующие параметры указанных компонент, вычисленные в приближениях $g'_t =$ = 0 и $g'_t = -0.15$.

1. Параметры "исчерпывания" силы монопольной компоненты Г-Т силовой функции для энергий ниже и выше главного максимума ГТР, $x_{<}^{(-)}$ и $x_{>}^{(-)}$ (интервалы E_x 0– 10.5 МэВ и 19.8–76.3 МэВ соответственно).

- 2. Параметры "исчерпывания" силы главного максимума ГТР и ИВГСМР⁽⁻⁾, $x_{\max}^{(-)}$ (интервалы E_x 10.5–19.8 МэВ и 29–51 МэВ соответственно).
- 3. Параметры "исчерпывания" полной силы указанных резонансов $(x^{(-),*})$ и не энергетически взвешенного правила сумм (x^*) , вычисленные для интервала E_x 0–76.3 МэВ.
- 4. Энергия главного максимума ИВГСМР⁽⁻⁾, $(E_x)_{\text{max}}$.
- 5. Ширины главных максимумов ГТР и ИВГСМР⁽⁻⁾, Г.

Приведенные в табл. 2 величины получены на основе анализа соответствующих силовых функций, вычисленных в рамках кПСФ и ЧДДОМ в различных приближениях. Для удобства анализа в рамках кПСФ в расчетах использована малая (фиктивная) мнимая добавка к среднему полю ядра с интенсивностью W = 0.1 МэВ и радиусом, равным удвоенному радиусу ядра. Монопольные компоненты силовых функций ГТР и ИВГСМР^(\mp), вычисленные в рамках ЧДДОМ, показаны на рис. 1 и 2 соответственно для случаев отсутствия и полного учета тензорных корреляций. Вычисленная в рамках базовой версии ЧДДОМ силовая функция 1⁺-ИВГКР⁽⁻⁾ "тензорного партнера" рассмотренных выше монопольных резонансов показана на рис. 3.

Как следует из приведенных на рис. 1*a*, 1*в* и 3 данных, обусловленные тензорными корреляциями нерегулярности в энергетической зависимости низко- и высокоэнергетической компонент монопольной Г-Т силовой функции коррелируют с максимумами силовой функции 1⁺-ИВГСКР⁽⁻⁾. Приведенные в табл. 2 данные свидетельствуют о том, что вклад тензорных корреляций в формирование Г-Т силовой функции в ядре ²⁰⁸Рb

Рис. 2. Монопольные компоненты силовых функций ИВГСМР⁽⁻⁾ в ядре ²⁰⁸Ві (*a*) и ИВГСМР⁽⁺⁾ в ядре ²⁰⁸Tl (*б*), вычисленные в рамках ЧДДОМ в симметричном ($g'_t = 0$, штриховая кривая) и несимметричном ($g'_t = -0.15$, сплошная кривая) приближениях. На рис. 2*a* стрелкой указано положение главного максимума ГТР.

оказывается относительно небольшим. Тем не менее, учет этого вклада (совместно с учетом вклада фрагментационного эффекта) позволяет улучшить описание экспериментальных данных по силе главного максимума ГТР и его низкоэнергетической компоненты. Отметим согласующееся с этими данными относительно полное исчерпывание Г-Т силы расчетной силовой функцией (т.е. близость к 100% величины x_{G-T}^*). Другими словами, не просматривается необходимость учета связи Г-Т возбуждений с ненуклонными степенями свободы (так называемый quenching effect).

Среди других результатов отметим обусловленную нейтронным избытком малость вклада С-М возбуждений в $\beta^{(+)}$ -канале в неэнергетически

ЯДЕРНАЯ ФИЗИКА том 85 № 3 2022

взвешенное правило сумм, т.е. близость величин $x^{(-),*}$ и x^* , в особенности для Г-Т возбуждений (табл. 2). При удовлетворительном описании С-М силовой функции учет тензорных корреляций не позволил устранить некоторую недооценку энергии максимума ИВГСМР⁽⁻⁾ (табл. 2). Причины этой недооценки остаются неясными.

Отметим также возможность описания в рамках модифицированной версии ЧДДОМ величин, существующих только за счет тензорных корреляций. К этим величинам относятся недиагональные (квадрупольные) компоненты Г-Т силовой функции и проецированной переходной плотности (разд. 2). Экспериментальное обнаружение соответствующего эффекта возможно, по-видимому, из

Рис. 3. Вычисленная в рамках базовой версии ЧДДОМ силовая функция 1⁺-ИВГКР⁽⁻⁾ в ядре ²⁰⁸Ві.

Таблица 2. Вычисленные в различных приближениях параметры монопольных компонент силовых функций ГТР и ИВГСМР⁽⁻⁾ в ядре ²⁰⁸Ві (экспериментальные данные, относящиеся к ГТР, взяты из работы [5] (в первом столбце — из работ [6, 5]), и относящиеся к ИВГСМР⁽⁻⁾, — из работы [7]; обозначения даны в тексте)

Модель	Приближение	ГТР					ИВГСМР(-)						
		$x^{(-)}_{<}, \\ \%$	$x_{\max}^{(-)},$ %	$x^{(-)}_{>}, \\ \%$	$x^{(-),*}, \ \%$	$x^*, \%$	$(E_x)_{\max}, M$ əB	Г, МэВ	$\overset{(-)}{\%}_{\infty}^{(-)},$	$x^{(-),*}, \ \%$	$x^*, \%$	$(E_x)_{\max},$ МэВ	Г, МэВ
	Эксп.	18 ± 5	60 ± 15				15.6 ± 0.2	3.72 ± 0.25	60 ± 5			37 ± 1	14 ± 3
кПСФ	Симм. $g'_t = 0$	8.3	76.2	13.9	98.4	97.4	15.64	0.76	89	124	104	34.36	10.41
	Несимм. $g'_t = 0$	9.1	74.3	14.9	98.3	97	15.63	0.77	87	124	104	34.33	10.27
	Несимм. $g'_t = -0.15$	9.5	69.9	17.1	96.5	95	15.63	0.88	84	124	104	34.31	10.11
чддом	Симм. $g'_t = 0$	12.9	69.2	18.4	100.7	99	15.54	3.72	83	125	94	34.44	13.96
	Несимм. $g'_t = 0$	13.7	67.5	19.3	100.7	99	15.62	3.72	82	125	98	34.65	13.99
	Несимм. $g'_t = -0.15$	14.13	65.09	21.45	100.9	98.9	15.62	3.72	79	125	98	34.56	14.00

анализа углового распределения нейтронов в сечении (pn)-реакции с возбуждением ГТР. В результате такого исследования появится возможность оценить величину параметра g'_t . В применении к оценке параметра g' соответствующая процедура описана в [9].

4. ЗАКЛЮЧЕНИЕ

В настоящей работе предложена модифицированная версия частично-дырочной дисперсионной оптической модели (и, как предельный случай, континуумного приближения случайной фазы), позволяющая учесть тензорные корреляции в формировании зарядово-обменных спинмультипольных гигантских резонансов в среднетяжелых магических материнских ядрах. Предложенный подход реализован главным образом в применении к гамов-теллеровскому резонансу и его обертону (изовекторному гигантскому спинмонопольному резонансу) в ядре ²⁰⁸Ві. Монопольные компоненты силовых функций указанных резонансов вычислены в различных приближениях с использованием подходящих значений параметров g' и g'_t — безразмерных интенсивностей центральной и тензорной частей спинизоспиновой компоненты сил Ландау—Мигдала. Как ожидалось, вклад тензорных корреляций в формирование упомянутых компонент силовых функций оказался относительно небольшим. Тем не менее, учет этого вклада позволил улучшить

описание соответствующих экспериментальных данных. В рамках подхода предложено также описание монопольной компоненты силовой функции не изученного экспериментально изовекторного гигантского спин-монопольного резонанса в ядре ²⁰⁸ Tl. Такое описание позволило, в частности, верифицировать результаты расчета монопольных компонент силовых функций зарядово-обменных спин-монопольных резонансов с помощью соответствующего правила сумм. Намечены пути анализа эффектов, обусловленных только тензорными корреляциями. Соответствующие исследования находятся в стадии реализации.

Авторы благодарны М.Л. Горелику, С.Ю. Игашову, Г.В. Коломийцеву и А.П. Северюхину за полезные обсуждения.

Работа выполнена при частичной поддержке РФФИ (грант № 19-02-00660) и Программы "Приоритет 20-30" НИЯУ МИФИ.

СПИСОК ЛИТЕРАТУРЫ

- 1. М. Г. Урин, *Релаксация ядерных возбуждений* (Энергоатомиздат, Москва, 1991).
- 2. В. А. Родин, М. Г. Урин, ЯФ **66**, 2178 (2003) [Phys. At. Nucl. **66**, 2128 (2003)].

- 3. A. P. Severyukhin and H. Sagawa, Prog. Theor. Exp. Phys. **2013**, 103D03 (2013).
- 4. M. L. Gorelik, S. Shlomo, B. A. Tulupov, and M. H. Urin, Phys. Rev. C **103**, 034302 (2021).
- H. Akimune, I. Daito, Y. Fujita, M. Fujiwara, M. B. Greenfield, M. N. Harakeh, T. Inomata, J. Jänecke, K. Katori, S. Nakayama, H. Sakai, Y. Sakemi, M. Tanaka, and M. Yosoi, Phys. Rev. C 52, 604 (1995).
- A. Krasznahorkay, H. Akimune, M. Fujiwara, M. N. Harakeh, J. Jänecke, V. A. Rodin, M. H. Urin, and M. Yosoi, Phys. Rev. C 64, 067302 (2001).
- R. G. T. Zegers, H. Abend, H. Akimune, A. M. van den Berg, H. Fujimura, H. Fujita, Y. Fujita, M. Fujiwara, S. Galès, K. Hara, M. N. Harakeh, T. Ishikawa, T. Kawabata, K. Kawase, T. Mibe, K. Nakanishi, *et al.*, Phys. Rev. Lett. **90**, 202501 (2003).
- 8. Г. В. Коломийцев, М. Г. Урин, ЯФ **83**, 119 (2020) [Phys. At. Nucl. **83**, 118 (2020)].
- 9. J. Yasuda et al., Phys. Rev. Lett. 121, 132501 (2018).
- 10. А.Б. Мигдал, *Теория конечных ферми-систем и свойства атомных ядер* (Наука, Москва, 1983).
- 11. G. V. Kolomiytsev, M. L. Gorelik, and M. H. Urin, EPJ A 54, 228 (2018).

ON TENSOR CORRELATIONS IN FORMATION OF CHARGE-EXCHANGE SPIN-MULTIPOLE GIANT RESONANCES IN MEDIUM-HEAVY CLOSED-SHELL PARENT NUCLEI

V. I. Bondarenko¹⁾, M. G. Urin²⁾

¹⁾Shubnikov Institute of Crystallography, Federal Research Center "Crystallography and Photonics", Russian Academy of Sciences, Moscow, Russia ²⁾National Research Nuclear University "MEPhI" (Moscow Engineering Physics Institute), Russia

An approach to accounting for tensor correlations in formation of charge-exchange giant spin-multipole resonances in medium-heavy closed-shell parent nuclei is proposed within the particle-hole dispersive optical model based on the continuum-random-phase approximation. As an example of implementations of the approach, a description of the strength functions of Gamow–Teller and charge-exchange giant spin-monopole resonances in the ²⁰⁸Pb parent nucleus is given. Calculation results are compared with available experimental data.