= ЯДРА =

ОПРЕДЕЛЕНИЕ ПОТОКА НЕЙТРОНОВ ПРИ ОБЛУЧЕНИИ БЕРИЛЛИЕВОЙ МИШЕНИ ПРОТОНАМИ С ЭНЕРГИЕЙ 21.3 МэВ

© 2022 г. Ю. Е. Титаренко^{1)*}, В. Ф. Батяев¹⁾, В. Ю. Бландинский¹⁾, В. М. Живун¹⁾, М. А. Жигулина¹⁾, А. А. Ковалишин¹⁾, Т. В. Кулевой¹⁾, Б. В. Кутеев¹⁾, В. О. Легостаев¹⁾, С. В. Малиновский¹⁾, К. В. Павлов¹⁾, В. И. Рогов¹⁾, А. Ю. Титаренко¹⁾, Р. С. Халиков¹⁾, В. С. Столбунов¹⁾, Н. А. Коваленко^{1),2)}, А. Р. Мороз²⁾, С. В. Григорьев²⁾, К. А. Павлов²⁾

Поступила в редакцию 08.06.2022 г.; после доработки 08.06.2022 г.; принята к публикации 11.06.2022 г.

Представлены результаты определения плотности потока нейтронов с энергией до 20 МэВ, образовавшихся при облучении Ве толщиной 1.3 мм пучком протонов с энергией 21.3 МэВ. Плотность потока протонов определялась штатными приборами и контролировались активационным методом с использованием мониторных реакций ^{nat}Cu(p, x)⁶²Zn и ^{nat}Cu(p, x)⁶³Zn, а плотность потока образовавшихся нейтронов определялась с помощью реакций ²⁷Al(n, p)²⁷Mg и ²⁷Al(n, α)²⁴Na. Спектры протонов и нейтронов в центре экспериментальных образцов рассчитывались по программе PHITS.

DOI: 10.31857/S0044002722060137

1. ВВЕДЕНИЕ

Уникальные свойства нейтронов позволяют использовать их во многих областях исследований от физики и материаловедения до биологии и геологии. К основным таким свойствам, конечно, относятся: электрическая нейтральность, относительно большое время жизни в свободном состоянии, наличие собственного магнитного момента, безвредность нейтронного излучения даже для исследования биологических систем и глубокая проникающая способность нейтронного излучения.

В связи с этим в последнее время все более широкое распространение получают нейтронные методы исследования различного назначения, для которых необходимы соответствующие источники нейтронов. К таким нейтронным источникам относятся источники на основе импульсных линейных ускорителей протонов, в качестве генерирующей мишени в которых может использоваться бериллий, испускающий нейтроны в реакциях типа ⁹Be(p, x). Задача, которой посвящена настоящая работа, заключается в определении плотности потока нейтронов в результате облучения Be-мишени толщиной 1.3 мм протонами с энергией 21.3 МэВ.

2. ОПИСАНИЕ ЭКСПЕРИМЕНТАЛЬНОЙ УСТАНОВКИ

Схема внешнего канала (ВК) линейного ускорителя И-2 НИЦ КИ, выводящего пучок протонов в атмосферу, представлена на рис. 1. Параметры пучка протонов ВПА представлены в табл. 1.

Нейтронопроизводящий модуль (НПМ) расположен в конце внешнего вакуумного канала, по оси пучка протонов на расстоянии 8.5 см от выпускного окна. НПМ включает в себя Ве-мишень диаметром 40 мм и толщиной 1.3 мм, установленную в центре камеры из борированного (5%) полиэтилена (КБП) толщиной 5 см, которая, в свою очередь, окружена свинцовой защитой толщиной также 5 см. Схема камеры и расположение в ней мишени изображены на рис. 2, вид нейтронопроизводящего модуля показан на рис. 3.

Таблица 1. Параметры пучка протонов

Энергия ускоренных протонов	24.6 МэВ
Энергетический разброс частиц	$\pm 0.5\%$
Ток ускоренного пучка в импульсе, до	200 мА
Длительность импульса пучка	2—30 мкс
Средний ток ускоренного пучка, до	5 мкА
Диаметр выпускного окна	85 мм
Частота следования импульсов	0.249 Гц

¹⁾НИЦ "Курчатовский институт", Москва, Россия.

²⁾НИЦ "Курчатовский институт" — ПИЯФ, Гатчина, Россия.

^{*}E-mail: Yury.Titarenko@itep.ru

Рис. 1. Схема внешнего канала линейного ускорителя И-2: К4 — электромагнитный корректор; КН6 — камера наблюдения; ЛМ1 — 1-я малая линза; ЛМ2 — 2-я малая линза; ВП1 — вакуумный пост 1 (форвакуумный насос); ЗИ4 затвор вакуумный; ВП2 — вакуумный пост 2 (высоковакуумный магнитразрядный насос); ВПА — вывод пучка протонов в атмосферу; ИД — индукционный датчик; НПМ — нейтронопроизводящий модуль.

Рис. 2. Чертеж НПМ с Рb-защитой. Буквы А и Б показывают расположение активационных мониторов, параметры которых представлены в табл. 6.

3. ОПРЕДЕЛЕНИЕ ЭНЕРГИИ ПРОТОНОВ В Си-МОНИТОРЕ И СПЕКТРА НЕЙТРОНОВ В ОБЛАСТИ РАСПОЛОЖЕНИЯ АІ-МИШЕНИ

Активационный Си-монитор диаметром 5 см с помощью липкой ленты помещался во входном отверстии НПМ. При определении энергии протонов в объеме активационного монитора и на входе в Ве-мишень использовались следующие исходные данные:

0.5 мм;

толщина воздушного промежутка от окна ВК до активационного Си-монитора — 85.0 мм;

выпускное окно ВК — Аl-фольга толщиной

толщина Си-монитора — 0.1 мм;

толщина воздушного промежутка от Симонитора до Ве-мишени — 122.5 мм.

Таблицы 2 и 3 показывают результаты вычислений с помощью программы SRIM [1] пробегов

Рис. 3. 3D модель нейтронопроизводящего модуля.

протонов на граничных точках вышеуказанных материалов.

Спектры протонов и нейтронов в Си- и Аl-

Таблица 2. Граничные энергии протонного пучка при выводе из ускорителя И-2 при использовании Симонитора

Номер слоя, <i>і</i>	Энергия протонов на входе в слой <i>E_i</i> , МэВ	Материал слоя	Толщина слоя, мкм	Энергия на выходе из слоя <i>E_i</i> , МэВ
1	24.60	Al	500	22.24
2	22.24	Воздух	85000	21.96
3	21.96	Cu	100	20.56

Таблица 3. Граничные энергии протонного пучка при выводе из ускорителя И-2 при использовании Аl-монитора

Номер слоя, <i>i</i>	Энергия протонов на входе в слой $E_i, МэВ$	Материал слоя	Толщина слоя, мкм	Энергия на выходе из слоя <i>E_i</i> , МэВ
1	24.60	Al	500	22.26
2	22.26	Воздух	209350	21.05
3	21.05	Be	1300	15.48
4	15.48	Воздух	124350	14.90
5	14.90	Al	138	13.96

мониторах рассчитывались с использованием программы PHITS [2]. Спектр нейтронов от реакции ${}^{9}\text{Be}(p,x)$ в Al-мониторе представлен на рис. 4. Кроме спектра нейтронов, также рассчитывались скорости реакций ${}^{27}\text{Al}(n,p){}^{27}\text{Mg}$ и ${}^{27}\text{Al}(n,\alpha){}^{24}\text{Na}$, файлы сечений этих реакций были взяты из библиотеки ENDF/B-VIII.0.

В этом случае средние сечения по расчетному спектру нейтронов можно представить в виде

$$\bar{\sigma} = \frac{\int\limits_{E_{\text{nop}}}^{20 \text{ M} \to \text{B}} \sigma(E) \Phi(E) dE}{\int\limits_{E_{\text{nop}}}^{20 \text{ M} \to \text{B}} \Phi(E) dE},$$
(1)

где $\bar{\sigma}$ — значение среднего сечения, усредненного по спектру нейтронов; $\Phi(E)$ — спектр нейтронов, представленный на рис. 4; $\sigma(E)$ — энергетическая зависимость сечения пороговых реакций, представленная на рис. 5 и 6. Для демонстрации динамики сечений при энергиях выше 20 МэВ, для которых информация в библиотеке ENDF/В отсутствует, на рис. 5 и 6 дополнительно представлены сечения из библиотеки TENDL-2019.

Значения средних сечений нейтронных реакций, оцененных по формуле (1), представлены в табл. 4.

4. ОПРЕДЕЛЕНИЕ ЗНАЧЕНИЯ СЕЧЕНИЯ МОНИТОРНОЙ РЕАКЦИИ

С использованием базы данных по экспериментально измеренным сечениям различных ядерных реакций EXFOR были составлены компиляции имеющихся данных по реакциям $^{nat}Cu(p,x)^{62}Zn$ и $^{nat}Cu(p,x)^{63}Zn$ [5], которые представлены на рис. 7 и 8. Таблица 5 содержит результаты оценки сечений мониторных реакций при указанных в табл. 2 энергиях протонов.

5. ПАРАМЕТРЫ ОБЛУЧЕНИЙ Сu-И Al-МОНИТОРОВ, ОБРАБОТКА ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ

Облучения Си- и Аl-мониторов состояли из двух сеансов, параметры которых представлены

Таблица 4. Результаты определения сечений ${}^{27}\text{Al}(n,p){}^{27}\text{Mg}, {}^{27}\text{Al}(n,\alpha){}^{24}\text{Na}$ реакций

Способ оценки	Значение среднего сечения $^{27}\mathrm{Al}(n,p)^{27}\mathrm{Mg}$, мбн	Значение среднего сечения $^{27}\mathrm{Al}(n,\alpha)^{24}\mathrm{Na}$, мбн
PHITS	12.2 ± 1.2	6.8 ± 0.9

Рис. 4. Результаты моделирования с использованием программы PHITS спектров нейтронов в области расположения Al-монитора и скоростей ${}^{27}\text{Al}(n,p){}^{27}\text{Mg}$ и ${}^{27}\text{Al}(n,\alpha){}^{24}\text{Na}$ реакций. Значения плотности потока представлены с размерностью ($n/p/\text{см}^2/\text{M}$ эB), значения скоростей реакций — ($10^{-24}/p/\text{M}$ эB).

Рис. 5. Файлы сечений реакции 27 Al $(n, \alpha){}^{24}$ Na, представленные в библиотеках ENDF/B-VIII.0 [3] и TENDL-2019 [4].

Таблица	5.	Результаты	определения	сечений
$^{nat}Cu(p, x)$) ⁶² Zn,	$^{nat}Cu(p,x)^{63}Z$	Zn реакций	

Способ оценки	Средняя энергия протонов в Си- мониторе, МэВ	Значение мониторного сечения $^{\mathrm{nat}}\mathrm{Cu}(p,x)^{62}$ Zn, мбн	Значение мониторного сечения ${}^{\rm nat}{ m Cu}(p,x)^{63}{ m Zn},$ мбн
SRIM	21.3	60.4 ± 5.8	35.8 ± 6.3

ЯДЕРНАЯ ФИЗИКА том 85 № 6 2022

в табл. 6. В обоих сеансах диаметры мониторов составляли 50 мм, а длительность сеансов составляла 20 мин при частоте следования протонных импульсов 0.249 Гц (по 400 протонных импульсов в обоих сеансах).

Спектрометры, используемые для измерения облученных Си- и Аl-мониторов, представляли собой два идентичных комплекта на базе коаксиальных HPGe-детекторов GC2518 и цифровых блоков DSA 1000.

Для выполнения экспериментов были определены их рабочие характеристики и проведены калибровки эффективности регистрации γ -квантов в

Рис. 6. Файлы сечений реакции 27 Al $(n, p){}^{27}$ Mg, представленные в библиотеках ENDF/B-VIII.0 и TENDL-2019.

Рис. 7. Компиляция базы данных EXFOR экспериментальных работ по измерению сечений мониторной реакции $\operatorname{nat} \operatorname{Cu}(p, x)^{62}$ Zn.

интервале энергий от 0.05 до 3 МэВ в диапазоне расстояний источник-детектор от 40 до 1325 мм. Пример полученной калибровки представлен в [6].

Обработка первичных γ -спектров облученных исследуемых и мониторных образцов во всех экспериментах осуществлялась с помощью пакета программ GENIE-2000 [7], обеспечивающего возможность после пакетной обработки применить интерактивную подгонку γ -спектров с заведомо большим количеством неразрешенных мультиплетов. Примеры измеренных γ -спектров представлены на рис. 9 и 10.

С использованием значений сечений мониторных реакций $^{nat}Cu(p,x)^{62}Zn$ и $^{nat}Cu(p,x)^{63}Zn$, представленных в табл. 4, плотность потока прото-

Таблица 6. Параметры облучений Си-и Аl-мониторов

№ сеан- са	Цели сеанса	Позиция монитора на рис. 2	Материал монитора	Вес мони- тора, мг
1	Определение плотности потока протонов на входе в НПМ	А	Cu	1731.4
2	Определение плотности потока нейтронов на выходе из НПМ	Б	Al	738.2

Рис. 8. Компиляция базы данных EXFOR экспериментальных работ по измерению сечений мониторной реакции $^{nat}Cu(p,x)^{63}Zn$.

Рис. 9. Спектр гамма-излучения Си-монитора.

нов и ее погрешность определяются по формулам:

$$\Phi = \frac{RR}{\sigma},\tag{2}$$

$$\frac{\Delta\Phi}{\Phi} = \sqrt{\left(\frac{\Delta RR}{RR}\right)^2 + \left(\frac{\Delta\sigma}{\sigma}\right)^2},\qquad(3)$$

где RR — скорость мониторной реакции, σ — сечение используемой мониторной реакции. Скорость мониторной реакции RR и ее погрешность ΔRR , в свою очередь, определяются с использованием гамма-спектрометра по формулам:

$$RR = \frac{A}{N_{\text{tag}}\eta\varepsilon}\frac{1}{F},\tag{4}$$

$$\Delta RR = \sqrt{\left(\frac{\Delta A}{A}\right)^2 + \left(\frac{\Delta \eta}{\eta}\right)^2 + \left(\frac{\Delta \varepsilon}{\varepsilon}\right)^2 + \left(\frac{\Delta N_{\text{tag}}}{N_{\text{tag}}}\right)^2 + \left(\frac{\Delta F}{F}\right)^2}RR,\tag{5}$$

	Энергия γ -квантов, кэВ	Выход γ -квантов на 100 распадов	Период полурас- пада
⁶² Zn	548.35	15.3 ± 1.4	9.193 ч
⁶² Zn	596.56	26 ± 2	9.193 ч
⁶³ Zn	669.62	8.2 ± 0.3	38.47 мин
⁶³ Zn	962.06	6.5 ± 0.4	38.47 мин
²⁷ Mg	843.76	71.80 ± 0.02	9.458 мин
27 Mg	1014.52	28.20 ± 0.02	9.458 мин
²⁴ Na	1368.63	99.99	14.997 ч

Таблица 7. Ядерно-физические характеристики ⁶²Zn, ⁶³Zn и ²⁷Mg, ²⁴Na

Рис. 10. Спектр гамма-излучения Аl-монитора.

где A — скорость счета в пике полного поглощения; $N_{\rm tag}$ — число ядер в мониторе; η — квантовый выход регистрируемых гамма-квантов на один распад продукта мониторной реакции; ε — эффективность регистрации спектрометра; F — экспоненциальная функция, учитывающая распад продукта мониторной реакции.

Подробное описание процедуры определения скоростей реакции представлено в [6].

Ядерно-физические характеристики продуктов, используемых для расчета потока протонов и нейтронов за все время облучения, представлены в табл. 7 [8]. Итоговые значения скоростей реакций и итоговые значения потоков протонов и нейтронов представлены в табл. 8.

6. ЗАКЛЮЧЕНИЕ

Представленные результаты контроля плотностей потоков протонов и нейтронов с энергией до 20 МэВ позволили определить численное значение плотности потока нейтронов из Ве-мишени с относительной погрешностью ~15%. Полученное значение (7.0 ± 0.6) × 10^{-4} нейтронов, вылетающих из НПМ, в нормировке на исходный протон примерно в на треть выше значения, полученного по программе PHITS — (5.4×10^{-4}).

№ сеан- са	Продукт реакции	Энергия γ -излу- чения, кэВ	$\frac{RR_i \pm \Delta RR_i}{1/c},$	$\overline{RR} \pm \Delta \overline{RR}, \\ 1/c$	$\Phi_i \pm \Delta \Phi_i,$ частиц/см 2 с	$ar{\Phi}\pm\Deltaar{\Phi},$ частиц/см 2 с
				Протоны		
1	⁶² Zn	548.35	$(1.44 \pm 0.13) \times 10^{-15}$	$(1.419 \pm 0.086) \times 10^{-15}$	$(2.3 \pm 0.2) \times 10^{10}$	$(2.2 \pm 0.3) \times 10^{10}$
	⁶² Zn	596.56	$(1.41 \pm 0.11) \times 10^{-15}$			
	⁶³ Zn	669.62	$(7.59 \pm 0.34) \times 10^{-16}$	$(7.56 \pm 0.28) \times 10^{-16}$	$(2.1 \pm 0.4) \times 10^{10}$	
	⁶³ Zn	962.06	$(7.49 \pm 0.49) \times 10^{-16}$			
				Нейтроны		
2	²⁷ Mg	843.76	$(2.091\pm 0.091)\times 10^{-19}$	$(2.100\pm0.072)\times10^{-19}$	$(1.6 \pm 0.07) \times 10^7$	$(1.6\pm0.05)\times10^7$
	²⁷ Mg	1014.5	$(2.11 \pm 0.12) \times 10^{-19}$			
	²⁴ Na	1368.6	$(1.463\pm0.021)\times10^{-19}$	$(1.463\pm0.021)\times10^{-19}$	$(2.2 \pm 0.06) \times 10^7$	
	Отношение $ar{\Phi}_n/ar{\Phi}_p$ $(7.0\pm0.6) imes10^{-4}$					

Таблица 8. Значения измеренных скоростей реакций, плотности потока частиц (протоны и нейтроны) и их погрешности

Отметим, что образование ²⁷Mg в Al происходит исключительно под воздействием нейтронов, в то время как ²⁴Na может образовываться как под воздействием нейтронов, так и протонов с энергиями ниже 20 МэВ. Поэтому для вычисления плотности потока нейтронов использовалось значение реакции ²⁷Al(n, p)²⁷Mg.

В дальнейшем планируется провести работы по измерению спектров нейтронов методом времени пролета. Толщину Ве-мишени предполагается увеличить до 3.0 мм с целью исключения протонов на выходе из НПМ или изготовить комбинированную мишень, состоящую из Ве толщиной 1.3 мм и Си толщиной ~0.5 мм.

Исследования выполнены при финансовой поддержке Российского фонда фундаментальных исследований (РФФИ) в рамках научного проекта № 19-29-02028, а также при финансовой поддержке Министерства науки и высшего образования Российской Федерации в рамках Соглашения № 075-15-2022-830 от 27 мая 2022 г. (продолжение Соглашения № 075-15-2021-1358 от 12 октября 2021 г.).

СПИСОК ЛИТЕРАТУРЫ

1. J. F. Ziegler, SRIM-2013, http://www.srim.org/

- T. Sato, Y. Iwamoto, S. Hashimoto, T. Ogawa, T. Furuta, S. Abe, T. Kai, Pi-En Tsai, N. Matsuda, H. Iwase, N. Shigyo, L. Sihver, and K. Niita, J. Nucl. Sci. Tech. 55, 684 (2018).
- D. A. Brown, M. B. Chadwick, R. Capote, A. C. Kahler, A. Trkov, M. W. Herman, A. A. Sonzogni, Y. Danon, A. D. Carlson, M. Dunn, D. L. Smith, G. M. Hale, G. Arbanas, R. Arcilla, C. R. Bates, B. Beck, *et al.*, Nucl. Data Sheets 148, 1 (2018).
- A. J. Koning, D. Rochman, J.-Ch. Sublet, N. Dzysiuk, M. Fleming, and S. van der Marck, Nucl. Data Sheets 155, 1 (2019).
- 5. Experimental Nuclear Reaction Data (EXFOR), https://www-nds.iaea.org/exfor/
- Yu. E. Titarenko, V. F. Batyaev, E. I. Karpikhin, V. M. Zhivun, A. V. Ignatyuk, V. P. Lunev, N. N. Titarenko, Yu. N. Shubin, and V. S. Barashenkov, INDC(CCP)-0447, IAEA (Oct. 2009); http://www-nds.iaea.org/publications/indc/indcccp-0447.pdf
- GenieTM2000 Gamma Analysis Software, Mirion Technologies (Canberra), Inc.
- 8. Nuclear Structure & Decay Data (NuDat 2.8); https://www.nndc.bnl.gov/nudat3/nudat2.jsp

DETERMINATION OF THE NEUTRON FLUX UNDER IRRADIATION OF THE BERYLLIUM TARGET BY PROTONS WITH ENERGY 21.3 MeV

Yu. E. Titarenko¹⁾, V. F. Batyaev¹⁾, V. Yu. Blandinskiy¹⁾, V. M. Zhivun¹⁾, M. A. Zhigulina¹⁾,
A. A. Kovalishin¹⁾, T. V. Kulevoy¹⁾, B. V. Kuteev¹⁾, V. O. Legostaev¹⁾, S. V. Malinovskiy¹⁾,
K. V. Pavlov¹⁾, V. I. Rogov¹⁾, A. Yu. Titarenko¹⁾, R. S. Khalikov¹⁾, V. S. Stolbunov¹⁾,
N. A. Kovalenko^{1),2)}, A. R. Moroz²⁾, S. V. Grigoryev²⁾, K. A. Pavlov²⁾

¹⁾National Research Center "Kurchatov Institute", Moscow, Russia ²⁾NRC "Kurchatov Institute" — PNPI, Gatchina, Russia

The results of determining the flux density of neutrons with energies up to 20 MeV, which were formed upon irradiation of Be with a thickness of 1.3 mm by a beam of protons with an energy of 21.3 MeV, are presented. The proton flux density was determined by standard instruments and controlled by the activation method using the monitor reactions ^{nat}Cu(p, x)⁶²Zn and ^{nat}Cu(p, x)⁶³Zn, and the neutron flux density was determined using the reactions ²⁷Al(n, p)²⁷Mg and ²⁷Al(n, α)²⁴Na. The spectra of protons and neutrons at the center of the experimental samples were calculated using the PHITS code.