= ЯДРА =

СВЯЗЬ НУЛЬ-ЗВУКОВЫХ ВОЗБУЖДЕНИЙ В СИММЕТРИЧНОЙ И АСИММЕТРИЧНОЙ ЯДЕРНОЙ МАТЕРИИ

© 2022 г. В. А. Садовникова^{1)*}, М. А. Соколов²⁾

Поступила в редакцию 17.02.2022 г.; после доработки 23.03.2022 г.; принята к публикации 25.03.2022 г.

В работе представлен метод вычисления частот нуль-звуковых возбуждений в симметричной и асимметричной по изоспину ядерной материи. В асимметричной материи получены три ветви комплексных решений дисперсионного уравнения: $\omega_{si}(k,\beta)$ (i = n, p, np), а в симметричной материи две ветви $\omega_{s}(k)$, $\omega_{s1}(k)$. Показано, как связаны между собой эти ветви решений. Продемонстрировано построение функций отклика и структурных функций в ядерной материи на основе $\omega_{si}(k,\beta)$.

DOI: 10.31857/S0044002722040109

1. ВВЕДЕНИЕ

Изучение возбуждений в ядерной материи, их связь с возбуждениями в конкретных ядрах являются предметом многочисленных исследований. Используются различные методы построения дисперсионных уравнений, дающие как вещественные, так и комплексные частоты возбуждений. Предлагаются разные подходы к процессам затухания возбуждений, к вопросам устойчивости ядерной материи при низкой и высокой плотностях, к описанию зависимости свойств возбуждений от температуры.

Одним из основных подходов, который привел к решению широкого круга задач физики ядра и частиц, является единый подход на основе кинетического уравнения с самосогласованным средним полем и интегралом столкновений [1, 2]. С использованием этого подхода были получены звуковые моды изоскалярного и изовекторного типа и исследовано их взаимодействие в зависимости от плотности среды. Был изучен гигантский дипольный резонанс в нагретых ядрах, а также гигантский монопольный резонанс. Исследованы вопросы устойчивости ядерной материи при различных плотностях. Также метод был применен к описанию явлений при высоких энергиях [3, 4].

В работе [5] использовано приближение локальной изоспиновой плотности с зависимостью от времени, получено три типа частично-дырочных возбуждений, оценен их вклад в энергетически взвешенное правило сумм, проанализирована зависимость этих состояний от плотности и изотопической асимметрии среды. В работе [6] выполнено описание силовых функций возбуждений в ядрах на основе коллективных возбуждений в асимметричной ядерной материи. Кроме затухания Ландау, исследуется влияние столкновений и флуктуаций плотности на затухание гигантских резонансов. Использование метода неравновесных функций Грина приводит к сложным дисперсионным уравнениям. Комплексные решения этих уравнений дают зависимость от температуры как энергий, так и ширин распада гигантских резонансов. В работе [7] нуль-звуковые моды рассматриваются на основе кинетической теории с включением столкновений, температуры и эффектов запаздывания. Исследовано влияние искажения ферми-поверхности на скорость и затухание звука в изовекторной и изоскалярной модах.

В работе [8] исследуется влияние различных членов эффективного частично-дырочного взаимодействия на описание горячей ядерной материи с последующим переходом к атомным ядрам. В работе [9] используется подход квантовой адродинамики. На основе релятивистского кинетического уравнения в ядерной материи выводится дисперсионное уравнение, которое позволяет получить скорость нуль-звука и исследовать внутреннюю структуру коллективных мод.

В настоящее время продолжаются исследования функций отклика в асимметричной, симметричной и нейтронной ядерной материи на различные внешние поля с использованием функционала плотности, построенного на основе взаимодействия Скирма [10]. Получены результаты для различных параметров асимметрии, плотности материи, переданных импульсов и температуры. Разработан метод построения структурных функций ядерной материи с использованием феноменологического взаимодействия конечного радиуса [11]. Показано

¹⁾НИЦ "Курчатовский институт" – ПИЯФ, Гатчина, Россия.

²⁾Военная академия связи, Санкт-Петербург, Россия.

^{*}E-mail: sadovnikova_va@pnpi.nrcki.ru

влияние на функции отклика тензорного, спинорбитального и других, зависящих от плотности и от импульсов, членов взаимодействия Скирма.

В настоящей работе представлены результаты исследования нуль-звуковых возбуждений в ядерной материи при параметре изотопической асимметрии β в интервале $|\beta| < 0.5$. Показано, как связаны ветви нуль-звуковых возбуждений в симметричной и асимметричной материи. Попытка установить такую связь определила то, как меняются и разветвляются $\omega_{si}(k,\beta)$ с изменением k и *β*. Первые результаты были получены в работах [12, 13]. Вычисленные ветви решений различаются способом затухания. Далее ветви решений используются для построения функции отклика ядерной материи на внешнее поле с явным учетом вкладов нуль-звуковых возбуждений в среде. При переходе к структурным функциям $S(\omega, k)$ предложенный метод позволяет связать максимумы в $S(\omega, k)$ и решения дисперсионного уравнения, при этом ширины максимумов определяются мнимыми частями $\omega_{si}(k,\beta)$, имеющими определенный физический смысл.

В работе исследовано поведение нуль-звука в нормальной холодной ферми-жидкости, состоящей из протонов и нейтронов, при различных значениях параметра асимметрии и находящейся при равновесной плотности р. Дисперсионное уравнение для вычисления частот коллективных возбуждений в зависимости от волнового вектора и параметра асимметрии для нуль-звуковых возбуждений получено в рамках теории конечных ферми-систем [14, 15] с эффективным взаимодействием квазичастиц Ландау-Мигдала. При вычислении решений дисперсионного уравнения используется подход, в рамках которого уже были получены ветви нульзвуковых возбуждений в симметричной ядерной материи [16], а также была изучена связь неустойчивости Померанчука и пионной конденсации в ядерной материи [17].

Асимметричная ядерная материя характеризуется плотностью нейтронов ρ_n и протонов ρ_p , полная плотность $\rho = \rho_n + \rho_p$. Параметр асимметрии β , ферми-импульсы для нейтронов и протонов определяются следующим образом:

$$\beta = \frac{\rho_n - \rho_p}{\rho_n + \rho_p}; \quad p_{\text{F}n} = \left(3\pi^2 (1+\beta)\frac{\rho}{2}\right)^{1/3}; \quad (1)$$
$$p_{\text{F}p} = \left(3\pi^2 (1-\beta)\frac{\rho}{2}\right)^{1/3}; \quad p_0 = \left(3\pi^2 \rho\right)^{1/3}.$$

В разд. 2 представлено дисперсионное уравнение для вычисления комплексных частот нульзвуковых возбуждений в ядерной материи. Обсуждается местоположение решений на комплексной плоскости частот, физический смысл мнимых частей решений. В разд. З представлены ветви решений в симметричной и асимметричной материи. Показано, что ветви решений различного типа начинаются при разных значениях волнового вектора k и имеют различную зависимость от k. В разд. 4 получен переход от решений в асимметричной материи ($|\beta| > 0$) к решениям в симметричной ($\beta = 0$) ядерной материи. В разд. 5 представлены результаты для структурных функций ядерной материи, построенных на базе полученных решений.

Основные расчеты выполнены с использованием изовекторного взаимодействия квазичастиц. В разд. 6 показано влияние изоскалярного взаимодействия квазичастиц на изовекторные возбуждения на примере конкретных ядер.

2. ДИСПЕРСИОННОЕ УРАВНЕНИЕ

Мы рассматриваем изовекторные нуль-звуковые возбуждения в ядерной материи с параметром асимметрии (1) в интервале $-0.5 \le \beta \le 0.5$, следуя работе [15].

Эффективное взаимодействие между квазичастицами, которое используется в вычислениях, это взаимодействие Ландау—Мигдала [15]:

$$\mathcal{F}(\boldsymbol{\sigma}_1, \boldsymbol{\tau}_1; \boldsymbol{\sigma}_2, \boldsymbol{\tau}_2) = C_0(F + F'(\boldsymbol{\tau}_1 \boldsymbol{\tau}_2) + (2) + G(\boldsymbol{\sigma}_1 \boldsymbol{\sigma}_2) + G'(\boldsymbol{\tau}_1 \boldsymbol{\tau}_2)(\boldsymbol{\sigma}_1 \boldsymbol{\sigma}_2)),$$

где σ , τ — матрицы Паули в спиновом и изоспиновом пространстве. Безразмерные функции F, F', G', G зависят от угла между импульсами входящих частиц и могут быть разложены по полиномам Лежандра, зависящим от этого угла. Далее мы используем только нулевые компоненты разложения функций, сохраняя для нулевых компонент то же обозначение: F, F', G', G. Численные значения F, F', G', G определяются из эксперимента, и они могут зависеть от плотности и параметра асиметрии [1]. В нашей работе это фиксированные константы. В (2) нормировочный коэффициент равен $C_0 = N^{-1} = \frac{\pi^2}{m_0 p_0}$, N — плотность нуклонов на ферми-поверхности в ядерной материи с плотностью ρ , состоящей из одного сорта частиц.

В работе [14] представлена система уравнений для эффективного поля $V_{\rm ef}^{\tau\tau'}$, возникающего в среде под действием изовекторного дипольного внешнего поля. Используя систему для эффективных полей [14, 15], перепишем ее для изовекторного монопольного внешнего поля $V_0^{\tau} = E_0 \sum_l (\tau_z)_l^{\tau} e^{i(\mathbf{r}_l \mathbf{k})} e^{-i(\omega + i\eta)t}$:

$$V_{\text{ef}}^{\tau\tau'} = V_0^{\tau\tau'} \delta_{\tau\tau'} + \mathcal{F}^{\tau\tau''} A^{\tau''} V_{\text{ef}}^{\tau''\tau'}.$$
 (3)

 $A^{ au}$ представляют собой интегралы по запаздывающей протонной (A^p) или нейтронной (A^n)

ЯДЕРНАЯ ФИЗИКА том 85 № 4 2022

частично-дырочной ph-петле и выражаются через функцию Линхардта [18]. Систему уравнений (3) представим в матричном виде

$$\mathcal{M}V_{\rm ef} = V_0, \quad V_{\rm ef} = \mathcal{M}^{-1}V_0, \tag{4}$$

где

$$\mathcal{M} = \begin{pmatrix} (1 - F^{pp}A^p) & -F^{pn}A^n \\ -F^{np}A^p & (1 - F^{nn}A^n) \end{pmatrix}, \quad (5)$$
$$V_{\text{ef}} = \begin{pmatrix} V_{\text{ef}}^{pp} & V_{\text{ef}}^{pn} \\ V_{\text{ef}}^{np} & V_{\text{ef}}^{nn} \end{pmatrix}, \quad \hat{A} = \begin{pmatrix} A^p & 0 \\ 0 & A^n \end{pmatrix}.$$

Здесь определено $F^{pp} = F^{nn} = C_0(F + F'), F^{pn} = F^{np} = C_0(F - F').$

Далее мы выразим функцию отклика $\Pi^{\tau\tau'}(\omega, k)$ (запаздывающий поляризационный оператор) через эффективные поля $V_{\text{ef}}^{\tau\tau'}$, следуя [15] и учитывая (4) (полагаем $E_0 = 1$):

$$\Pi^{\tau\tau'}(\omega,k) = \left(V_0, \hat{A}V_{\text{ef}}\right)^{\tau\tau'}(\omega,k) =$$

$$= \left(V_0, \hat{A}\mathcal{M}^{-1}V_0\right)^{\tau\tau'}(\omega,k).$$
(6)

Перемножая матрицы в (6), для функции отклика $\Pi^{\tau\tau'}(\omega,k)$ получаем выражение

$$\Pi = \begin{pmatrix} \Pi^{pp} & \Pi^{pn} \\ \Pi^{np} & \Pi^{nn} \end{pmatrix} =$$
(7)
$$= \frac{1}{\det(\mathcal{M})} \begin{pmatrix} A^{p}(1 - F^{nn}A^{n}) & -A^{p}F^{pn}A^{n} \\ -A^{n}F^{np}A^{p} & A^{n}(1 - F^{pp}A^{p}) \end{pmatrix}.$$

Для дальнейшего будет удобно ввести матрицу $D^{\tau\tau'}(\omega,k)$, определенную следующим образом: $\Pi^{\tau\tau'}(\omega,k) = D^{\tau\tau'}(\omega,k)/E(\omega,k)^{3}$. Здесь $E(\omega,k) \equiv \equiv \det(\mathcal{M}(\omega,k))$.

Значения $\omega(k)$, для которых детерминант системы $E(\omega, k)$ обращается в нуль и отклик системы велик, отвечают нуль-звуковым возбуждениям материи. Дисперсионное уравнение для изовекторных нуль-звуковых коллективных возбуждений $\omega_i(k, \beta)$ в асимметричной ядерной материи мы получаем, приравнивая $E(\omega, k)$ к нулю. Таким образом, дисперсионное уравнение имеет вид [1, 12, 15]:

$$E(\omega, k) = (1 - F^{nn} A^n)(1 - F^{pp} A^p) - (8) - (A^p F^{pn})(A^n F^{np}) = 0.$$

ЯДЕРНАЯ ФИЗИКА том 85 № 4 2022

Аналогичное дисперсионное уравнение представлено в [10], где использовалось уравнение Бете—Солпитера для запаздывающих ph-пропагаторов, усредненных по импульсу, в приближении случайных фаз (A^{τ} в наших обозначениях), а также в работе [1] с использованием линеаризованных уравнений Власова. Перепишем (8) в виде

$$E(\omega, k) = 1 - C_0(F + F')A^p -$$
(9)
- $C_0(F + F')A^n + 4FF'C_0^2A^pA^n = 0.$

В представленной работе вычисления выполнялись при равновесной плотности $\rho = 0.17 \ \text{фm}^{-3}$, $p_0 = 0.268$ ГэВ, эффективной массе квазичастиц $m = 0.8m_0, m_0 = 0.94$ ГэВ. В расчетах использовались следующие значения параметров эффективного взаимодействия (2): F' = 1.0, F = 0.0 [20], т.е. учитывалось только изовекторное взаимодействие квазичастиц в среде. В разд. 6 будет показано влияние изоскалярного взаимодействия Fна изовекторные возбуждения в конкретных ядрах. Отметим, что в нашей работе нет самосогласования между средним полем в среде и эффективным взаимодействием квазичастиц [1, 10]. Влияние среднего поля выражено только через наличие эффективной массы квазичастиц, а эффективное взаимодействие (2) отвечает лишь за возбуждения в среде. Такой упрощенный подход дает возможности наглядно представить основные моменты связи возбуждений в симметричной и асимметричной материи.

2.1. Расположение решений ω_{si}(k, β) на комплексной плоскости частот

В этом разделе изложен метод построения решений дисперсионного уравнения⁴⁾. Метод использует аналитическую структуру функций A^n , A^p .

Функции Линхардта A^{τ} , $\tau = n, p$ определяются как суммы функций Мигдала [14, 15, 18] $A^{\tau} = A^{\tau}(\omega, k) + A^{\tau}(-\omega, k)$:

$$A^{\tau}(\omega, k) =$$
(10)
= $-2\frac{1}{4\pi^2} \frac{m^3}{k^3} \left[\frac{a^2 - b_{\tau}^2}{2} \ln\left(\frac{a + b_{\tau}}{a - b_{\tau}}\right) - ab_{\tau} \right],$

где $a = \omega - (\frac{k^2}{2m}), b_{\tau} = \frac{kp_{F\tau}}{m}$. Выражение (10) содержит логарифмическую функцию, которая имеет разрезы на комплексной плоскости ω и является многозначной функцией на своей римановой поверхности. На рис. 1 показаны разрезы функций A^p и A^n . Буквой μ обозначено вещественное решение уравнения (9), полученное при $k = k(\mu)$ и

³⁾В работе [19] расчеты выполнены с использованием выражения (7). В соотношении (9) этой работы опечатка (указан неверный знак для П^{пр}, П^{pn}).

⁴⁾Ветви решений $\omega_{si}(k,\beta)$ зависят от двух аргументов k, β . Там, где это несущественно, аргумент β может быть опущен.

Рис. 1. Разрезы функций A^{τ} (10), (11) представлены на комплексной плоскости частот ω при $\beta > 0$. В верхней части рисунка показаны разрезы функции A^{p} , в нижней части — разрезы A^{n} .

расположенное на положительной вещественной оси, правее разрезов.

Разрезы функции $A^{\tau}(\omega, k)$ обозначены как (1, 1'), а разрезы $A^{\tau}(-\omega, k)$ как (2, 2'):

$$(1',1): -\frac{kp_{F\tau}}{m} + \frac{k^2}{2m} \le \omega \le \frac{kp_{F\tau}}{m} + \frac{k^2}{2m}, \quad (11)$$
$$(2',2): -\frac{kp_{F\tau}}{m} - \frac{k^2}{2m} \le \omega \le \frac{kp_{F\tau}}{m} - \frac{k^2}{2m}.$$

Длина разрезов зависит от k и β . Рис. 1 выполнен для случая $\beta > 0$, что дает $p_{\text{F}n} > p_{\text{F}p}$ (1) и, соответственно, нейтронные разрезы (11) оказываются длиннее, чем протонные.

Точки разреза определяются энергиями невзаимодействующих ph-пар $\omega_{ph}^{\tau}(k) = \varepsilon_{\mathbf{p}+\mathbf{k}} - \varepsilon_{p}$, где $\varepsilon_{q} = q^{2}/(2m)$ и $\tau = n, p$. Лист комплексной плоскости частот, на котором расположены вещественные нуль-звуковые решения и энергии $\omega_{ph}^{\tau}(k)$, мы считаем физическим листом, рис. 1. Решения, полученные под разрезом, на других логарифмических листах, являются комплексными и считаются физическими решениями, если можно сделать аналитическое продолжение по какому-либо параметру (по k, по ρ , по β и т.д.) от физических решениям.

В соответствии с теорией Ландау [21] уравнение (8) имеет вещественные решения при небольших значениях волнового вектора k. С ростом kпроисходит перекрытие коллективной и частичнодырочной мод, т.е. вещественного решения (μ) и логарифмического разреза функции $A^n(\omega, k)$ (рис. 1). После перекрытия мы ищем решение дисперсионного уравнения под логарифмическим разрезом функции $A^n(\omega, k)$, на нижнем нефизическом листе. Решение уходит на нефизический лист и приобретает отрицательную мнимую часть.

Следующий шаг состоит в придании физического смысла мнимой части решений. Вещественное решение соответствует стабильному коллективному возбуждению в среде. Мы интерпретируем появление мнимой части как затухание возбуждения за счет смешивания со свободными (невзаимодействующими) *ph*-парами, принадлежащими разрезу, и с последующим переходом части пар, участвующих в формировании коллективного состояния, в свободное состояние.

Внешнее поле возбуждает как коллективные состояния, так и невзаимодействующие протонные и нейтронные частично-дырочные пары, т.е. коллективную и *ph*-моды. Мы считаем, что перекрытие вещественного решения с, например, нейтронным разрезом (разрез функции $A^n(\omega, k)$), после которого решение уходит под разрез и становится комплексным, означает возникновение затухания возбуждения за счет смешивания коллективной и нейтронной частично-дырочной мод. В ядрах такая мнимая часть дает вклад в ширину пиков в сечении полупрямого распада в реакции (γ, n) . Решения, которые затухают за счет испускания нейтронов, обозначаются $\omega_{sn}(k)$. В этом случае мы говорим, что нейтронный канал открыт. При построении $\omega_{sn}(k)$ функция A^p в (9) вычисляется на физическом листе, в этом случае мы считаем, что протонный канал закрыт. Заметим, что $A^n(-\omega,k)$ также берется на физическом листе. Решения, связанные с уходом под разрезы функций $A^n(\omega,k)$ и $A^{n}(-\omega,k)$, обсуждались в [17]. Таким образом, при вычислении $\omega_{sn}(k,\beta>0)$ мы считаем, что открыт только один нейтронный канал.

Аналогично $\omega_{sp}(k)$ обозначает решение, которое или вещественно (это имеет место при $\beta < 0$), или расположено под протонным разрезом при $\beta > 0$. Мнимая часть $\omega_{sp}(k)$ означает затухание возбуждения за счет испускания протона (в ядрах) или смешивания с невзаимодействующими протонными ph-парами (в ядерной материи). При вычислении $\omega_{sp}(k, \beta > 0)$ мы считаем, что открыт только один протонный канал.

При переходе от асимметричной к симметричной материи возникает вопрос, во что превращаются ветви $\omega_{sp}(k)$ и $\omega_{sn}(k)$. Оказывается, что в симметричной материи есть ветвь решений того же типа, что и $\omega_{sp}(k)$ и $\omega_{sn}(k)$, т.е. когда открыт только один канал. Мы обозначили эту ветвь $\omega_{s1}(k)$. Дальше будет показано, что при переходе от асимметричной к симметричной материи ветви $\omega_{sp}(k)$ и $\omega_{sn}(k)$ сливаются, переходя в $\omega_{s1}(k)$ (при определенных k).

В симметричной материи протонный и нейтронный разрезы совпадают. Если открыты и протонный, и нейтронный каналы, то возникновение мнимой части решения соответствует испусканию нуклона, изоспин которого в рассматриваемой модели не определен, это может быть протон или нейтрон. Решения такого типа в симметричной материи обозначены $\omega_s(k)$ и соответствуют обычному нульзвуку. Дальше будет показано, что при переходе к асимметричной материи ($\beta > 0$) решения $\omega_s(k)$ разветвляются на $\omega_{sn}(k, \beta)$ и $\omega_{snp}(k, \beta)$.

3. РЕШЕНИЯ ДИСПЕРСИОННОГО УРАВНЕНИЯ

3.1. Решения дисперсионного уравнения в симметричной ядерной материи

Дисперсионное уравнение (8) в симметричной материи может быть факторизовано следующим образом:

$$E(\omega, k) = (1 - 2C_0 F A)(1 - 2C_0 F' A).$$
(12)

Здесь $A^{p}(\omega, k) = A^{n}(\omega, k) = A(\omega, k),$ A = $= A(\omega, k) + A(-\omega, k)$. Факторизация $E(\omega, k)$ означает, что в симметричной материи есть два независимых уравнения. Одно описывает изоскалярные возбуждения, возникающие за счет phвзаимодействия F, а другое — изовекторные возбуждения, возникающие за счет взаимодействия F^\prime (2). Факторизация говорит о том, что изоскалярные и изовекторные возбуждения не взаимодействуют в симметричной материи. Однако в асимметричной ядерной материи (АЯМ) факторизация исчезает. Основные расчеты в работе проведены в предположении F = 0. Влияние скалярно-изоскалярного взаимодействия F(2) обсуждается в разд. 6, где показано, что его влияние на ветви изовекторных решений мало (как и отмечалось в [20]). Это имеет место при равновесной плотности и небольшом параметре асимметрии.

Таким образом, дисперсионное уравнение принимает следующий вид:

$$1 - 2C_0 F' A = 0. (13)$$

На рис. 2 представлены ветви решений $\omega_s(k)$ и $\omega_{s1}(k)$. Ветвь $\omega_s(k)$ — это обычный нуль-звук, ветвь вещественна при значениях волнового вектора $k \leq k_t$. Здесь k_t — это такое значение волнового вектора, при котором начинается пересечение коллективной и частично-дырочной моды. Кроме того, правый край разреза (1', 1) является решением дисперсионного уравнения с $\omega = k_t^2/(2m) +$ $+ p_F k_t/m$. При $k > k_t$ ветвь $\omega_s(k)$ переходит под разрез на нефизический лист и приобретает мнимую часть. Величина k_t зависит от β и в симметричной материи $k_t(\beta = 0) = 0.34p_0$. Ветвь $\omega_s(k)$ затухает из-за смешивания со свободными частичнодырочными парами, это могут быть как протонные, так и нейтронные ph-пары.

Решения типа $\omega_{s1}(k)$ не появляются на физическом листе, они расположены на нефизическом

Рис. 2. Ветви решений в симметричной ядерной материи ($\beta = 0$). При положительных $\omega > 0$ показаны реальные части решений $\text{Re}\omega_i(k)$. При отрицательных $\omega < 0$ — мнимые части ветвей $\text{Im}\omega_i(k)$. Кривые: сплошные — $\omega_s(k)$, штриховые — $\omega_{s1}(k)$.

листе под протонным или нейтронным разрезом и полностью комплексны. Ветвь найдена при $k \ge$ $\geq k_c$. Эта ветвь играет важную роль, когда мы изучаем, как меняются ветви решений с изменением параметра асимметрии. Численно получено, что $k_c = 0.52 p_0$. Ветвь $\omega_{s1}(k)$ имеет большую по сравнению с $\omega_s(k)$ мнимую часть и затухает за счет смешивания с *ph*-парами одного изоспина. Дальше будет показано, как изменяются $\omega_s(k)$ и $\omega_{s1}(k)$ при переходе к асимметричной материи. Таким образом, в симметричной материи при $0 < k \leq k_t$ имеется вещественное решение $\omega_s(k)$; когда $k \ge k_t$, эта ветвь становится комплексной (открыты как протонный, так и нейтронный каналы). При $k > k_c$ появляется еще одно комплексное решение $\omega_{s1}(k)$, которое расположено на нефизическом листе либо протонной $A^p(\omega,k)$, либо нейтронной $A^n(\omega,k)$ функции (что неразличимо в симметричной материи), рис. 2.

3.2. Решения дисперсионного уравнения в асимметричной ядерной материи

Дисперсионное уравнение (9) в асимметричной материи имеет вид

$$1 - C_0 F' A^p - C_0 F' A^n = 0.$$
(14)

В асимметричной материи получены три ветви комплексных решений (рис. 3): $\omega_{si}(k,\beta)$, i = n, p, np. На рис. З каждая ветвь $\omega_{si}(k,\beta)$ показана для параметров асимметрии $\beta = 0.01, 0.2, 0.5$. На этом рисунке обращают на себя внимание особенное поведение ветвей $\omega_{sn}(k,\beta)$, $\omega_{sp}(k,\beta)$ при малом значении $\beta = 0.01$ и тот факт, что ветви начинаются при разных значениях волнового вектора k. Далее каждый тип ветвей рассматривается по отдельности.

Рис. 3. Ветви решений при различных значениях параметра асимметрии β . $a - \omega_{sn}(k, \beta)$; $\delta - \omega_{sp}(k, \beta)$, $b - \omega_{snp}(k, \beta)$. Кривые: сплошная — $\beta = 0.01$, штриховая — $\beta = 0.2$, штрихпунктирная — $\beta = 0.5$. Другие обозначения те же, что на рис. 2.

3.2.1. Ветви $\omega_{sn}(k, \beta)$, рис. **3***a*. Как отмечалось выше, при $\beta = 0$ вещественные решения составляют часть $\omega_s(k, \beta = 0)$ при $k \le k_t$ ($\beta = 0$). Вещественное продолжение этой части на $\beta > 0$ осуществляет $\omega_{sn}(k, \beta)$ при $k \le k_t(\beta)$. При больших k ветвь $\omega_{sn}(k, \beta)$ становится комплексной из-за смешивания коллективного возбуждения с невзаимодействующими нейтронными ph-парами.

На рис. 4*а* показана зависимость $k_t(\beta)$ и конечное значение вещественных решений: $\omega(k_t, \beta)$. Для каждого β имеется вещественное решение при $k \leq k_t(\beta)$, которое становится комплексным при $k > k_t(\beta)$. Другими словами, стабильное нульзвуковое возбуждение в среде (отвечающее гигантскому резонансу в ядрах) начинает затухать с ростом k, испуская нейтроны. Видно, что с ростом β мнимая часть у вещественных решений появляется при все меньших значениях волновых векторов k.

Кривые $k_t(\beta)$ и $\omega(k_t, \beta)$ могут быть зеркально отображены на отрицательные $\beta < 0$ и при замене $n \leftrightarrow p$ имеют аналогичный смысл (кулоновское взаимодействие здесь не учитывается).

3.2.2. Ветви $\omega_{sp}(k, \beta)$, рис. 36. Ветвь $\omega_{sp}(k, \beta)$ при $\beta > 0$ полностью находится на нефизическом листе, относящемся к $A^p(\omega, k)$. Решения затухают за счет смешивания коллективного возбуждения и невзаимодействующих протонных ph-пар. В ядре это затухание отвечает эмиссии протона. На рис. 4*a* кривая $k^p(\beta)$ обозначает волновой вектор, такой, что при $k \ge k^p(\beta)$ в материи появляются решения $\omega_{sp}(k, \beta)$, и они отсутствуют, когда $k < k^p(\beta)$. Заметим, что мнимая часть стремится к нулю: Im $\omega_{sp}(k, \beta)(k) \to 0$ при $k \to k^p(\beta)$ (что приводит к пику в структурных функциях).

Расчеты показывают, что $k^p(\beta)$ совпадает с той кривой, которую описывает точка 2, относящаяся к разрезам функции A^p , при изменении β

"ключевых" 4. Зависимость Рис. волновых векторов $k_t(\beta), k^p(\beta), k^{np}(\beta)$ от β . a — Кривая $k^{np}(\beta)$ состоит из двух частей: штриховая $k_2^{np}(\beta),$ штрихпунктирная — $k_1^{np}(\beta)$; точечная кривая — $k^p(\beta)$; сплошные — $k_t(\beta)$, $\omega_s(k_t(\beta)).$ Представлены б — Комплексная ω -плоскость. $\omega_{snp}(k,\beta)$ для разных значений β (указаны на кривых). Жирная сплошная — $\omega_s(k)$ (см. рис. 2). Звездочки — значения кривых при $k = 0.4p_0$. Точка а обозначает $\omega(k_2^{np}, \beta = 0.3), \ b$ — это $\omega(k_1^{np}, \beta = 0.3),$ $c - k_t(\beta = 0) = 0.34 p_0$ (рис. a).

289

((11), рис. 1). При $k < k^p(\beta)$ решения не найдены, возможно, происходит смешивание с *ph*-парами, образующими как разрез (1', 1), так и (2', 2). Вопрос требует дополнительных исследований. На рис. 4*a* видно, что в области $k^p(\beta) \le k \le k_t(\beta)$ одновременно существуют как вещественное решение $\omega_{sn}(k,\beta)$, так и комплексное решение $\omega_{sp}(k,\beta)$. В симметричной материи $\omega_{sp}(k,\beta = 0)$ исчезает, что обозначено стрелкой на кривой k^p , рис. 4*a*.

3.2.3. Ветви $\omega_{snp}(k,\beta)$, рис. 3*в*. Третья ветвь решений, которая получена в асимметричной материи, — это $\omega_{snp}(k)$. Она расположена на нефизических листах как функции $A^n(\omega,k)$, так и $A^p(\omega,k)$ и описывает затухающее коллективное возбуждение. Затухание идет за счет смешивания со свободными нуклонными ph-парами (протонными и нейтронными). Ветвь начинается при $k = k^{np}(\beta)$ и существует при значениях k и β , расположенных вне области, ограниченной осями координат и кривыми $k_1^{np}(\beta)$ и $k_2^{np}(\beta)$ (рис. 4*a*). Кривая $k^{np}(\beta)$ состоит из двух частей, $k_1^{np}(\beta)$ и $k_2^{np}(\beta)$, возникновение которых продемонстрировано на рис. 4б. На рис. 4 показано, что при $\beta < 0.233$ имеется одно решение типа $\omega_{snp}(k)$ при каждом β , оно найдено при $k > k_1^{np}(\beta)$. На рис. 4б это соответствует тому, что отсутствует низкочастотная часть решения.

Когда $0.233 \le \beta \le 0.40$, появляется дополнительная низкочастотная часть решения при малых волновых векторах $k < k_2^{np}(\beta)$. При $\beta > 0.399$ две части решения сливаются, и мы получаем одно решение для всех k. На рис. 46 показано, что слияние происходит, когда ветвь $\omega_{snp}(k,\beta)$ имеет очень малую мнимую часть, она почти касается горизонтальной оси при $\beta = 0.40$ $(k = 0.225 p_0)$, оставаясь на нефизическом листе. Заметим, что решение исчезает, если положить $\text{Im}\omega_{snn}(k,\beta) =$ = 0 и пытаться построить вещественное решение. Точки *a*, *b* на рис. 4б обозначают решения на кривой $k^{np}(\beta)$: точка a обозначает $\omega(k_2^{np},\beta=0.3), b$ это $\omega(k_1^{np}, \beta = 0.3)$. Эти точки демонстрируют, что при $k \to k_{1,2}^{np}(\beta)$ мнимая часть стремится к нулю: $\text{Im}\omega_{snp}(k,\beta)(k) \to 0$. Это приводит к максимуму в структурных функциях, что является аналогом пороговых явлений в реальных распадах частиц. Для наглядности звездочками на кривых на рис. 46 обозначены величины $\omega_{snp}(k,\beta)$ при $k = 0.4p_0$.

4. СВЯЗЬ ВЕТВЕЙ В АСИММЕТРИЧНОЙ И СИММЕТРИЧНОЙ МАТЕРИИ

В этом разделе представлено поведение ветвей $\omega_{sn}(k), \ \omega_{sp}(k)$ и $\omega_{snp}(k)$ при $|\beta| \to 0$ и их связь с решениями $\omega_s(k), \ \omega_{s1}(k)$ (рис. 2). В основном

ЯДЕРНАЯ ФИЗИКА том 85 № 4 2022

мы рассматриваем $\beta > 0$. В этом разделе, вопервых, обсуждается разветвление $\omega_s(k)$ на две ветви $\omega_{sn}(k)$ и $\omega_{snp}(k)$ в точке $k = k_t(\beta = 0)$ при переходе к асимметричной материи. Во-вторых, показано, как $\omega_{sn}(k,\beta)$ и $\omega_{sp}(k,\beta)$ переходят в $\omega_{s1}(k)$ при $|\beta| \to 0$ и $k > k_c$.

4.1. $\omega_{s}(k)$. Сначала обратимся к $\omega_{s}(k)$. На рис. 2 показано, что эта ветвь вещественна при k < $\langle k_t(\beta = 0)$ и комплексна при больших $k > k_t(\beta)$. Оказалось, что вещественная и комплексная части меняются по-разному с изменением β . Это связано с двумя возможностями построения комплексного решения при $k > k_t(\beta)$. А именно, можно построить решение, открывая только один нейтронный канал, $\omega_{sn}(k)$, а можно сохранить открытыми как нейтронный, так и протонный каналы $\omega_{snp}(k)$ (как было в симметричной материи). На рис. 4а показано, что от точки $k=k_t(eta=0)=0.34p_0$ отходят две кривые: $k_t(\beta)$ и $k_1^{np}(\beta)$, которые означают, что при каждом eta > 0 ($eta \leq 0.233$) имеется вещественное решение при $k \leq k_t(\beta)$, оно становится комплексным решением $\omega_{sn}(k)$ при $k>k_t(eta)$. При дальнейшем увеличении волнового вектора: $k > k_1^{np}(eta),$ возникает еще одно комплексное решение $\omega_{snp}(k).$ И все эти решения связаны с разветвлением $\omega_s(k)$ в точке $k = k_t (\beta = 0)$.

Рассмотрим, как меняется вещественная часть $\omega_s(k)$ с ростом β . Кривая $k_t(\beta)$ на рис. 4aдля каждого β дает значения k, при которых заканчиваются вещественные решения, становясь комплексными при $k > k_t(\beta)$. На этом рисунке также показаны значения вещественных решений в точке $k=k_t(eta)$: $\omega(k_t,eta)$. Вещественные решения при $k \leq k_t(eta)$ представляют собой линии $\omega(k,eta) =$ $=v(\beta)k$, которые начинаются при k=0 и $\omega=$ = 0 и заканчиваются при $k = k_t(\beta)$ в $\omega(k_t, \beta)$ (линии не показаны). Когда $\beta = 0$, мы относим эти вещественные решения к $\omega_s(k)$: $\omega(k,\beta) =$ $=\omega_s(k,\beta=0);$ когда $\beta>0$, эти решения относятся к $\omega_{sn}(k,\beta)$: $\omega(k,\beta) = \omega_{sn}(k,\beta > 0)$; когда $\beta < 0$, решения относятся к $\omega_{sp}(k,\beta)$: $\omega(k,\beta) =$ $=\omega_{sp}(k,\beta<0)$. Это означает, что, например, при $\beta > 0$ решение $\omega(k, \beta)$ продолжается на $k > k_t(\beta)$ как $\omega_{sn}(k,\beta)$, т.е. Im $\omega(k,\beta)$ определяется смешиванием с нейтронными частично-дырочными парами.

Мы получили непрерывный переход с изменением β между ветвями $\omega_s(k)$, $\omega_{sn}(k)$, $\omega_{sp}(k)$ при $k \leq k_t(\beta)$. Таким образом, для стабильных изовекторных нуль-звуковых возбуждений в ядерной материи получена зависимость частоты возбуждений от параметра асимметрии β .

Заметим, что, переходя к ядрам, мы считаем, что вещественные решения описывают стабильные

коллективные возбуждения (гигантские резонансы). С ростом волнового вектора k вещественные решения становятся комплексными и отвечающие им коллективные возбуждения приобретают ширину, которая определяется мнимой частью $\omega_{sn}(k,\beta)$. Тем самым при $\beta > 0$ мы можем говорить о вычислении нейтронной ширины резонанса.

Теперь рассмотрим продолжение на $\beta \neq 0$ комплексной части $\omega_s(k)$, которая получена при $k > k_t \ (\beta = 0)$. При этих k ветвь $\omega_s(k)$ начинает затухать и становится комплексной. Мнимая часть $\omega_s(k)$ на рис. 2 построена в предположении, что открыты как протонный, так и нейтронный каналы. Поэтому можно ожидать, что и в АЯМ вещественное решение уходит под оба разреза. Такое решение действительно найдено, это $\omega_{snp}(k,\beta)$. Начало этого решения при $\beta \to 0$ совпадает с $k^{np}(\beta \to 0) = k_t(\beta \to 0)$ (рис. 4a). Выше это представлено, как разветвление ветви $\omega_s(k)$ при переходе к асимметричной материи.

На рис. 4б на кривых $\omega_{snp}(k,\beta)$ указаны значения β , при которых были получены эти ветви решений. Сплошной кривой обозначена $\omega_s(k,\beta = 0)$. Видно, что кривые сгущаются к $\omega_s(k,\beta = 0)$ при $\beta \to 0$. Ветвь $\omega_{snp}(k,\beta)$ мы рассматриваем как продолжение комплексной части $\omega_s(k,\beta = 0)$ на $\beta > 0$.

Таким образом, нуль-звуковая ветвь $\omega_s(k)$ в симметричной материи продолжается на асимметричную материю с $\beta > 0$ двумя типами решений. Вещественная часть $\omega_s(k, \beta = 0)$, которая существует при малых $k \le k_t(\beta = 0)$, продолжается ветвью $\omega_{sn}(k, \beta > 0)$. А комплексная часть $\omega_s(k, \beta = 0)$, которая существует при $k > k_t(\beta =$ = 0), продолжается ветвью $\omega_{snp}(k, \beta > 0)$. Кроме того, $\omega_{snp}(k, \beta)$ приобретает низкочастотную комплексную часть при значении параметра асимметрии $\beta > 0.233$, рис. 4*a*.

4.2. $\omega_{sn}(k)$ и $\omega_{sp}(k)$. Теперь рассмотрим $\omega_{sn}(k)$ и $\omega_{sp}(k)$. На рис. 5*a* одновременно показаны ветви $\omega_{s1}(k)$ и вычисленные при $\beta = 0.05$ ветви $\omega_{sn}(k)$, $\omega_{sp}(k)$. На рисунке видно сближение ветвей при $k > k_c$ (как отмечалось выше, ветвь $\omega_{s1}(k)$ существует при $k \ge k_c$, рис. 2).

На рис. 5б показаны части ветвей $\omega_{sn}(k)$, $\omega_{sp}(k)$ при $\beta = 0.01, 0.05$ в сравнении с $\omega_{s1}(k)$. Ветвь $\omega_{s1}(k)$ (сплошная кривая) — это та же ветвь, которая показана штрихами на рис. 2. При малых значениях β ветви $\omega_{sn}(k)$ и $\omega_{sp}(k)$ обтекают $\omega_{s1}(k)$, стремясь к этой ветви (при тех k, при которых она существует: $k > k_c$). Это справедливо при $\beta =$ = 0.01, а при $\beta = 0.05$ решения уже слабо чувствуют этот предел. Это обтекание обусловливает особенное поведение ветвей на рис. 3a, 36 при $\beta = 0.01$. Заметим, что $\omega_{sn}(k)$ и $\omega_{sp}(k)$ подходят к $\omega_{s1}(k)$ с разных нефизических листов.

Мы получили, что в асимметричной материи ветвь $\omega_{s1}(k)$ расщепляется на две другие ветви, находящиеся на различных нефизических листах. Таким образом, $\omega_{sn}(k)$ и $\omega_{sp}(k)$ стремятся к $\omega_{s1}(k)$ при $\beta \to 0$ и $k > k_c$. Однако для значений волновых векторов в интервале $k_t < k < k_c$ предела при $\beta \to$ $\rightarrow 0$ нет. Техническая причина состоит в том, что нет решений дисперсионного уравнения (14) типа $\omega_{sn}(k), \ \omega_{sp}(k)$ и $\omega_{s1}(k)$ (т.е., когда открыт один, нейтронный или протонный, канал) в интервале $k_t < k < k_c$ (рис. 2). Предел $\omega_{sp}(k)$ отсутствует в более широкой области $k_p < k < k_c$.

На рис. 5*в* демонстрируется зависимость $\omega_{sn}(k,\beta)$ и $\omega_{sp}(k,\beta)$ от β при фиксированных k. Как видно, на рис. 4*a* имеется несколько "ключевых" значений волнового вектора. Здесь нас будут интересовать два значения: $k_t(\beta), k_c = 0.52p_0$. Мы выбираем $k_i = k_1, k_2, k_3$ такие, что они расположены по-разному по отношению к $k_t(\beta)$ и k_c : $k_1 < k_t(\beta), k_t(\beta) < k_2 < k_c$ и $k_3 > k_c$: $k_1 = 0.05p_0, k_2 = 0.4p_0, k_3 = 0.6p_0$. Мы увидим, что поведение ветвей $\omega_{sn}(k_i, \beta), \omega_{sp}(k_i, \beta)$ различается существенно при разных k_i .

На рис. 5*в* показаны изменения реальных частей решений $\operatorname{Re}\omega_{sn}(k_i,\beta)$, $\operatorname{Re}\omega_{sp}(k_i,\beta)$ в зависимости от β . Когда $k = k_1$ (сплошные кривые) и $\beta > 0$, ветвь $\omega_{sn}(k_1)$ действительна. Изменяя β от $\beta = 0.5$ до отрицательных значений, мы переходим к реальной ветви $\omega_{sp}(k_1)$, $\beta < 0$. При $\beta = 0$ решения проходят точку $\omega_s(k_1)$. Вторая ветвь решений, которая найдена при $k = k_1$ и $\beta > 0$ — это $\omega_{sp}(k_1)$, она комплексна. Она не существует при $k < k^p(\beta)$ и не может быть продолжена на отрицательные β .

При $k = k_2$ и $\beta > 0$ ветвь $\omega_{sn}(k_2)$ комплексна (рис. 3a), и реальная часть $\text{Re}\omega_{sn}(k_2, \beta)$ изображается точечной кривой на рис. 5a. Мы не можем продолжить эту ветвь на $\omega_{sp}(k_2)$, изменяя β с положительных на отрицательные значения, поскольку, как отмечалось выше, отсутствуют решения дисперсионного уравнения (9) типа $\omega_{sn}(k)$, $\omega_{sp}(k)$ при $\beta = 0$ и $k = k_2$, рис. 2.

Когда $k = k_3$ и $\beta > 0$, ветвь $\omega_{sn}(k)$ комплексна (штриховая кривая, рис. 5 β). В отличие от случая с $k = k_2$ имеется комплексное решение при $\beta =$ = 0 (это $\omega_{s1}(k_3)$). Поэтому мы можем переходить к отрицательным β и продолжать $\omega_{sn}(k_3, \beta > 0)$ на $\omega_{sp}(k_3, \beta < 0)$ через точку $\omega_{s1}(k_3)$. Больше того, $\omega_{sn}(k_3, \beta < 0)$ может быть продолжена на

Рис. 5. Поведение $\omega_{sn}(k,\beta)$ и $\omega_{sp}(k,\beta)$ при $|\beta| \to 0.a$ — Ветви $\omega_{sn}(k,\beta)$ (штриховая), $\omega_{sp}(k,\beta)$ (точечная) для $\beta = 0.05$; $\omega_{s1}(k)$ (сплошная). δ — Комплексная ω -плоскость; кривые: $I - \beta = 0.01, 2 - \beta = 0.05$ показаны в сравнении с $\omega_{s1}(k)$ (тип кривых тот же, что на рис. a). a — Зависимость Re $\omega_{sn}(k_i,\beta)$ и Re $\omega_{sp}(k_i,\beta)$ от β при определенных k_i , i = 1, 2, 3: $k_1 = 0.05p_0$ (сплошные кривые), $k_2 = 0.4p_0$ (точечные); $k_3 = 0.6p_0$ (штриховые); n означает $\omega_{sn}(k_i,\beta)$, $p - \omega_{sp}(k_i,\beta)$; $s - \omega_s(k_1), s1 - \omega_{s1}(k_3)$.

 $\omega_{sp}(k_3, \beta > 0)$. Аналогичные рисунки можно получить для мнимых частей $\omega_{sn}(k_i), \omega_{sp}(k_i, \beta)$, а также для $\omega_{snp}(k_i, \beta)$ и $\omega_{spn}(k_i, \beta)$.

5. СТРУКТУРНЫЕ ФУНКЦИИ $S(\omega, k)$ В ЯДЕРНОЙ МАТЕРИИ, ПОСТРОЕННЫЕ НА ОСНОВЕ $\omega_{si}(k)$

Под действием внешнего поля в среде возникает эффективное поле, которое связано с функцией

ЯДЕРНАЯ ФИЗИКА том 85 № 4 2022

отклика соотношением (6). Структурная функция определяется как мнимая часть от функции отклика $\Pi(\omega, k)$ [22]:

$$S(\omega, k) = -\frac{1}{\pi} \text{Im}\Pi(\omega, k).$$
(15)

Как показано в работе [23], в изовекторном внешнем поле функция отклика $\Pi(\omega, k)$ может быть представлена как сумма

$$\Pi(\omega, k) = \Pi^{pp}(\omega, k) + \Pi^{nn}(\omega, k) -$$
(16)
- $\Pi^{pn}(\omega, k) - \Pi^{np}(\omega, k).$

Используем выражения (7) для $\Pi^{\tau\tau'}(\omega, k)$. Тогда функция отклика на изовекторное внешнее поле имеет вид

$$\Pi(\omega, k) =$$
(17)
$$= \frac{(D^{pp} + D^{nn} - D^{pn} - D^{np})}{E(\omega, k)} \equiv \frac{D^{iv}(\omega, k)}{E(\omega, k)}.$$

Как отмечалось выше, внешнее поле возбуждает в ядерной материи коллективные и *ph*-моды. Коллективные моды соответствуют трем типам комплексных решений дисперсионного уравнения.

Представим структурную функцию в виде суммы по трем типам возбуждений:

$$S(\omega, k) = \sum_{l} S_{l}(\omega, k), \qquad (18)$$

где l = n, p, np. Обратный детерминант системы \mathcal{M} (5) и П(ω, k) (7) запишем как сумму по полюсам:

$$\frac{1}{E(\omega,k)} = \sum_{l} \left(\frac{R_l(\omega_{sl},k)}{\omega - \omega_{sl}(k)} + \operatorname{Reg}_l(\omega,k) \right).$$
(19)

Вычеты $R_l(\omega_{sl}, k)$ в полюсах вычисляются на тех же нефизических листах, где расположены решения (I - это мнимая единица):

$$R_{l}(\omega_{sl}, k) =$$

$$= \frac{1}{E'(\omega_{sl}(k))} = \frac{\operatorname{Re}(E') - I\operatorname{Im}(E')}{|E'|^{2}},$$
где $E'(\omega_{sl}(k)) = \frac{dE(\omega, k)}{d\omega}|_{\omega \to \omega_{sl}(k)}.$
(20)

Тогда функция отклика имеет вид

$$\Pi(\omega, k) =$$
(21)
= $\sum_{l} D^{iv}(\omega, k) \left(\frac{R_l(\omega_{sl}, k)}{\omega - \omega_{sl}(k)} + \operatorname{Reg}_l(\omega, k) \right).$

Соответствующая структурная функция $S(\omega, k)$ равна:

$$S(\omega, k) = \sum_{l} S_{l}(\omega, k) =$$
(22)
$$= -\frac{1}{\pi} \operatorname{Im} \sum_{l} D^{iv}(\omega, k) \times$$
$$\times \left(\frac{R_{l}(\omega_{sl}, k)}{\omega - \omega_{sl}(k)} + \operatorname{Reg}_{l}(\omega, k) \right) \equiv$$
$$\equiv S_{\text{pol}}(\omega, k) + S_{\text{reg}}(\omega, k).$$

Мы можем сопоставить вклад полюса в точке $\omega_{si}(k)$ в структурную функцию $S(\omega,k)$ с реакцией

фоторазвала на ядрах. Мнимая часть $\omega_{sn}(k)$ в ядре дает затухание возбуждения путем испускания нейтрона. Максимум в структурной функции, отвечающий полюсу $\omega_{sn}(k)$, будет иметь ширину, определяемую мнимой частью $\omega_{sn}(k)$, т.е. вылетом нейтронов в реакции (γ, n) . Аналогично $\omega_{sp}(k)$ дает вклад в (γ, p) , а мнимая часть $\omega_{snp}(k)$ дает вклад в структурную функцию как (γ, n) , так и (γ, p) реакций.

Заметим, если вычислять $\Pi(\omega, k)$ без специального выделения полюсов и при вещественных ω , то это будет гладкая функция, не содержащая максимумов. И только включение полюсов на нефизических листах выявляет структуру в $S(\omega, k)$ [24].

Теперь вычислим вклад в $S(\omega, k)$, возникающий в результате прямого выбивания нуклона внешним полем (в ядрах), а в материи он соответствует взаимодействию внешнего поля с нуклоном, не вовлеченным в образование коллективного состояния. Для этого положим в выражении (17) эффективную константу взаимодействия квазичастиц равной нулю, F' = 0, и получим

$$S_{\rm fr}(\omega, k) =$$

$$= -\frac{1}{\pi} {\rm Im}(A^p(\omega, k) + A^n(\omega, k)) =$$

$$= S^p_{\rm fr}(\omega, k) + S^n_{\rm fr}(\omega, k).$$
(23)

Обратимся к рис. 6. На рис. 6а показаны три ветви решений дисперсионного уравнения (14) в материи с $\beta = 0.1667$, такой параметр асимметрии соответствует, например, ядрам ⁴⁸Ca, ¹²⁰Sn. Вклады этих решений в $S(\omega, k)$ при $k = 0.45 p_0$ приведены на рис. 6б. Вклад решения $\omega_{si}(k)$ в структурную функцию обозначен тем же типом кривой, что и ветвь решения на рис. 6а и снабжен той же цифрой.

Максимум, который описан штриховой кривой (короткий штрих) на рис. 66, возник из-за полюса в $(22) \omega_{sp}(k = 0.45p_0) = (0.157, -0.0164)p_0$. Согласно рис. 6*a*, максимум на кривой 2 расположен при частотах, меньших, чем максимум на точечной кривой 1, который возникает при $\omega_{sn}(k = 0.45p_0) = (0.199, -0.0097)p_0$. Самый острый пик принадлежит штрихпунктирной кривой и отвечает полюсу $\omega_{snp}(k = 0.45p_0) = (0.192, -0.0021)p_0$. Форма максимума связана с близостью полюса к порогу появления ветви $\omega_{snp}(k)$. Максимумы структурной функции сдвинуты относительно положения полюсов. При малой ширине пика, отвечающей малой мнимой части решения, сдвиг составляет сотни кэВ, а для протонного полюса это 4.7 МэВ.

Кривая, обозначенная длинным штрихом, описывает $S_{\rm fr}(\omega, k)$ (23), т.е. это сумма мнимых

ЯДЕРНАЯ ФИЗИКА том 85 № 4 2022

Рис. 6. Ветви решений и структурные функции при $\beta = 0.1667. a$ — Ветви решений $\omega_{sn}(k)$ (точечная кривая, 1), $\omega_{sp}(k)$ (штриховая, 2), $\omega_{snp}(k)$ (штрихпунктирная, 3). Остальные обозначения как на рис. 2. δ — Структурная функция $S_{pol}(\omega, k) + S_{fr}(\omega, k)$ (22), (23) (тонкая сплошная кривая), вычисленная при $k = 0.45p_0$. Вклады отдельных полюсов в S_{pol} показаны цифрами и типом линий, соответствующими рис. a. Кривая 4 — вклад $S_{fr}(\omega, k)$ (23). $S_{str} = 10^3 S(\omega, k) M_3 B^{-1} ф m^{-3}$.

частей протонной и нейтронной функций Линхардта. Сплошная кривая — это сумма $S_{\rm pol}(\omega,k)$ + $+ S_{\rm fr}(\omega,k)$. Мы получили сложную структуру для полной структурной функции, которая порождена решениями дисперсионного уравнения. Гигантскому резонансу мы сопоставляем пик, связанный с решением $\omega = \omega_{sn}(k = 0.45p_0)$. Мнимая часть этого решения определяет нейтронную ширину гигантского резонанса.

Таким образом, на рис. 66 построена структурная функция, которая соответствует изовекторным нуль-звуковым возбуждениям и возбуждению *ph*пар в асимметричной материи.

6. ВЛИЯНИЕ ИЗОСКАЛЯРНОГО ВЗАИМОДЕЙСТВИЯ КВАЗИЧАСТИЦ НА ЧАСТОТЫ ИЗОВЕКТОРНЫХ ВОЗБУЖДЕНИЙ

При вычислении решений дисперсионного уравнения (8) был опущен вклад изоскалярного взаимодействия квазичастиц, мы полагали F = 0. В

ЯДЕРНАЯ ФИЗИКА том 85 № 4 2022

этом разделе мы продемонстрируем влияние этого взаимодействия на частоты изовекторных возбуждений.

Для этого мы сравним частоты возбуждений для случаев F' = 1.0, F = 0.0 и F' = 1.0, F = 0.1. Гигантские дипольные изовекторные резонансы в теории Мигдала [14] возбуждаются за счет взаимодействия квазичастиц F^{pp} , F^{nn} , F^{pn} , F^{np} (см. определение после (5)).

Для того чтобы показать, как меняются вычисленные частоты возбуждений при учете изоскалярного взаимодействия F(2), мы проделали следующее. Сначала отобрали в таблице [25] группу ядер, распространенность которых в природе больше 50%. Затем мы воспользовались двумя моделями для определения волнового вектора k_A , который отвечает гигантскому дипольному резонансу в конкретном ядре. Для каждого из отобранных ядер был вычислен импульс k_A , и была получена разность между реальными частями решений $\omega_{sn}(k_A, \beta_A)$ (между частотами возбуждений)

$$d_A = \operatorname{Re} \left(\omega_{sn}(k_A, \beta_A) \right) |_{F=0.1} - \qquad (24)$$
$$- \operatorname{Re} \left(\omega_{sn}(k_A, \beta_A) \right) |_{F=0}.$$

Первая модель взята из [8], она дает $k_A = \pi/(2R_A)$, где $R_A = (r_0A^{1/3})$, $r_0 = 1.2$ фм. Для большинства отобранных ядер величина k_A меньше, чем k_t (рис. 4), это означает, что решения $\omega_{sn}(k_A, \beta_A)$ в большинстве вещественны. Для вещественных решений на рис. 7*a* показана зависимость разности d_A от β .

Как отмечалось выше, из-за факторизации дисперсионного уравнения (12) в ядрах с N = Z, как и в симметричной материи ($\beta = 0$), изоскалярное взаимодействие не оказывает влияние на изовекторные возбуждения. Поэтому $d_A(\beta_A = 0) = 0$, и все значения d_A находятся в начале координат. При $\beta > 0$ имеется почти линейный рост величины $d_A(\beta)$ с ростом β . Величина d_A очень мала, она составляет десятки кэВ, тогда как $\omega_{sn}(k_A, \beta_A)$ это десятки МэВ.

Вторая использованная модель — это модель Штейнведеля – Йенсена [26], она дает другую (большую) величину для волнового момента гигантского дипольного резонанса в ядрах: $k_A = 2.08/R_A$. Для таких k_A все $\omega_{sn}(k_A, \beta_A)$ комплексны, и на рис. 76 показана величина $d_A(\beta_A)$, как она определена в (24). В этом случае никакой определенной зависимости d_A от β , A и k_A не наблюдается, и единственное, что можно отметить, что влияние изоскалярного взаимодействия на изовекторные моды мало.

Однако как показано в работе [1], при большой плотности среды и в рамках метода, использующего самосогласованные определения параметров

Рис. 7. Влияние изоскалярного взаимодействия квазичастиц F на частоты изовекторных возбуждений в ядрах. a — Разность d_A (24) для $k_A = \pi/(2R_A)$, отобраны ядра, в которых получены стабильные возбужденные состояния при таких k_A . δ — Разность d_A (24) для $k_A = 2.08/R_A$.

среднего поля и квазичастичного взаимодействия, имеется сильное взаимное влияние изоскалярных и изовекторных вибраций с сопутствующим истощением коллективности в изовекторной моде.

7. ЗАКЛЮЧЕНИЕ

В настоящей работе получены ветви нульзвуковых возбуждений в ядерной материи с равновесной плотностью и с параметром асимметрии, изменяющимся в интервале $-0.5 \le \beta \le 0.5$. Эти решения удовлетворяют дисперсионному уравнению (14) (в симметричной материи это (13)) и являются комплексными функциями. Мнимая часть решений описывает затухание нуль-звуковых возбуждений из-за смешивания со свободными частично-дырочными парами.

Цель работы состояла в том, чтобы получить ветви решений и связать решения при различных β . Это определяет появление и тип ветвей. Исследовалась симметричная и асимметричная материя. В симметричной материи получено две ветви решений $\omega_s(k,\beta=0)$ и $\omega_{s1}(k,\beta=0)$ (рис. 2). В асимметричной материи для каждого $\beta > 0$ построено три

ветви решений: $\omega_{sn}(k,\beta)$, $\omega_{sp}(k,\beta)$ и $\omega_{snp}(k,\beta)$ (рис. 3).

Показано, что при переходе от симметричной к асимметричной материи нуль-звуковая ветвь $\omega_s(k,\beta=0)$ разветвляется на $\omega_{sn}(k,\beta)$ и $\omega_{snp}(k,\beta)$ в точке $k_t(\beta=0)$ (с другой стороны, две упомянутых ветви сливаются в этой точке при $\beta \to 0$) (рис. 4*a*). Также показано, что ветви $\omega_{sn}(k,\beta)$ и $\omega_{sp}(k,\beta)$ сливаются для волновых векторов $k > k_c$ и $\beta \to 0$, переходя в $\omega_{s1}(k,\beta=0)$ (рис. 5*b*). Ветвь $\omega_{sn}(k,\beta)$ является вещественной и описывает стабильные возбуждения в материи для волновых векторов $k < k_t(\beta)$ и $\beta \to 0$. Однако в интервале $k_t < k < k_c$ предел $\beta \to 0$ отсутствует как для $\omega_{sn}(k,\beta)$, так и для $\omega_{sp}(k,\beta)$.

Чтобы получить решения при $\beta < 0$, следует заменить $n \leftrightarrow p$ в обозначениях ветвей, полученных при $\beta > 0$ (кулоновское взаимодействие в работе не учитывается). Поведение решений в зависимости от β во всем рассматриваемом интервале $-0.5 \leq \beta \leq 0.5$ при заданных k зависит от значения k (рис. 5 β).

В разд. 5 построена структурная функция, связанная с нуль-звуковыми возбуждениями в ядерной материи, которые возникают под действием изовекторного внешнего поля (рис. 6б). Представлен вклад трех ветвей нуль-звукового возбуждения в структурную функцию $S(\omega, k)$, который отвечает трем решениям дисперсионного уравнения (14) в асимметричной материи $\beta = 0.1667$ и при $k = 0.45p_0$.

Основные вычисления выполнены с учетом только изовекторного взаимодействия квазичастиц: F' = 1.0, F = 0. В разд. 6 показано, что учет изоскалярного взаимодействия F не влияет на частоты возбуждений в симметричной материи и в ядрах с N = Z. При $\beta > 0$ частоты решений слабо зависят от F. Вклады в вещественные решения примерно линейно растут с β , изменения составляют доли процента (рис. 7*a*). Тогда как в случае комплексных решений малость вкладов сохраняется, хотя регулярной зависимости не обнаружено (рис. 7*b*).

Полученные структурные функции могут быть использованы для вычисления сечений полупрямого фоторазвала (γ, n) , (γ, p) для конкретных ядер. Нельзя говорить о качественном согласии с экспериментом в такой упрощенной модели. Однако полученные результаты могут выявить те закономерности в поведении сечений фотоядерных реакций, которые обусловлены природой ядерной материи, а не структурой ядра: зависимость максимумов сечений от изменения β при фиксированном Z или N, поведение сечений при фиксированном β при разных A. Результаты расчетов (особенно рис. 4) весьма чувствительны даже к незначительному изменению входных параметров задачи. Поэтому есть основания полагать, что вклады таких важных поправок, как учет разности масс протона и нейтрона, зависимость силовых констант взаимодействия (2) от плотности среды могут быть исследованы в рамках предложенного метода. Кроме этого, есть интерес к задаче о вычислении "изотопического расщепления" нуль-звуковых возбуждений в асимметричной материи. Это аналог изотопического расщепления в ядрах, когда нейтрон может быть выбит в сплошной спектр из состояний с $p < p_{Fp}$ или из состояний с $p > p_{\mathrm{F}p}$ [27].

Авторы выражают благодарность М.Г. Рыскину за полезные обсуждения.

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. M. Colonna, M. Di Toro, and A. B. Larionov, Phys. Lett. B 428, 1 (1998).
- 2. M. Di Toro, V. M. Kolomietz, and A. B. Larionov, Phys. Rev. C 59, 3099 (1999).
- 3. A. B. Larionov, I. N. Mishustin, L. M. Satarov, et al., Phys. Rev. C 78, 014604 (2008).
- 4. A. B. Larionov, T. Gaitanos, and U. Mosel, Phys. Rev. C **85**, 024614 (2012). 5. E. Lipparini and E. Pederiva, Phys. Rev. C **88**, 024318
- (2013).
- 6. U. Fuhrmann, K. Morawetz, and R. Walke, Phys. Rev. C 58, 1473 (1998).
- 7. V. M. Kolomietz and S. Shlomo, Phys. Rev. C 64, 044304 (2001).
- 8. F. L. Braghin, D. Vautherin, and A. Abada, Phys. Rev. C 52, 2504 (1995).
- 9. V. Greco, M. Colonna, M. Di Toro, and F. Matera, Phys. Rev. C 67, 015203 (2003).
- 10. A. Pastore, D. Davesne, and J. Navarro, Phys. Rept. 563, 1 (2015).
- 11. D. Davesne, A. Pastore, and J. Navarro, Prog. Part. Nucl. Phys. 120, 103870 (2021).

- 12. В. А. Садовникова, М. А. Соколов, Изв. РАН. Сер. физ. 80, 1069 (2016) [V. A. Sadovnikova, M. A. Sokolov, Bull. Russ. Acad. Sci. Phys. 80, 981 (2016)].
- 13. В. А. Садовникова, М. А. Соколов, Изв. РАН. Сер. физ. 81, 1338 (2017) [V. A. Sadovnikova, M. A. Sokolov, Bull. Russ. Acad. Sci. Phys. 81, 1196 (2017)].
- 14. A. B. Migdal, A. A. Lushnikov, and D. F. Zaretsky, Nucl. Phys. A 66, 193 (1965).
- 15. А. Б. Мигдал, Д. Н. Воскресенский, Э. Е. Саперштейн, М. А. Троицкий, Пионные степени свободы в ядерном вешестве (Наука, Москва, 1991).
- 16. В. А. Садовникова, Изв. РАН. Сер. физ. 78, 853 (2014) [V. A. Sadovnikova, Bull. Russ. Acad. Sci. Phys. 78, 636 (2014)].
- 17. В. А. Садовникова, ЯФ 70, 1024 (2007) [V. A. Sadovnikova, Phys. At. Nucl. 70, 989 (2007)].
- 18. T. Ericson and W. Weise, Pions and Nuclei (Clarendon Press, Oxford, 1988).
- 19. В. А. Садовникова, Изв. РАН. Сер. физ. 85, 1482 (2021) [V. A. Sadovnikova, Bull. Russ. Acad. Sci. Phys. 85, 1155 (2021)].
- 20. А.Б. Мигдал, Теория конечных ферми-систем и свойства атомных ядер (Наука, Москва, 1983).
- 21. Л. Д. Ландау, Е. М. Лифшиц, Статистическая физика (Наука, Москва, 1976).
- 22. А. А. Абрикосов, Л. П. Горьков, И. Е. Дзялошинский, Методы квантовой теории поля в статистической физике (Физ.-мат. литература, Москва, 1962).
- 23. E. S. Hernandez, J. Navarro, and A. Polls, Nucl. Phys. A 627, 460 (1997).
- 24. R. J. Eden, P. V. Landshoff, D. I. Olive, and J. C. Polkinghorne, The Analytic S-Matrix (University Press, Cambridge, 1966).
- 25. Характеристики атомных ядер, nuclphys.sinp. msu.ru/anuc/table.pdf, табл. 12 (2014).
- 26. H. Steinwedel, J. H. D. Jensen, and P. Jensen, Phys. Rev. 79, 1019 (1950).
- 27. Б. С. Ишханов, И. М. Капитонов, УФН 191, 147 (2021).

CONNECTION OF ZERO-SOUND EXCITATIONS IN SYMMETRIC AND ASYMMETRIC NUCLEAR MATTER

V. A. Sadovnikova¹⁾, M. A. Sokolov²⁾

¹⁾NRC "Kurchatov Institute" – PNPI, Gatchina, Russia ²⁾Military Telecommunication Academy, St.-Petersburg, Russia

We present the method of calculation of zero-sound excitation frequencies in the symmetric and isospin asymmetric nuclear matter. In asymmetric matter three branches of the dispersion equation complex solutions $\omega_{si}(k,\beta)$, i = p, n, np are obtained but in symmetric matter two branches $\omega_s(k,\beta=0)$, $\omega_{s1}(k,\beta=0)$ were found. It is shown how these branches are interconnected. The response functions and the structure functions based on $\omega_{si}(k,\beta)$ are calculated in nuclear matter.