= ЯДРА =

ИЗМЕРЕНИЕ СЕЧЕНИЙ РЕАКЦИЙ ²³²Th(⁴He, *p*5*n*)²³⁰Pa, ²³²Th(⁴He, *p*3*n*)²³²Pa, ²³²Th(⁴He, 2*pn* + *p*2*n*)²³³Pa И ²³²Th(⁴He, 6*n*)²³⁰U ПРИ ОБЛУЧЕНИИ МИШЕНИ ИЗ ThO₂ ЯДРАМИ ⁴He

© 2022 г. М. Н. Герман¹⁾, В. А. Загрядский¹⁾, А. В. Курочкин¹⁾, К. А. Маковеева^{1)*}, Т. Ю. Маламут¹⁾, В. И. Новиков¹⁾, А. А. Смирнов¹⁾, В. Н. Унежев¹⁾

Поступила в редакцию 02.06.2022 г.; после доработки 02.06.2022 г.; принята к публикации 02.06.2022 г.

В настоящее время радиоизотоп ²³⁰ U рассматривается в качестве одного из наиболее перспективных *α*-эмиттеров для применения в иммунотерапии. В работе с целью уточнения ядерных данных и для оценки эффективности наработки ²³⁰U впервые измерены сечения реакций ²³²Th(⁴He, *p5n*)²³⁰Pa \rightarrow \rightarrow ²³⁰U и ²³²Th(⁴He, *6n*)²³⁰U, а также сечения сопутствующих реакций ²³²Th(⁴He, *p3n*)²³²Pa и ²³²Th(⁴He, 2*pn* + *p2n*)²³³Pa в диапазоне энергий ядер ⁴He 30–62 MэB. Для измерения сечений реакций была использована активационная методика. Экспериментальные сечения сопоставлялись с данными библиотеки TENDL-2021. На основании полученных результатов сделан вывод, что реакции ²³²Th(⁴He, *p5n*)²³⁰Pa \rightarrow ²³⁰U и ²³²Th(⁴He, *6n*)²³⁰U не позволяют обеспечить эффективную наработку ²³⁰U на циклотроне У-150 НИЦ "Курчатовский институт" и, соответственно, не могут рассматриваться в качестве альтернативы реакциям на протонах и дейтронах для получения ²³⁰U.

DOI: 10.31857/S0044002722060071

1. ВВЕДЕНИЕ

В настоящее время радиоизотоп ²³⁰U рассматривается в качестве одного из наиболее перспективных а-эмиттеров для применения в иммунотерапии [1-3]. Радиоизотоп 230 U ($T_{1/2} = 20.8$ сут) распадается каскадом из пяти α распадов (до долгоживущего ²¹⁰Pb) по цепочке: ²³⁰U($T_{1/2} = 20.8 \text{ сут}$) → ²²⁶Th($T_{1/2} = 30.9 \text{ мин}$) → → ²²²Ra($T_{1/2} = 38 \text{ c}$) → ²¹⁸Rn($T_{1/2} = 0.035 \text{ c}$) → → ²¹⁴Po($T_{1/2} = 1.6 \times 10^{-4} \text{ c}$) → ²¹⁰Pb($T_{1/2} =$ = 22.3 г.). На циклотроне У-150 НИЦ "Курчатовский институт" ²³⁰ U может быть получен несколькими методами: путем облучения природного тория протонами или дейтронами с образованием ²³⁰Ра и последующим его распадом в ²³⁰U, а также по реакции 232 Th(⁴He, p5n) 230 Pa $\rightarrow ^{230}$ U и одновременно по прямой реакции ²³²Th(⁴He, 6n)²³⁰U. Поскольку ²³⁰Ра распадается в ²³⁰U с очень маленьким выходом 7.8% [4], логично допустить, что вклад в наработку ²³⁰U прямой реакции мог бы быть весомым. Экспериментальные данные о сечениях указанных реакций в литературе отсутствуют. Рассчитанное по программе ALICA сечение реакции 232 Th(4 He, 6n) 230 U, приведенное

в [5], многократно превышает данные библиотеки TENDL-2021 [6]. Вместе с тем в [3] делается оптимистичный прогноз производства ²³⁰U по реакции ²³²Th(⁴He, 6n)²³⁰U на основе данных [5]. С целью уточнения ядерных данных для оценки эффективности наработки ²³⁰U в настоящей работе впервые измерены сечения реакций ²³²Th(⁴He, p5n)²³⁰Pa и ²³²Th(⁴He, 6n)²³⁰U, а также сечения сопутствующих реакций ²³²Th(⁴He, p3n)²³²Pa и ²³²Th(⁴He, 2pn + p2n)²³³Pa в диапазоне энергий ядер ⁴He 30–62 МэВ. Экспериментальные сечения реакций сопоставлялись с данными библиотеки TENDL-2021.

2. ЭКСПЕРИМЕНТАЛЬНАЯ МЕТОДИКА

Для измерения сечений реакций в работе была использована активационная методика. Мишени из порошка оксида тория, нанесенного методом седиментации (осаждения) [7] на подложки из алюминия, облучали ядрами ⁴Не с энергией 63 МэВ на циклотроне У-150 НИЦ "Курчатовский институт". После облучения и выдержки в мишенях измеряли активности радиоизотопов ²³⁰Ра, ²³²Ра и ²³³Ра. Активность ²³⁰U измеряли после радиохимического выделения ²³⁰U из мишеней. По измеренным активностям из уравнения активации определяли сечения реакций.

¹⁾НИЦ "Курчатовский институт", Москва, Россия.

^{*}E-mail: makoveeva_ka@nrcki.ru

Рис. 1. Сечение реакции ²³² Th(⁴He, *p*5*n*)²³⁰ Pa. Кривые: штрихпунктирная — TENDL-2021, сплошная — эксперимент.

Рис. 2. Сечение реакции ²³² Th(⁴He, *p*3*n*)²³² Pa. Кривые: штрихпунктирная — TENDL-2021, сплошная — эксперимент.

Метод седиментации позволил получить механически устойчивые и визуально равномерные по толщине слои оксида тория с толщинами 12– 15 мг/см². Диаметр нанесенного пятна составлял 20 мм. Мишени не изменяли свой первоначальный вид после облучения пучком заряженных частиц.

Мишени на подложках в количестве семи штук собирали в единую стопку. Между мишенями в стопке размещали замедлители заряженных частиц в виде алюминиевых фольг. Стопку устанавливали в мишенную камеру циклотрона и облучали пучком ядер ⁴Не. Энергия ядер ⁴Не задавалась параметрами циклотрона и составляла 63 ± 1 МэВ. Облучение проводили при среднем токе 0.1 мкА до достижения величины суммарного заряда ~0.3 мкА ч. Интегральный поток ядер ⁴Не, падающих на мишень, определяли с помощью интегратора тока. Суммарная толщина мишеней на подложках и замедлителей обеспечивала торможение ядер ⁴Не в стопке со стартовых 63 до 30 МэВ. Соответствие энергии ядер ⁴Не положению конкретной мишени в

ЯДЕРНАЯ ФИЗИКА том 85 № 6 2022

Рис. 3. Сечение реакции 232 Th(⁴He, 2pn + p2n) 233 Pa. Кривые: штрихпунктирная — TENDL-2021, сплошная — эксперимент.

Рис. 4. Сечение реакции ²³² Th(⁴He, 6n)²³⁰ U. Кривые: штрихпунктирная — TENDL-2021, сплошная — эксперимент.

стопке и, следовательно, ее активности определяли по программе SRIM [8].

После облучения и выдержки определяли активности радиоизотопов протактиния в мишенях по пикам полного поглощения γ -квантов: ²³⁰Ра по линии $E_{\gamma} = 918.5$ кэВ ($K_{\gamma} = 8.3\%$) [4], ²³²Ра по линии $E_{\gamma} = 969.315$ кэВ ($K_{\gamma} = 42.3\%$) [9], ²³³Ра по линии $E_{\gamma} = 311.9$ кэВ ($K_{\gamma} = 38.2\%$) [10]. В связи с тем, что ²³⁰U не имеет интенсивных гаммалиний, активность ²³⁰U определяли по активности дочернего короткоживущего радионуклида, находящегося с ним в равновесии. Так как у дочернего ²²⁶Th единственная относительно интенсивная гамма-линия $E_{\gamma} = 111.12$ кэВ ($K_{\gamma} = 3.29\%$) [11] практически совпадает с гамма-линией $E_{\gamma} =$ = 111.486 кэВ ($K_{\gamma} = 2.57\%$) [12] сопутствующего ²³¹U ($T_{1/2} = 4.2$ сут), активность ²³⁰U определяли по активности следующего в цепочке распада ²²²Ra

Е, МэВ	232 Th(4 He, $2pn + p2n$) 233 Pa	232 Th(4 He, $p3n$) 232 Pa	232 Th(4 He, $p5n$) 230 Pa	232 Th(4 He, $6n$) 230 U
62.0	33.4 ± 5.2	32.4 ± 5.3	10.2 ± 2.5	2.4 ± 0.5
59.1	33.6 ± 5.1	29.0 ± 4.7	5.2 ± 1.5	2.0 ± 0.5
55.8	34.7 ± 5.5	28.4 ± 4.6	1.0 ± 0.3	0.80 ± 0.26
49.3	32.7 ± 5.3	12.7 ± 2.3	—	—
43.1	11.7 ± 2.1	3.5 ± 0.6	—	—
37.0	5.8 ± 1.3	1.3 ± 0.2	—	—
30.0	0.44 ± 0.16	_	—	—

Таблица 1. Сечения реакций 232 Th(4 He, x), мбн

по линии $E_{\gamma} = 324.31$ кэВ ($K_{\gamma} = 2.77\%$) [13]. Для повышения чувствительности регистрации ²²²Ra мишени после ~7 сут выдержки перерабатывали в соответствии с радиохимической методикой, основанной на использовании экстракционнохроматографической смолы TEVA-resin [14], позволяющей разделить фракции тория, протактиния и урана. В качестве индикатора протактиния использовали ²³³Ра ($E_{\gamma} = 311.9$ кэВ, $K_{\gamma} = 38.2\%$) [10], в качестве индикатора урана 231 U ($E_{\gamma} =$ = 84.23 кэВ, $K_{\gamma} = 7.3\%$) [12]. В результате переработки мишеней во фракции тория не было обнаружено следов урана и протактиния, а во фракции урана следов протактиния. Активность ²³⁰U определяли по активности ²²²Ra, измеренной во фракции урана после радиохимической переработки мишеней. Для определения доли активности ²³⁰U, наработанной в прямой реакции ²³²Th(⁴He, $6n)^{230}$ U, из измеренной активности вычитали вклад активности ²³⁰U, накопленной в результате распада, наработанного в мишени ²³⁰Ра по реакиии 232 Th(4 He, p5n) 230 Pa. Измерения активности проводили с помощью гамма-спектрометра с детектором из сверхчистого германия ORTEC GEM (США). Мишени и образцы фракций элюата с ²³⁰U после радиохимического разделения устанавливали на расстоянии 6-40 см над поверхностью детектора в зависимости от загрузки спектрометра. "Мертвое" время при измерениях не превышало 5%. Энергетическую зависимость эффективности регистрации у-квантов детектором определяли экспериментально с помощью образцовых спектрометрических гамма-источников из комплекта ОСГИ. Сечения реакций определяли по формуле (1):

$$\sigma = \frac{A}{\left(1 - \exp^{-\lambda T}\right)NF}.$$
 (1)

Здесь σ — сечение реакции (см²); A — активность радиоизотопа в мишени, приведенная к концу об-

лучения (Бк); λ — постоянная распада (с⁻¹); T — время облучения (с); N — количество ядер ²³²Th; F — поток ядер ⁴He (с⁻¹ см⁻²).

3. ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ

В табл. 1 приведены экспериментальные значения сечений реакций 232 Th(⁴He, p5n) 230 Pa, 232 Th(⁴He, p3n) 232 Pa, 232 Th(⁴He, 2pn + p2n) 233 Pa и 232 Th(⁴He, 6n) 230 U в области энергий ядер ⁴He 30–62 МэВ.

На рис. 1-4 представлены экспериментальные значения сечений реакций в сравнении с данными из библиотеки TENDL-2021. Погрешности экспериментальных сечений реакций находятся в пределах 15-36% при доверительной вероятности 68%. Составляющими погрешности являлись погрешность определения эффективности детектора, погрешность определения площадей пиков полного поглощения гамма-квантов в аппаратурных спектрах, погрешность использованных для определения активностей квантовых выходов. Показанные на графиках погрешности энергии ядер ⁴Не в точках измерения сечений определяли по программе SRIM исходя из разброса ±1 МэВ стартовой энергии ядер ⁴He, задаваемой параметрами циклотрона.

4. ЗАКЛЮЧЕНИЕ

В настоящей работе в широком диапазоне энергий ядер ⁴Не впервые получены экспериментальные значения сечений реакций ²³²Th(⁴He, p5n)²³⁰Pa, ²³²Th(⁴He, p3n)²³²Pa, ²³²Th(⁴He, 2pn + p2n)²³³Pa и ²³²Th(⁴He, 6n)²³⁰U в области энергий ядер ⁴He 30–62 МэВ. Измеренные сечения сопоставляли с данными из библиотеки TENDL-2021.

Экспериментальное сечение реакции 232 Th(⁴He, p5n) 230 Pa при 55.8 МэВ совпадает с данными библиотеки TENDL-2021, в области выше 55.8 МэВ

данные библиотеки близки к нижней границе экспериментальной погрешности. Экспериментальные значения сечения реакции 232 Th(⁴He, p3n) 232 Pa в пределах экспериментальных погрешностей совпадают с данными TENDL-2021. Сечение реакции 232 Th(⁴He, 2pn + p2n) 233 Pa в области энергий 30–40 МэВ совпадает с данными TENDL-2021, при энергиях 40–62 МэВ эксперимент превышает расчетные значения, а в области энергий 50–62 МэВ превышение достигает 3 раз. Экспериментальное сечение реакции 232 Th(⁴He, 6n) 230 U примерно в 2 раза выше расчетных значений.

В эксперименте не получено подтверждение приведенного в [5] высокого значения (~1000 мбн при $E_{\alpha} = 57$ МэВ) сечения реакции ²³²Th(⁴He, 6n)²³⁰U, и, следовательно, оптимистичный прогноз возможности наработки ²³⁰U по реакции ²³²Th(⁴He, 6n)²³⁰U, сделанный в [3] на основании данных [5], не оправдан. Из приведенных в табл. 1 результатов следует, что реакции ²³²Th(⁴He, p5n)²³⁰Pa \rightarrow ²³⁰U и ²³²Th(⁴He, 6n)²³⁰U не позволяют обеспечить эффективную наработку ²³⁰U на циклотроне У-150 НИЦ "Курчатовский институт" и, соответственно, не могут рассматриваться в качестве альтернативы реакциям на протонах и дейтронах для получения ²³⁰U.

Работа выполнена при поддержке НИЦ "Курчатовский институт", приказ № 2751 от 28.10.2021.

СПИСОК ЛИТЕРАТУРЫ

1. M. T. Friend, T. Mastren, T. G. Parker, C. E. Vermeulen, M. Brugh, E. R. Birnbaum, F. M. Nortier, and M. E. Fassbender, Appl. Radiat. Isot. **156**, 108973 (2020).

- A. Morgenstern, O. Lebeda, J. Stursa, R. Capote, M. Sin, F. Bruchertseifer, B. Zielinska, and C. Apostolidis, Phys. Rev. 80, 054612 (2009).
- 3. Z. B. Alfassi, M. Bonardi, F. Groppi, and E. Menapace, J. Radioanalyt. Nucl. Chem. **270**, 483 (2006).
- 4. E. Browne and J. K. Tuli, Nucl. Data Sheets **113**, 2113 (2012).
- A. Morgenstern, C. Apostolidis, R. Molinet, and K. Luetzenkirchen, Patent USA, Pub. № US 2010/0189642 A1, Jul. 29, 2010.
- A. J. Koning, D. Rochman, J.-Ch. Sublet, N. Dzysiuk, M. Fleming, and S. van der Marck, Nucl. Data Sheets 155, 1 (2019).
- М. Н. Герман, В. А. Загрядский, А. В. Курочкин, К. А. Маковеева, Т. Ю. Маламут, В. И. Новиков, И. И. Скобелин, В. Н. Унежев, ЯФ 85, 14 (2022) [Phys. At. Nucl. 85, 12 (2022)].
- 8. J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, Nucl. Instrum. Methods B **268**, 1818 (2010).
- 9. E. Browne, Nucl. Data Sheets 107, 2579 (2006).
- 10. B. Singh, J. K. Tuli, and E. Browne, Nucl. Data Sheets **170**, 499 (2020).
- 11. S. Singh, A. K. Jain, and J. K. Tuli, Nucl. Data Sheets **112**, 2851 (2011).
- 12. E. Browne and J. K. Tuli, Nucl. Data Sheets **114**, 751 (2013).
- B. Singh, M. S. Basunia, M. Martin, E. A. McCutchan, I. Bala, R. Caballero-Folch, R. Canavan, R. Chakrabarti, A. Chekhovska, M. M. Grinder, S. Kaim, D. Kanjilal, D. Kasperovych, M. J. Kobra, H. Koura, S. Nandi, *et al.*, Nucl. Data Sheets 160, 405 (2019).
- A. W. Knight, E. S. Eitrheim, A. W. Nelson, S. Nelson, and M. K. Schultz, J. Environ. Radioact. 134, 66 (2014), doi:10.1016/j.jenvrad.2014.02.010

MEASUREMENT OF CROSS-SECTIONS OF 232 Th(4 He, p5n) 230 Pa, 232 Th(4 He, p3n) 232 Pa, 232 Th(4 He, 2pn + p2n) 233 Pa AND 232 Th(4 He, 6n) 230 U REACTIONS BY IRRADIATION OF A ThO₂ TARGET WITH 4 He NUCLEI

M. N. German¹⁾, V. A. Zagryadskiy¹⁾, A. V. Kurochkin¹⁾, K. A. Makoveeva¹⁾, T. Yu. Malamut¹⁾, V. I. Novikov¹⁾, A. A. Smirnov¹⁾, V. N. Unezhev¹⁾

¹⁾NRC "Kurchatov Institute", Moscow, Russia

At present, the ²³⁰U radioisotope is considered as one of the most promising α -emitters for use in immunotherapy. In order to refine the nuclear data and to evaluate the efficiency of ²³⁰U production, the cross sections for the reactions ²³²Th(⁴He, p5n)²³⁰Pa \rightarrow ²³⁰U and ²³²Th(⁴He, 6n)²³⁰U, as well as the cross sections for the accompanying reactions ²³²Th(⁴He, p3n)²³²Pa and ²³²Th(⁴He, 2pn + p2n)²³³Pa in the energy range of ⁴He nuclei 30–62 MeV were measured. The activation technique was used to measure the reaction cross sections. The experimental cross sections were compared with the data from the TENDL-2021 library. Based on the obtained results, it was concluded that the reactions ²³²Th(⁴He, p5n)²³⁰Pa \rightarrow ²³⁰U and ²³²Th(⁴He, 6n)²³⁰U do not allow efficiently to produce the ²³⁰U at the U-150 cyclotron of the National Research Center "Kurchatov Institute" and, accordingly, cannot be considered as an alternative to reactions on protons and deuterons to produce ²³⁰U.

ЯДЕРНАЯ ФИЗИКА том 85 № 6 2022