= ЯДРА =

ПРОЯВЛЕНИЕ СТРУКТУРЫ ВОЛНОВЫХ ФУНКЦИЙ ЯДРА 16 O(g. s.; 3⁻, 6.13 МэВ) В РЕАКЦИЯХ 16 O(α, α) 16 O И 15 N(α, t) 16 O

© 2023 г. Л. И. Галанина^{1)*}, Н. С. Зеленская¹⁾, В. М. Лебедев¹⁾, Н. В. Орлова¹⁾, А. В. Спасский¹⁾

Поступила в редакцию 15.09.2022 г.; после доработки 15.09.2022 г.; принята к публикации 15.09.2022 г.

Структура волновых функций ядра ¹⁶O(g. s., 3⁻) исследована с использованием экспериментальных угловых распределений дифференциальных сечений реакций ¹⁶O(α, α)¹⁶O(g. s., 3⁻) и ¹⁵N(α, t)¹⁶O(g. s., 3⁻) при $E_{\alpha} = 30.3$ МэВ. Анализ проведен в рамках метода связанных каналов с учетом прямых механизмов (срыва протона и передачи тяжелого кластера ¹²C) и в модели составного ядра. Каждый из рассмотренных механизмов обусловлен конкретной конфигурацией волновой функции ядра ¹⁶O и вносит существенный вклад в экспериментальное сечение.

DOI: 10.31857/S0044002723010208, EDN: RBQFWS

1. ВВЕДЕНИЕ

Структура дважды магического ядра ¹⁶О активно изучается экспериментально и теоретически. Спектр возбужденных состояний ядра не имеет однозначного описания ни в одной из существующих моделей. К настоящему времени установлено, что волновые функции (ВФ) основного состояния ¹⁶О и его возбужденных 0⁺-уровней имеют двойственную природу: оболочечные ВФ в потенциале среднего поля, включающего остаточные парные взаимодействия, и α -кластерные, которые могут иметь конфигурации 4 α и α + ¹²С.

В [1] при изучении монопольных возбуждений первых шести 0⁺-уровней показано, что до энергии возбуждения $E^* \sim 16$ МэВ экспериментальная силовая функция монопольного возбуждения в ¹⁶O(α, α)-рассеянии удовлетворительно описывается в 4 α -кластерной модели при учете оболочечных и $\alpha + {}^{12}$ С конфигураций. При энергиях в интервале 16 < E^* < 40 МэВ три первых структурных пика соответствуют оболочечным возбуждениям. Для $\alpha + {}^{12}$ С конфигураций в [1] рассчитаны спектроскопические факторы, характеризующие распад 16 O(g. s.) = $\alpha + {}^{12}$ С.

Для состояния (3⁻, 6.13 МэВ) подобных исследований нет. Классификация этого уровня как члена полосы, аналогичной ротационной, предложена в [2]. Структура ядра ¹⁶О рассматривается в двух конфигурациях: T_d -инвариантного 4α -тетраэдра и кластерной α + ¹²С. Состояния $0^+_{\rm g.\,s.}$, 3^- (6.13 МэВ) и 4⁺ (10.4 МэВ) интерпретируются как уровни одной полосы, полученной деформацией основного состояния 4α -тетраэдра (что объясняет наличие интенсивного E3-перехода). В α + $+^{12}$ С конфигурации выделены уровни, объединенные в полосы с $K = 0^+$ и $K = 0^-$. Существование $\alpha + ^{12}$ С конфигураций в различных состояния ядра ¹⁶О подтверждено в [3] в рамках современной нуклон-кластерной модели оболочек.

Согласно [1, 2] ВФ $0^+_{g. s.}$ и 3⁻ (6.13 МэВ) уровней ядра ¹⁶О включают в себя, по крайней мере, три конфигурации: оболочечные в среднем поле ядра, деформационные полосы 4*α*-тетраэдра и кластерные конфигурации $\alpha + {}^{12}$ С. В различных механизмах протекания реакций ${}^{16}O(\alpha, \alpha){}^{16}O(g. s., 3^{-})$ и $^{15}N(\alpha, t)^{16}O(g. s., 3^{-})$ могут доминировать конкретные конфигурации ВФ конечного ядра. Оболочечные возбуждения, подтвержденные для рассматриваемой энергии в [1], обосновывают использование механизмов срыва протона для (α, t) реакции и составного ядра (СЯ) для обеих реакций. Механизмом, чувствительным к наличию $\alpha +$ + ¹²С конфигурации, является передача тяжелого кластера ¹²С. Наличие в ядре ¹⁶О интенсивного E3-перехода между основным и 3^- -состояниями обосновывает использование формализма метода связи каналов (МСК) в предположении механизма

¹⁾Московский государственный университет имени М.В. Ломоносова, Научно-исследовательский институт ядерной физики имени Д.В. Скобельцына, Москва, Россия.

^{*}E-mail: galan_lidiya@mail.ru

коллективного возбуждения (МКВ) состояния 3^{-} ядра 16 О.

В настоящей работе проведен анализ всех указанных механизмов для угловых зависимостей экспериментальных дифференциальных сечений реакций ¹⁶O(α, α)¹⁶O(g. s., 3⁻) и ¹⁵N(α, t)¹⁶O(g. s., 3⁻), полученных нами ранее [4, 5] при $E_{\alpha} =$ = 30.3 МэВ. Вклады прямых механизмов срыва протона и передачи кластера ¹²С (рис. 1) с учетом связи каналов ядра ¹⁶О рассчитаны с использованием кода FRESCO [6] (модель ССВА). Вклад механизма СЯ определен в коде TALYS [7].

В следующем разделе изложен аппарат расчета спектроскопических амплитуд (СА), необходимых для расчета сечений прямых механизмов. В разд. 3 обсуждается выбор оптимальных параметров для расчета сечений реакций. В разд. 4 проведено сопоставление экспериментальных дифференциальных сечений обеих реакций с рассчитанными. В Заключении проведено краткое суммирование полученных результатов.

2. СПЕКТРОСКОПИЧЕСКИЕ АМПЛИТУДЫ ДЛЯ ПРЯМЫХ МЕХАНИЗМОВ

Мы рассчитали СА в каждой вершине полюсных диаграмм рис. 1 с использованием оболочечных ВФ ядер 15 N и 16 O.

Ядро ¹⁵N в основном состоянии $1/2^{-}$ определяется дырочной протонной конфигурацией $|1p^{-1}\rangle$ в замкнутой 1p-оболочке, так что его ВФ в *LS*-связи имеет одну компоненту (оболочку $|1s^4\rangle$ опускаем)

$$\Psi_{1/2^{-}, T=1/2} = \left| (1p)^{11} [443] : {}^{22}P \right\rangle.$$
 (1a)

ВФ основного состояния 0^+ дважды магического ядра 16 О в *LS*-связи имеет вид

$$\Psi_{0^+, T=0} = \left| p^{12} [444]^{11} S \right\rangle. \tag{16}$$

ВФ состояния 3⁻ в 16 О нами определена как частично-дырочная протонная конфигурация $|1p^{-1}1d\rangle$

$$\Psi_{3^{-}, T=0} = \left| p^{11} [443]^{22} P, \ ^{22}d: \ ^{11}F \right\rangle.$$
(1B)

 $\mathrm{CA}_{\Lambda I}^{B o x+C}$ отделения кластера x со спином J_x от ядра B с последующей схемой связи моментов $\langle \Lambda J_x | I \rangle \langle J_C I | J_B \rangle$ определяется выражением [8]

$$CA_{\Lambda I}^{B \to x+C} = \sum_{L_i} \tilde{\Theta}_{\Lambda L_B L_C L_i L_x S_B S_C S_x}^{B \to x+C} \times (2)$$
$$\times \sqrt{(2J_C+1)(2I+1)(2L_B+1)(2S_B+1)} \times$$

ЯДЕРНАЯ ФИЗИКА том 86 № 1 2023

$$\times U(\Lambda L_x IS_x : L_i J_x) \begin{cases} L_C & S_C & J_C \\ L_i & J_x & I \\ L_B & S_B & J_B \end{cases} \times \langle T_C \tau_C t_x \tau_x | T_B \tau_B \rangle,$$

где L_k , S_k , J_k (k = B, C, x) — орбитальные моменты, спины и полные моменты ядер, $\langle T_C \tau_C t_x \tau_x | T_B \tau_B \rangle$ — коэффициент векторного сложения изоспиновых переменных, Λ , I — орбитальный и полный момент, уносимый кластером x.

В (2) $\tilde{\Theta}_{\Lambda L_B L_C L_i L_x S_B S_C S_x}^{B o x + C}$ — СА в *LS*-связи, для $x \leqslant \alpha (L_x = 0, J_x = s_x)$ имеющие вид

$$\tilde{\Theta}^{B \to x+C}_{\Lambda L_B L_C L_i L_x S_B S_C S_x} = \left(\frac{A_B}{A_C}\right)^{\frac{N_x}{2}} {\binom{n_B}{n_C}}^{1/2} \times (3)$$
$$\times \sum_{L',L''} a_{L_B S_B} a_{L_C S_C [f_C]} \times \\\times \operatorname{GK}^{x\Lambda}_{L_C L' L''} K_x(L',L'':\Lambda).$$

В (3) N_x — главное квантовое число отделяемого кластера, A_B , A_C — массы ядер B и C, n_B , n_C — число нуклонов ядер B и C во внешних оболочках, $GK_{L_CL'L''}^{x\Lambda}$ — обобщенный генеалогический коэффициент (ГК) [9] отделения x нуклонов из ядра B в смешанной ($L'' \neq 0$) или чистой (L'' = 0, $L' = \Lambda$) оболочечных конфигурациях, $K_x(L', L'' :$ Λ) — обобщенные коэффициенты Тальми (КТ) [9], выделяющие в ВФ этих нуклонов их внутреннюю ВФ, $a_{L_BS_B[f_B]}$, $a_{L_CS_C[f_C]}$ — коэффициенты разложения ВФ ядер B и C по базису LS-связи [10].

Найдем выражения для ГК и КТ для всех вершин распада на рис. 1. Отметим, что в распадах ¹⁶O(g. s., 3⁻) $\rightarrow \alpha + {}^{12}C(L_C) S_C = 0, J_C = L_C =$ = 0, 2, 4. Для вершин распада α -частицы и ядер ¹⁶O и ¹⁵N в основных состояниях $L'' = 0, L' = \Lambda_i$. Для вершины $\alpha \rightarrow p + t L' = 0$, так что $CA^{\alpha \rightarrow t+p} =$ = $\sqrt{2}$.

Для чистых оболочечных конфигураций ВФ в вершинах ¹⁶O(g. s.) $\rightarrow \alpha + {}^{12}C(L_C)$ и ¹⁵N(g. s.) \rightarrow $\rightarrow t + {}^{12}C(L_C)$ (рис. 16, в) ГК определяются отделением трех и четырех нуклонов для ядер 1*p*оболочки. Соответствующие КТ [9] равны

$$K_t\{(1p)^3[3]\Lambda\} = \frac{\sqrt{2}}{3}, \quad N_t = 3, \quad (4)$$
$$K_\alpha\{(1p)^4[4]\Lambda\} = \frac{1}{4}\sqrt{\frac{3}{2}}, \quad N_\alpha = 4.$$

Рис. 1. Полюсные диаграммы, иллюстрирующие прямые механизмы срыва протона (*a*) и передачи кластера ¹²С (*б*, *в*) в реакциях 16 O(*q*, *α*) 16 O(*g*. s., 3^-) и 15 N(*α*, *t*) 16 O(*g*. s., 3^-).

Рис. 2. Дифференциальное сечение реакции ${}^{16}O(\alpha, \alpha){}^{16}O(g. s., 3^{-})$, рассчитанное в настоящей работе, в сравнении с экспериментальным [4]. Кривыми показаны сечения отдельных механизмов: сплошная тонкая — МСК, штриховая — передача кластера ${}^{12}C$, штрихпунктирная — механизм СЯ. Полное сечение — сплошная жирная кривая.

Для смешанных оболочечных конфигураций ВФ в вершине отделения протона ${}^{16}O(3^-) \rightarrow {}^{15}N + p$ (рис. 1*a*)

$$GK^{p\Lambda}_{L_CL'L''=0} = \frac{1}{\sqrt{12}} \times$$
(5)
 $\times \langle \{p^{11}[443]^{22}P, {}^{22}d\} : {}^{11}F|p^{11}[443]^{22}P; {}^{22}d\rangle =$

Для вершины распада ${}^{16}\mathrm{O}(3^-) \to \alpha + {}^{12}\mathrm{C}(L_C)$ (рис. 16, s)

$$GK^{\alpha\Lambda}_{L_CL'L''=2} = -\binom{11}{3}^{1/2} \binom{12}{4}^{-1/2} \times (6) \times \langle \{(1p)^{11}[443]^{22}P,^{22}d\} : {}^{11}F | (1p)^8 [44]^{11}L_C;$$

$$\{(1p)^{3}[3]^{22}L',^{22}d\}^{11}\Lambda\rangle = -\binom{11}{3}^{1/2}\binom{12}{4}^{-1/2}\times$$
$$\times\sqrt{15(2L_{C}+1)(2\Lambda+1)}\begin{cases}L_{C} & 0 & L_{C}\\L' & 2 & \Lambda\\1 & 2 & 3\end{cases}\times$$
$$\times\langle(1p)^{11}[443]^{22}P|(1p)^{8}[44]^{11}L_{C};(1p)^{3}[3]^{22}L'\rangle;\\K_{\alpha}\{(1p)^{3}[3]L',(1d):\Lambda_{1}\} =$$
(7)

$$= 2K_t\{(1p)^3[3]L'\} \left< 3L'22 |3,1| 5\Lambda_1 00 : \Lambda_1 \right>,$$

где $K_t\{(1p)^3[3]L'\}$ определен в (4), а $\langle 3L'22 | 3, 1 | 5\Lambda_1 00 : \Lambda_1 \rangle$ — коэффициент Тальми для частиц с разными массами [9].

ЯДЕРНАЯ ФИЗИКА том 86 № 1 2023

Рис. 3. То же, что и на рис. 2, для реакции 15 N(α , t) 16 O(g. s., 3^-). Экспериментальные данные взяты из [5]. Кривые — сечения отдельных механизмов: сплошная тонкая — срыв протона, штриховая — передача кластера 12 C, штрихпунктирная — механизм СЯ, кривая с крестами — сечение прямых механизмов при когерентном суммировании их амплитуд. Полное сечение — сплошная жирная кривая.

Используя соотношения (2)—(7), мы рассчитали СА для всех разрешенных правилами отбора значений L_C, L_i, I_i . Полученные значения СА приведены в табл. 1 (столбец СА_{об}).

3. РАСЧЕТ ДИФФЕРЕНЦИАЛЬНЫХ СЕЧЕНИЙ РЕАКЦИЙ ${}^{16}O(\alpha, \alpha){}^{16}O(g. s., 3^{-})$ И ${}^{15}N(\alpha, t){}^{16}O(g. s., 3^{-})$

Дифференциальные сечения α -рассеяния и (α, t) -реакции рассчитаны нами для прямых механизмов срыва протона (рис. 1*a*) и передачи тяжелого кластера ¹²С($L_{\rm C}$) (рис. 1*б*, *в*) по коду FRESCO [6]. Результаты обнаружили значительную чувствительность сечений к параметрам расчета. Сильная зависимость результатов расчета от параметров мнимой части оптического потенциала (ОП) в задней полусфере требует координации выбора СА при расчете вклада механизма передачи кластера ¹²С, который существенен именно в области больших углов.

Все используемые параметры: параметры ОП, коэффициенты связи между уровнями в МСК, СА в вершинах распадов — были одинаковыми в обеих реакциях.

3.1. Выбор параметров оптических потенциалов

ОП выбирались в форме Вудса—Саксона с параметрами, рассчитанными по формулам глобальных оптических потенциалов [11], или полученными

ЯДЕРНАЯ ФИЗИКА том 86 № 1 2023

в [5]. Используемые в расчетах значения вместе с геометрическими параметрами потенциалов связанных состояний во всех вершинах распада приведены в табл. 2.

3.2. Коэффициенты связи каналов для кулоновского и ядерного потенциалов

Наличие интенсивного электромагнитного E3перехода между уровнями ¹⁶O(g. s.) и ¹⁶O(3⁻) обосновывает введение сильной связи между этими состояниями. Нами выбран реализованный во FRESCO вариант задания связи непосредственно из экспериментальной интенсивности E3-перехода $B(E3) = (205 \pm 11) e^2 \, \Phi M^6$ [12]. Соответствующий коэффициент связи STR_C для кулоновского потенциала определялся соотношением

$$STR_{C} = \sqrt{(2J_{B} + 1)B(E3; 3^{-} \to 0^{+}_{g.s.})} =$$

= 37.6 $e \Phi M^{3}$.

Для ядерной части потенциала коэффициент связи варьировался на уровне 10% от STR_C и при оптимальном согласии с экспериментом составил $STR_{nucl} = 2.5 \ e \ \Phi M^3$.

3.3. Выбор спектроскопических амплитуд для прямых механизмов

При расчетах сечений прямых механизмов передачи необходимыми параметрами являются СА.

Таблица	1.	Спектрось	копические	амплитуды	в вершинах	распада	ядер	$^{15}N(1/2^{-}),$	$^{16}O(g.$	s., 3 ⁻), получе	енные в
оболочечи	ної	й модели (С	САоб) и испо	эльзованные	в расчетах ((CA _{исп})						

	Механи	зм срыва про	тона						
Вершины распада	J_B	Λ	Ι	САоб	СА _{исп}				
${}^{16}\mathrm{O}(J_B) \rightarrow {}^{15}\mathrm{N} + p$	0	0	1/2	1.1	1.1				
	3	2	5/2	-0.4	-0.8				
Механизм передачи кластера ¹² С									
	L_C	Λ	Ι	САоб	САисп				
$^{15}N(g. s.) \to t + {}^{12}C(L_C)$	0	1	1/2	0.7	0.7				
	2	1	3/2	1.7	1.7				
		3	5/2	1.1	1.1				
	4	3	7/2	2.8	2.8				
$^{16}\mathrm{O}(\mathrm{g.\ s.}) \rightarrow \alpha + {}^{12}\mathrm{C}(L_C)$	0	0	0	0.6	0.8				
	2	2	2	1.1	1.2				
	4	4	4	1.6	0.95				
${}^{16}\mathrm{O}(3^-) \to \alpha + {}^{12}\mathrm{C}(L_C)$	0	3	3	0.2	0.4				
	2	1	1	0.2	0.4				
		3	3	0.5	1.0				
	4	1	1	0.1	0.2				
		3	3	0.4	0.8				
		5	3	0.6	1.2				

Таблица 2. Параметры оптических потенциалов с объемным и поверхностным (**) поглощением, использованные в настоящей работе

Канал	<i>V</i> , МэВ	r_V, Φ_M	a_V , Фм	W, Фм	r_W, Φ м	a_W , Фм	r_C, Φ м	Литература
$\alpha + {}^{16}\mathrm{O}$	148.72	1.145	0.760	14.76	1.76	0.6	1.436	[11]
$\alpha + {}^{12}\mathrm{C}$	146.481	1.13	0.76	13.288	1.255	0.6	1.25	[11]
$\alpha + {}^{15}\mathrm{N}$	187.4	1.268	0.625	28.76	1.539	0.145	1.3	[5]
$t + {}^{16}O$	130.0	1.07	0.79	11.17^{**}	1.67	0.72	1.3	[5]
${}^{16}\mathrm{O} = \alpha + {}^{12}\mathrm{C}$		$R = 4.46^{*}$	0.65					
${}^{16}\mathrm{O} = p + {}^{15}\mathrm{N}$		1.25	0.65					
${}^{15}\mathrm{N} = t + {}^{12}\mathrm{C}$		1.25	0.65					

* $R = r(A_{\alpha}^{1/3} + A_{12_{\rm C}}^{1/3}).$

Первоначально мы использовали значения CA, рассчитанные в модели оболочек (разд. 2) и приведенные в табл. 1 в столбце CA_{o6} . Эти значения не варьировались для вершин распада α -частицы и

ядра ¹⁵N. СА для вершин распада ядра ¹⁶О в обоих состояниях менялись.

СА характеризует вероятность распада ядра в данной вершине. Вероятность отделения протона

из возбужденного состояния ${}^{16}O(3^-)$ из физических соображений не должна быть значительно меньше его отделения из основного состояния в силу меньшей энергии связи протона. Поэтому значение CA_{об} в распаде ${}^{16}O(3^-) = p + {}^{15}N$ было увеличено вдвое до CA_{исп} = -0.8.

Необходимые СА для механизма передачи кластера ¹²С в вершинах распада ядра ¹⁶O(g. s.) = = $\alpha + {}^{12}C(L_C)$, найденные в соответствии с (2), но с ВФ ${}^{12}C(L_C)$ в полумикроскопической кластерной модели, взяты из [1]. Отметим, что для $L_C = 0$ и 2 СА_{об} совпадают с СА [1] с достаточно хорошей точностью ~15%, а для $L_C = 4$ — расходятся.

Подобная информация о распадах ${}^{16}O(3^-) = = \alpha + {}^{12}C(L_C)$ в литературе отсутствует. При подборе значений СА для вершины распада ядра ${}^{16}O(3^-) = \alpha + {}^{12}C(L_C)$ учитывалось, что вклад механизма передачи кластера ${}^{12}C(L_C = 4)$ максимален в области больших углов, поскольку это накладывает ограничения на величину соответствующей СА. В результате СА_{об} в распадах ${}^{16}O(3^-) = \alpha + {}^{12}C(L_C)$, аналогично распадам ${}^{16}O(3^-) = p + {}^{15}N$, также были увеличены вдвое. Используемые значения СА приведены в табл. 1 (столбец СА_{исп}).

3.4. Вклад механизма составного ядра

Вклад механизма СЯ в реакциях ${}^{16}O(\alpha, \alpha){}^{16}O(g. s., 3^-)$ и ${}^{15}N(\alpha, t){}^{16}O(g. s., 3^-)$ определялся с помощью кода TALYS [7] в модели Хаузера—Фешбаха [13].

Расчетная величина сечения СЯ зависит от выбора параметров ОП в различных каналах распада, плотности уровней в непрерывных спектрах каналов и параметров ОП взаимодействия α -частицы с ядром. Поскольку выбор перечисленных параметров не является однозначным, в расчетах по коду TALYS [7] мы использовали их значения, предлагаемые "по умолчанию": параметры ОП для разных энергий и частиц определялись по формулам глобальных потенциалов, для плотности уровней в непрерывном спектре использовалась модель Гильберта—Камерона [14], α -¹⁶O и α -¹⁵N потенциалы взяты из [15].

Рассчитанные сечения СЯ нормировались так, чтобы они не превышали экспериментальные для обоих уровней ¹⁶О во всем угловом диапазоне. Нормировки составили 0.2 и 0.3 для 16 O(α, α)¹⁶O(g. s., 3⁻) и 15 N(α, t)¹⁶O(g. s., 3⁻) соответственно.

ЯДЕРНАЯ ФИЗИКА том 86 № 1 2023

4. СОПОСТАВЛЕНИЕ ЭКСПЕРИМЕНТАЛЬНЫХ И РАССЧИТАННЫХ ДИФФЕРЕНЦИАЛЬНЫХ СЕЧЕНИЙ РЕАКЦИЙ $^{16}O(\alpha, \alpha)^{16}O(g. s., 3^{-})$ И $^{15}N(\alpha, t)^{16}O(g. s., 3^{-})$

В эксперименте вследствие близости энергии состояний 3⁻ (6.13 МэВ) и 0⁺₁ (6.05 МэВ) дифференциальное сечение с образованием этих состояний не разделено. Из работ [16, 17], выполненных в области энергии 13–22 МэВ, известно, что сечение возбуждения состояния 0⁺₁ (6.052 МэВ) почти на порядок меньше сечения возбуждения состояния 3⁻ (6.131 МэВ), причем это различие увеличивается с ростом энергии.

Проведенные нами оценочные расчеты подтвердили такое различие сечений образования ядра ¹⁶О в состояниях 0⁺₁ (6.05 МэВ) и 3⁻ (6.13 МэВ). Это связано с отсутствием механизмов прямого монопольного возбуждения состояния 0⁺₁ (6.05 МэВ) в неупругом (α, α)-рассеянии (возможны только механизм СЯ и передача кластера ¹²С(L_C)). В результате сечение возбуждения этой пары состояний исчерпывается возбуждением состояния 3⁻ (6.131 МэВ), а вкладом сечения с образованием ядра ¹⁶О в состоянии 0⁺₁ (6.05 МэВ) в экспериментальное сечение реакций ¹⁶О(α, α)¹⁶О(3⁻) и ¹⁵N(α, t)¹⁶О(3⁻) можно пренебречь.

На рис. 2 показаны рассчитанное дифференциальное сечение рассеяния α^{-16} О и парциальные сечения каждого из рассмотренных нами механизмов. Экспериментальное сечение [4] упругого и неупругого рассеяния в передней области углов описывается МСК, что соответствует 4α -тетраэдной конфигурации ВФ ядра ¹⁶О, подтверждающей связь между состояниями $0^+_{\mathrm{g.\,s.}} \leftrightarrow$ $\leftrightarrow 3^-$. В упругом рассеянии (рис. 2a) полное сечение описывается в МСК, а сечения механизмов передачи кластера ¹²С и СЯ незначительны. В неупругом рассеянии с образованием ¹⁶O(3⁻) при $\theta_{\alpha} > 90^{\circ}$ сечения МСК и механизма передачи кластера ¹²С (рис. 26) сопоставимы, т.е. наряду с 4 α -конфигурацией ВФ проявляется и $\alpha + {}^{12}C$ конфигурация. Полное сечение, полученное суммированием сечений обоих прямых механизмов и механизма СЯ, согласуется с экспериментом за исключением области средних углов.

На рис. З показано рассчитанное дифференциальное сечение реакции ${}^{15}N(\alpha, t){}^{16}O(g. s., 3^{-})$. Показаны сечения механизмов срыва протона, передачи тяжелого кластера ${}^{12}C$, суммарное сечение прямых механизмов при когерентном сложении их амплитуд и механизма СЯ. Полное дифференциальное сечение определяется суммированием сечений прямых механизмов и СЯ. Как видно из рисунка, все механизмы играют в рассматриваемой реакции значительную роль, зависящую от угла вылета тритона. В передней полусфере для этих реакций с образованием ¹⁶О и в основном, и в 3⁻состояниях доминирует механизм срыва протона. Механизм передачи кластера ¹²С(L_C) играет заметную роль при больших углах для обеих реакций, но особенно ярко проявляется в реакции с образованием ¹⁶O(g. s.).

Полное дифференциальное сечение реакции ${}^{15}\mathrm{N}(\alpha,t){}^{16}\mathrm{O}(3^-)$ согласуется с экспериментальным при всех углах θ_t , за исключением $\theta_t > 160^\circ$.

5. ЗАКЛЮЧЕНИЕ

Проведенное исследование ВФ ядра ¹⁶О в основном и 3-(6.13 МэВ) состояниях, основанное на анализе дифференциальных сечений реакций ¹⁶О(α, α)¹⁶О(g. s., 3⁻) и ¹⁵N(α, t)¹⁶О(g. s., 3⁻), подтверждает наличие в них оболочечных и α кластерных конфигураций. Оболочечные конфигурации реализованы в механизме срыва протона для (α, t) -реакции и механизме образования и распада СЯ. Механизмом, чувствительным к наличию $\alpha + {}^{12}\mathrm{C}$ конфигурации, является обмен тяжелым кластером ¹²С. Интенсивный ЕЗ-переход между основным и 3⁻-состояниями в ядре ¹⁶О связывается, в соответствии с 4α -тетраэдной моделью 16 O. с принадлежностью этих состояний к одной "вращательной" полосе, что обосновывает использование формализма МСК.

Сечение (α , α)-рассеяния определяется когерентным суммированием амплитуд МСК (4α конфигурация) и механизма передачи кластера 12 С ($\alpha + ^{12}$ С конфигурация) и согласуется с экспериментом, за исключением области средних углов. Вкладом механизма СЯ в упругом канале можно пренебречь, в неупругом канале механизм СЯ заметен только в задней полусфере углов.

Сечение (α , t)-реакции определяется когерентным вкладом механизмов срыва протона (оболочечная конфигурация) и передачи кластера ¹²С (α + ¹²С конфигурация) и согласуется с экспериментальным, за исключением углов, больших 160°.

Каждый из рассмотренных механизмов обусловлен конкретной конфигурацией волновых функций ядра ¹⁶O(g. s., 3⁻) и его учет позволяет улучшить согласие экспериментальных и расчетных дифференциальных сечений (α, α)- и (α, t)реакций.

Из анализа вклада отдельных механизмов в расчетные дифференциальные сечения (α, α)- и

 (α, t) -реакций можно сделать вывод, что ВФ ядра ¹⁶О в основном состоянии преимущественно определяется 4 α -тетраэдной и оболочечной конфигурациями, что соответствует [1, 2]. Добавление к этим компонентам ВФ α + ¹²С конфигурации компоненты L_C = 4 характерно для возбужденного состояния 3⁻ ядра ¹⁶О.

СПИСОК ЛИТЕРАТУРЫ

- T. Yamata, Y. Funaki, T. Myo, H. Horiuchi, K. Ikeda, G. Röpke, P. Schuck, and A. Tohsaki, Phys. Rev. C 85, 034315 (2012).
- 2. Y. Kanada-En'yo, Phys. Rev. C 96, 034306 (2017).
- 3. A. Volya and Y. M. Tchuvil'sky, Phys. Rev. C **91**, 044319 (2015).
- А. В. Игнатенко, В. М. Лебедев, Н. В. Орлова, А. В. Спасский, ЯФ 59, 597 (1996) [Phys. At. Nucl. 59, 565 (1996)].
- А. В. Игнатенко, В. М. Лебедев, Н. В. Орлова, А. В. Спасский, В. О. Кордюкевич, ЯФ 61, 5 (1998) [Phys. At. Nucl. 61, 1 (1998)].
- 6. I. J. Tompson, Comp. Phys. Rep. 7, 167 (1988); http://www.fresko.org.uk/
- A. J. Koning, S. Hilaire, and M. C. Duijvestijn, AIP Conf. Proc. 769, 1154 (2005); https://tendl.web.psi.ch/tendl 2019/talys.html
- 8. Н. С. Зеленская, И. Б. Теплов, Характеристики возбужденных состояний ядер и угловые корреляции в ядерных реакциях (Энергоатомиздат, Москва, 1995).
- 9. В. Г. Неудачин, Ю. Ф. Смирнов, *Нуклонные ассоциации в легких ядрах* (Наука, Москва, 1969).
- 10. А. Н. Бояркина, *Структура ядер 1р-оболочки* (Изд-во МГУ, Москва, 1978).
- A. Kumar, S. Kailas, S. Rathi, and K. Mahata, Nucl. Phys. A 776, 105 (2006); https://wwwnds.iaea.org/RIPL-2/optical/om-data/omalpha.readme
- 12. Y. Suzuki, Prog. Theor. Phys. 56, 111 (1976).
- W. Hauser and H. Feschbach, Phys. Rev. 87, 366 (1952).
- 14. A. Gilbert and A. G. W. Cameron, Can. J. Phys. 43, 1446 (1965).
- 15. V. Avrigeanu, M. Avrigeanu, and C. Mănăilescu, Phys. Rev. C **90**, 044612 (2014).
- 16. G. Caskey, Phys. Rev. C 31, 717 (1985).
- 17. J. H. Billen, Phys. Rev. C 20, 1648 (1979).

MANIFESTATION OF THE ¹⁶O(g. s.; 3⁻, 6.13 MeV) NUCLEUS WAVE FUNCTIONS STRUCTURE IN ¹⁶O(α, α)¹⁶O AND ¹⁵N(α, t)¹⁶O REACTIONS

L. I. Galanina¹⁾, N. S. Zelenskaya¹⁾, V. M. Lebedev¹⁾, N. V. Orlova¹⁾, A. V. Spassky¹⁾

¹⁾Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics, Moscow, Russia

The structure of the ¹⁶O(g. s., 3⁻) nucleus wave functions was studied using experimental angular distributions of the differential cross sections for the reactions ¹⁶O(g. s.)(α, α)¹⁶O(g. s., 3⁻) and ¹⁵N(α, t)¹⁶O(g. s., 3⁻) at $E_{\alpha} = 30.3$ MeV. The analysis was carried out within the framework of the coupled-channel method, taking into account direct mechanisms (proton stripping and transfer of a heavy ¹²C cluster) and in the compound nucleus model. Each of the considered mechanisms is due to a specific configuration of the wave function of the ¹⁶O nucleus and makes a significant contribution to the experimental cross section.