= ЯДРА =

СВЯЗАННЫЕ И РЕЗОНАНСНЫЕ СОСТОЯНИЯ ЯДРА ⁹Li С NN-ВЗАИМОДЕЙСТВИЕМ Daejeon16

© 2023 г. И. А. Мазур^{1),2)*}, А. И. Мазур³⁾, В. А. Куликов³⁾, А. М. Широков³⁾, И. Дж. Шин⁴⁾, Я. Ким⁴⁾, П. Марис⁵⁾, Дж. П. Вэри⁵⁾

Поступила в редакцию 21.09.2022 г.; после доработки 21.09.2022 г.; принята к публикации 21.09.2022 г.

Представлены результаты для энергий связанных состояний и асимптотических нормировочных коэффициентов в них, а также для энергий и ширин резонансов ядра ⁹Li, полученные в методе SS-HORSE на основе расчетов *ab initio* в модели оболочек без инертного кора с нуклон-нуклонным взаимодействием Daejeon16.

DOI: 10.31857/S0044002723010348, EDN: RFFGRR

1. ВВЕДЕНИЕ

Как известно, свойства ядра ⁹Li играют важную роль в понимании астрофизических процессов. Характеристики резонансных состояний этого ядра, проявляющихся в реакции $n + {}^{8}$ Li, определяют сечение реакции быстрого радиационного захвата 8 Li (n, γ) ⁹Li и в конечном счете определяют отношение двух конкурирующих цепочек синтеза элементов с A > 8, которые могут происходить после коллапса сверхновой типа II, а именно 7 Li (n, γ) 8 Li (α, n) 11 B (n, γ) 12 B (β^{+}) 12 C и 7 Li (n, γ) 8 Li (α, n) 12 B (β^{+}) 12 C и 7 Li (n, γ) 8 Li (n, γ) 9 Li (α, n) 12 B (β^{+}) 12 C [1]. Преодолеть "щель" A = 8 в нуклеосинтезе возможно также посредством цепочки реакций 4 He $(2n, \gamma)$ 6 He $(2n, \gamma)$ 8 He (β^{-}) 8 Li (n, γ) 9 Li (β^{-}) 9 Be [2, 3], в которой опять же ключевую роль играют резонансные состояния ядра 9 Li.

К сожалению, в настоящее время экспериментальная информация о спектре этого ядра достаточно скудна. Из эксперимента известны энергии основного $J^{\pi} = 3/2^{-}$ и первого возбужденного связанного $1/2^{-}$ состояний [4]. Анализ угловых распределений в рамках борновского приближения с искаженными волнами реакций ⁸Li (n, γ) ⁹Li [5] и ⁸Li(d, p) ⁹Li [6] позволил извлечь асимптотические нормировочные коэффициенты (АНК) для основного [5, 6] и первого возбужденного [5] состояний. Значения АНК для основного состояния, представленные в работах [5, 6], практически одинаковы и несколько больше значения, полученного в работе [1] на основе анализа реакции ⁹Be(⁸Li, ⁹Li)⁸Be.

Что касается резонансных состояний, то в интервале энергий возбуждения до 10 МэВ из эксперимента известны лишь энергии трех резонансных уровней. Нижайший резонанс предположительно имеет $J^{\pi} = 5/2^{-}$, спин-четности остальных двух резонансов экспериментально не определены [4].

Таким образом, теоретическое исследование свойств связанных и резонансных состояний ядра ⁹Li является актуальной задачей.

Влияние резонансных состояний ядра ⁹Li на сечение и скорость реакции быстрого радиационного захвата ⁸Li (n, γ) ⁹Li исследовалось в различных подходах. Так, в работах [7, 8] анализ проводился на основе комбинации модели оболочек для описания спектров ядер ⁸Li, ⁹Li и потенциального подхода к рассеянию нейтрона на ядре ⁸Li. Несмотря на схожесть подходов, предсказанные скорости реакции в них существенно различаются. Реакции ⁸Li (n, γ) ⁹Li и зеркальная к ней ⁸B (p, γ) ⁹C изучались в модели прямого захвата [9] и кластерной модели с точным учетом принципа Паули [10]. Возможность описания экспериментальных данных для сечения радиационного захвата ядром ⁸Li тепловых нейтронов при астрофизических энергиях рассмотрена в рамках модифицированной потенциальной кластерной модели [11].

¹⁾Тихоокеанский государственный университет, Хабаровск, Россия.

²⁾Центр экзотических ядерных исследований, Институт фундаментальных наук, Тэджон, Республика Корея.

³⁾Научно-исследовательский институт ядерной физики им. Д. В. Скобельцына, Московский государственный университет им. М. В. Ломоносова, Москва, Россия.

⁴⁾Научный проект по редким изотопам, Институт фундаментальных наук, Тэджон, Республика Корея.

⁵⁾Университет штата Айова, Эймс, США.

^{*}E-mail: mazuri@mail.ru

Единственное к настоящему моменту исследование реакции ⁸Li (n, γ) ⁹Li в подходе *ab initio* реализовано в работе [12]. Энергии связанных и характеристики резонансных состояний ядра ⁹Li, а также сечение реакции в этой работе рассчитаны в рамках модели оболочек без инертного кора с континуумом (no-core shell model with continuum, NCSMC) с реалистическим киральным нуклоннуклонным взаимодействием и с учетом трехчастичных сил. Результаты расчетов воспроизводят энергии связанных состояний и характеристики нижайшего резонанса 5/2-. Основываясь на результатах этой работы, можно заключить, что экспериментально наблюдаемый резонанс при энергии 5.38 МэВ имеет спин-четность $J^{\pi} = 3/2^{-}$, а очень узкий резонанс при энергии 6.43 М́эВ́— $J^{\pi} = 7/2^{-}$.

Исследование *ab initio* состояний ядра ⁹Li кроме работы [12] проводилось также в рамках метода Монте-Карло для функций Грина (Green's function Monte Carlo) [13] и в модели оболочек без инертного кора (МОБИК; в англоязычной литературе no-core shell model, NCSM) [14]. В этих подходах, ориентированных на исследование связанных состояний, в отличие от [12] не учитывалась связь с континуумом и, следовательно, не могло быть сделано никаких заключений о ширинах резонансных состояний и не рассматривались АНК.

В настоящей работе поставлена цель исследовать характеристики связанных и резонансных состояний ⁹Li на основе расчетов *ab initio* в МОБИК [15] с реалистическим нуклон-нуклонным взаимодействием Daejeon16 [16] с учетом континуума в рамках метода SS-HORSE [17]. Отметим, что *NN*-взаимодействие Daejeon16 обеспечивает хорошее описание легких ядер без использования трехнуклонных сил. Мы получаем не только энергии состояний, но также даем оценку AHK для связанных состояний и рассчитываем ширины нижайших резонансных состояний ⁹Li.

Метод SS-HORSE разрабатывался и применялся в комбинации с МОБИК для описания резонансов в различных ядерных системах [17– 22]. В дальнейшем этот подход мы применили и к описанию связанных состояний, рассматривая их как закрытые каналы [23].

МОБИК является одним из надежных методов получения энергий состояний многонуклонных систем. В этом подходе гамильтониан, описывающий ядро как систему A нуклонов, взаимодействующих посредством реалистических нуклон-нуклонных и, если требуется, трехнуклонных сил, раскладывается по многочастичному осцилляторному базису. Этот базис имеет параметр $\hbar\Omega$, который является разностью уровней энергии гармонического осциллятора. В реальных расчетах используется лишь

ЯДЕРНАЯ ФИЗИКА том 86 № 1 2023

конечная часть этого базиса, который обрезается по некоторому числу многочастичных осцилляторных квантов возбуждения N_{\max} . С ростом N_{\max} размер базиса растет экспоненциально. На данный момент существует целый ряд методов, позволяющий осуществлять экстраполяции на бесконечный базис $N_{\rm max} \rightarrow \infty$ результатов для связанных состояний, полученных в МОБИК [24-41]. Метод SS-HORSE в применении к связанным состояниям также позволяет осуществить экстраполяцию результатов на случай бесконечного базиса, в основе которой лежат аналитические свойства S-матрицы и расчет ее полюсов. SS-HORSEэкстраполяция, следовательно, является теоретически обоснованной [23], в отличие от других разработанных методов экстраполяций [24—41], основанных на феноменологических соображениях. Кроме того, метод SS-HORSE позволяет найти АНК, используя их связь с вычетами в полюсах S-матрицы. В применении же к резонансным состояниям расчет полюсов S-матрицы методом SS-HORSE позволяет получить энергии и ширины резонансов.

2. СВЯЗАННЫЕ СОСТОЯНИЯ

Метод SS-HORSE, основанный на формализме HORSE (Harmonic Oscillator Representation of Scattering Equations) [42], позволяет рассчитать E_b — экстраполированные на случай бесконечного базиса энергии связанных состояний, полученные в МОБИК, и АНК $|A_{\ell}|$ в этих состояниях путем численного определения положения полюсов *S*матрицы и вычетов в них.

S-матрица в SS-HORSE рассчитывается при дискретных энергиях E_i , которые являются собственными энергиями относительного движения нейтрона и ядра ⁸Li [17]:

$$S(E_i) = \frac{C_{\aleph^i+2,\ell}^{(-)}(E_i)}{C_{\aleph^i+2,\ell}^{(+)}(E_i)}.$$
 (1)

Аналитический вид функций $C_{n\ell}^{(\pm)} = C_{n\ell} \pm i S_{n\ell}$ известен (см., например, работы [42–44]). Каждая из собственных энергий E_i относительного движения нейтрона и ядра ⁸Li определяется на основе расчетов в МОБИК ядер ⁹Li и ⁸Li с числом осцилляторных квантов возбуждения N_{\max}^i и осцилляторным параметром $\hbar\Omega^i$:

$$E_{i} \equiv E\left(N_{\max}^{i}, \hbar\Omega^{i}\right) = E^{^{9}\text{Li}}\left(N_{\max}^{i}, \hbar\Omega^{i}\right) - (2)$$
$$-E^{^{8}\text{Li}}\left(N_{\max}^{i}, \hbar\Omega^{i}\right),$$

а $\aleph^{i} = N_{\text{max}}^{i} + N_{\text{min}}^{i}$ в выражении (1) — полное число осцилляторных квантов в расчете ядра ⁹Li.

Расчеты проводятся с набором значений параметров $\{N_{\max}^i, \hbar\Omega^i\}$, в результате мы получаем набор значений *S*-матрицы в некотором интервале энергий *E*. Отметим, что энергии относительного движения (2) по построению отсчитаны от порога $n + {}^8\text{Li}$, и далее мы везде приводим энергии, отсчитаные от этого порога, если иной отсчет энергий не оговорен в тексте (например, в случае энергий возбуждения они отсчитываются от основного состояния ядра).

Далее эти значения S-матрицы аппроксимируются непрерывными функциями энергии E, которые учитывают ее аналитические свойства. На основе опыта работы с модельными задачами [23] для связанных состояний мы будем использовать следующие параметризации:

$$S(E) = -e^{w_0\sqrt{|E|} + w_1\left(\sqrt{|E|}\right)^3} \frac{\sqrt{|E|} + \sqrt{|E_b|}}{\sqrt{|E|} - \sqrt{|E_b|}}, \quad (3)$$

$$S(E) = e^{w_0 \sqrt{|E|}} \times \tag{4}$$

$$\times \frac{\sqrt{|E|} + \sqrt{|E_b|}}{\sqrt{|E|} - \sqrt{|E_b|}} \frac{\sqrt{|E|} - \sqrt{|E_v|}}{\sqrt{|E|} + \sqrt{|E_v|}},$$

$$S(E) = \frac{D}{\sqrt{|E|} - \sqrt{|E_b|}} + B.$$
 (5)

В перечисленных вариантах параметризаций искомая энергия связанного состояния E_b , а также энергия виртуального состояния E_v и константы B, D, w_0 и w_1 являются подгоночными параметрами.

В первую очередь рассмотрим основное состояние 3/21. На рис. 1 показаны энергии относительного движения, полученные из результатов МОБИК для основных состояний ядер ⁸Li и ⁹Li по формуле (2). Видна следующая особенность: для энергий, полученных с $\hbar\Omega \leq 20~{
m M}$ эВ в модельных пространствах, начиная с $N_{\max} = 10$, энергии Eрастут с увеличением N_{max}. Такое поведение в принципе возможно, так как для энергий, рассчитанных по формуле (2), не обязан соблюдаться вариационный принцип. Но в этом случае метод SS-HORSE неприменим. Поэтому мы исключили из дальнейшего рассмотрения энергии, полученные с $\hbar\Omega \leqslant 22.5$ МэВ. При $\hbar\Omega \geqslant 23$ МэВ поведение энергий в зависимости от $N_{\rm max}$ вплоть до $N_{\rm max} =$ = 12 становится подходящим для применения метода SS-HORSE. В анализе первого возбужденного и резонансных состояний, кроме того, используются результаты расчетов с $N_{\rm max} = 14$ в пределах от 12.5 до 20 МэВ.

В рамках SS-HORSE мы определили энергии E_b , соответствующие полюсам S-матрицы, используя параметризации (3), (4) и (5). Для поиска E_b достаточно знать три значения энергии, полученные при различных $N_{\rm max}$ и/или $\hbar\Omega$. Опыт работы с модельными задачами [23] показал, что лучше всего выбрать энергии E в трех соседних по $\hbar\Omega$ точках одного модельного пространства $N_{\rm max}$. Результаты подобной экстраполяции с разными вариантами параметризации для $N_{\rm max} = 10$ и 12 представлены на рис. 2a.

Как видно, результаты экстраполяции SS-HORSE энергии зависят от $\hbar\Omega$ (на рисунке каждая точка отображена со средним значением $\hbar\Omega$ точек, взятых для экстраполяции). Но в области $25 \leqslant \leq \hbar\Omega \leqslant 32.5$ МэВ эта зависимость достаточно слабая, и, что важно, результаты, полученные с различными параметризациями, близки друг к другу. Кроме того, кривые, рассчитанные в модельных пространствах $N_{\rm max} = 10$ и 12, тоже близки друг к другу, что свидетельствует о хорошей сходимости результатов.

Кривая с косыми крестиками на рис. 2a представляет разность результатов экспоненциальной экстраполяции для энергий основного состояния ядра ⁹Li и ⁸Li:

$$E_{\infty}(\hbar\Omega) = E_{\infty}^{9\text{Li}}(\hbar\Omega) - E_{\infty}^{8\text{Li}}(\hbar\Omega), \qquad (6)$$

где $E_{\infty}^{A_{\text{Li}}}(\hbar\Omega)$ определяется на основе экстраполяции В [25] при данном $\hbar\Omega^{i}$ по трем модельным пространствам N_{max} , $N_{\text{max}} - 2$, $N_{\text{max}} - 4$:

$$E^{A_{\text{Li}}}\left(N_{\max},\hbar\Omega^{i}\right) = E_{\infty}^{A_{\text{Li}}}\left(\hbar\Omega^{i}\right) + a_{i}e^{-b_{i}N_{\max}}, \quad (7)$$

где для каждого значения $\hbar\Omega^i$ мы используем $N_{\rm max} = 12$. Отметим, что экстраполяция В является стандартным методом уточнения результатов МОБИК. Если использовать оптимальные значения $\hbar\Omega$ [25] для оценки энергий основных состояний ⁸Li и ⁹Li, то получим для $N_{\rm max} = 12$ (в скобках указана оценка погрешности экстраполяции): $E_{\infty}^{^{8}{\rm Li}} = -41.33(6)$ МэВ и $E_{\infty}^{^{9}{\rm Li}} = -44.93(5)$ МэВ. Сравнение с соответствующими экспериментальными значениями $E_{\rm exp}^{^{8}{\rm Li}} = -41.278$ МэВ и $E_{\rm exp}^{^{9}{\rm Li}} = -45.342$ МэВ [4] подтверждает высокую точность реалистического NN-взаимодействия Daejeon16 в описании легких ядер.

На рис. 26 представлены соответствующие АНК, которые могут быть определены из вычета S-матрицы как функции волнового числа S(k) в полюсе k_b , соответствующем связанному состоянию [45]:

$$|A_{\ell}| = \sqrt{|\operatorname{Res}\left[S\left(k\right), k_{b}\right]|}.$$
(8)

Здесь $k = i \frac{\sqrt{2\mu |E|}}{\hbar}, \ k_b = i \frac{\sqrt{2\mu |E_b|}}{\hbar}$ — положение полюса *S*-матрицы, отвечающее связанному

Рис. 1. Энергии относительного движения нейтрона и ⁸Li, полученные на основе расчетов в МОБИК в различных модельных пространствах.

Рис. 2. Экстраполяция SS-HORSE в канале $n + {}^{8}$ Li для основного состояния ядра 9 Li. a — Энергии E_b , полученные на основе параметризаций (3)–(5) в модельных пространствах $N_{\text{max}} = 10$, 12. Кривая с косыми крестиками — результаты экстраполяции В [25]. δ — Соответствующие АНК. Горизонтальная линия соответствует $|A_\ell|_{\text{max}}$.

состоянию, μ — приведенная масса системы n + + ⁸Li. Выражение для вычета *S*-матрицы в полюсе k_b легко получить для каждой из формул (3)–(5).

канале $n + {}^{8}$ Li. Его можно оценить по формуле [45]

$$|A_{\ell}| \leqslant |A_{\ell}|_{\max} = \kappa e^{\kappa R} \sqrt{\frac{2R}{\kappa R + 2}}.$$
 (9)

Горизонтальной линией на правой панели рисунка показано максимальное значение АНК в Здесь R — радиус взаимодействия, а величина κ определяется энергией связи. Для оценки $\kappa =$

ЯДЕРНАЯ ФИЗИКА том 86 № 1 2023

Рис. 3. Результаты расчета в МОБИК среднеквадратичного радиуса распределения точечных нейтронов $\Re = \sqrt{\langle r_n^2 \rangle}$ в основном (*a*) и возбужденном 1^+ (*б*) состояниях ядра ⁸Li.

ћΩ, МэВ

Рис. 4. Экстраполяция SS-HORSE для основного состояния ядра ⁹Li в каналах $n + {}^{8}$ Li и $n + {}^{8}$ Li*. Обозначения аналогичны рис. 2. Кривая с косыми (прямыми) крестиками — результаты экстраполяции В энергии основного состояния ядра ⁹Li в канале $n + {}^{8}$ Li $(n + {}^{8}$ Li*). Сплошная (штриховая) кривая на нижней панели соответствует значению $|A_{\ell}|_{max}$ в канале $n + {}^{8}\text{Li}(n + {}^{8}\text{Li}^{*}).$

 $\overline{\frac{2\mu |E_{\text{Extr.}B}|}{E_{\text{Extr.}B}}}$ мы используем разность энергий основных состояний ядер ⁹Li и ⁸Li, рассчитанных

методом экспоненциальной экстраполяции (6), (7).

Для оценки радиуса взаимодействия R нейтрона с ядром ⁸Li мы, учитывая, что ⁸Li является нейтронно-избыточным ядром, используем радиус распределения нейтронной материи в ⁸Li. Для этого мы сначала рассчитываем среднеквадратичный радиус $\Re = \sqrt{\langle r_n^2 \rangle}$ распределения нейтронов в ⁸Li, считая их точечными частицами. Значение Я, полученное в расчетах ⁸Li, сильно зависит от параметров МОБИК $N_{
m max}$ и $\hbar\Omega$, однако, как видно из рис. 3, кривые, описывающие зависимость \Re от $\hbar\Omega$, полученные с разными $N_{\rm max}$, пересекаются приблизительно в одной точке. Как было показано в работах [46, 16], значение Я, соответствующее этой точке пересечения, представляет собой экстраполированное значение этой величины на случай бесконечного базиса. Радиус распределения нейтронной материи в ядре $\sqrt{\langle r_{nm}^2 \rangle}$ и, соответственно, радиус взаимодействия нейтрона с ядром R, учитывающий неточечность нуклонов, определяется выражением (см. работу [47], где

ћΩ, МэВ

ЯЛЕРНАЯ ФИЗИКА ТОМ 86 Nº 1 2023

Рис. 5. Энергии относительного движения нейтрона и ядра ⁸Li в первом возбужденном состоянии 1/2⁻ ядра ⁹Li, полученные на основе расчетов в МОБИК в различных модельных пространствах.

Рис. 6. Экстраполяция SS-HORSE для возбужденного состояния $1/2^-$ ядра ⁹Li в каналах $n + {}^8$ Li и $n + {}^8$ Li*. Обозначения аналогичны рис. 2. Дополнительные символы, обозначенные в легенде $N_{\max} = 12-14$, соответствуют расчетам с $N_{\max} = 12$, $\hbar\Omega = 12.5$ МэВ и с $N_{\max} = 14$, $\hbar\Omega = 12.5$ МэВ и 15 МэВ. Вертикальная штрихпунктирная кривая на левой панели разделяет результаты, полученные в каналах $n + {}^8$ Li и $n + {}^8$ Li*.

приводится аналогичное выражение для радиуса распределения заряда)

$$R^{2} = \left\langle r_{nm}^{2} \right\rangle = \left\langle r_{n}^{2} \right\rangle + \left\langle R_{n}^{2} \right\rangle + \left\langle R_{p}^{2} \right\rangle \frac{Z}{N}, \quad (10)$$

где $\sqrt{\left< R_p^2 \right>} = 0.851$ фм и $\sqrt{\left< R_n^2 \right>} = 0.864$ фм —

ЯДЕРНАЯ ФИЗИКА том 86 № 1 2023

соответственно радиусы протона и нейтрона [48], а Z = 3 и N = 5 — соответственно числа протонов и нейтронов в ядре ⁸Li.

В дальнейшем мы будем отбрасывать расчеты, которые не удовлетворяют условию $|A_{\ell}| \leq |A_{\ell}|_{\text{max}}$. Кроме того, в варианте параметризации (4) мы не

Рис. 7. Сдвиги фаз рассеяния в разных состояниях в каналах $n + {}^{8}$ Li и $n + {}^{8}$ Li*. Вертикальная точечная линия отмечает порог канала $n + {}^{8}$ Li*.

будем использовать результаты с $\hbar\Omega \ge 30$ МэВ, так как в этой области велико влияние виртуального полюса.

Результаты экстраполяции SS-HORSE энергий основного состояния и соответствующие АНК для отобранных данных представлены на рис. 4.

Как отмечалось выше, результаты экстраполяции энергий основного состояния в SS-HORSE с различными параметризациями S-матрицы (формулы (3)–(5)) имеют слабую зависимость от $\hbar\Omega$ и находятся в разумном согласии с результатами экстраполяции B в области $22.5 \leq \hbar\Omega \leq 32.5$ МэВ. Вместе с тем АНК сильно зависят от $\hbar\Omega$. Довольно резкая зависимость A_1 ($\hbar\Omega$) приводит к большой погрешности. В качестве оценки последней, как для энергий, так и для АНК, мы брали разброс полученных результатов в отобранном для расчетов диапазоне $\hbar\Omega$. Средние значения энергий и АНК в соответствующих диапазонах $\hbar\Omega$ представлены в табл. 1 как результаты для данного канала. Оценки погрешностей приведены в круглых скобках.

Отметим, что результаты как для E_b , так и для $|A_1|$, полученные в пространствах $N_{\rm max} = 10$ и 12, практически совпадают, что говорит о достигнутой сходимости результатов.

На рис. 4 также приведены результаты экстраполяции SS-HORSE энергий основного состояния

и соответствующие АНК, полученные в закрытом канале упругого рассеяния нейтрона на ядре ⁸Li*(1⁺) в возбужденном состоянии 1⁺. В этом случае используются результаты МОБИК в интервале $35 \le \hbar \Omega \le 42.5$ МэВ в силу того, что при меньших значениях $\hbar\Omega$ собственные энергии относительного движения (2) растут (убывают по абсолютной величине) с ростом N_{max}, т.е. нарушаются условия применимости SS-HORSE. Верхний предел по $\hbar\Omega$ для канала $n + {}^{8}\text{Li}^{*}$ выбран, как и прежде, из условия $|A_\ell| \leq |A_\ell|_{\max}$ (на рис. 4 результаты экспоненциальной экстраполяции (6), (7) для энергии в этом канале представлены кривой с прямыми крестиками, а максимальное значение $|A_\ell|_{\max}$ — штриховой линией). Как следствие того, что интервал $\hbar\Omega$, в котором находятся отобранные значения, более узкий, число отобранных данных и число полученных результатов существенно меньше. Отметим, что при расчете Sматрицы в канале $n + {}^{8}\text{Li}^{*}$ используются энергии относительного движения, полученные с помощью уравнения (2), где $E^{^{8}\mathrm{Li}}\left(N^{i}_{\mathrm{max}},\hbar\Omega^{i}
ight)$ заменено на $E^{^{8}\text{Li}^{*}}(N^{i}_{\max},\hbar\Omega^{i})$, отсчитанные относительно порога $n + {}^{8}\text{Li}^{*}$, однако на рис. 4 и в табл. 1 для удобства сравнения результатов в разных каналах мы приводим энергии во всех каналах, отсчитанные

ЯДЕРНАЯ ФИЗИКА том 86 № 1 2023

Таблица 1. Энергии E_b и AHK $|A_\ell|$ связанных состояний, энергии E_r и ширины Γ резонансных состояний ядра ⁹Li, полученные методом SS-HORSE с взаимодействием Daejeon16 в каналах $n + {}^8$ Li и $n + {}^8$ Li * с ядром ⁸Li соответственно в основном 2^+ или возбужденном 1^+ -состояниях и предсказание для энергий и ширин на основе результатов в обоих каналах в сравнении с результатами NCSMC [12] и извлеченными из эксперимента (значения E_b, E_r, Γ приведены в МэВ, а $|A_\ell|$ — в фм^{-1/2}, энергии связи и резонансные энергии отсчитаны от порога реакции $n + {}^8$ Li)

$J^{\pi}({}^{9}\mathrm{Li})$	$J^{\pi}(^{8}\text{Li})$		Настоящая работа	NCSMC	Эксперимент
$3/2_1^-$	2^{+}	E_b	-3.77(11)		
		$ A_1 $	1.0(5)		1.12[5]; 1.15(14)[6]; 0.96(7)[1]
	1^{+}	E_b	-4.33(15)		
		$ A_1 $	1.9(3)		
	Предсказание	E_b	-4.1(4)	-2.81	-4.0639[4]
$1/2^{-}$	2^{+}	E_b	-0.31(10)		
		$ A_1 $	0.11(5)		0.40[5]
	1^{+}	E_b	-0.38(5)		
		$ A_1 $	0.67(15)		
	Предсказание	E_b	-0.32(12)	-1.14	-1.373(5)[4]
$5/2^{-}$	2^{+}	E_r	0.50(5)	0.67	0.232(15)[4]
		Г	0.37(4)	0.56	0.10(3) [4]
$3/2_{2}^{-}$	2^{+}	E_r	1.8(4)		
		Г	2.9(3)		
	1+	E_r	1.79(13)		
		Г	0.50(20)		
	Предсказание	E_r	1.8(4)	1.41	
		Γ	2.9(3)	0.59	
$3/2_{3}^{-}$	2^{+}	E_r	2.25(22)		
		Γ	1.9(5)		
	1^{+}	E_r	1.88(8)		
		Γ	0.50(7)		
	Предсказание	E_r	2.2(3)	2.65	
		Г	1.9(5)	2.5(4)	
$7/2^{-}$	2^{+}	E_r	3.03(4)		
		Г	1.66(3)		
	1+	E_r	2.838(11)		
		Г	0.056(5)		
	Предсказание	E_r	2.95(12)		
		Γ	1.66(3)		

от порога $n + {}^{8}\text{Li}$, т.е. к энергиям в канале $n + {}^{8}\text{Li}^{*}$ прибавляется разность пороговых энергий $E_{\text{Tr}} = E_{\infty}^{8}{}^{\text{Li}^{*}} - E_{\infty}^{8}{}^{\text{Li}} = 1.34$ МэВ, полученное экстраполяцией В с оптимальными значениями $\hbar\Omega$ расчетов в МОБИК энергий основного и возбужденного состояний ${}^{8}\text{Li}$. Экспериментальное значение энергии возбуждения состояния 1^{+} в ядре ${}^{8}\text{Li}$ и соответственно разности пороговых энергий — 0.9808 МэВ [4].

Отметим, что сходимость энергий и АНК в канале $n + {}^{8}\text{Li}^{*}$ явно хуже, чем в канале рассеяния нейтрона на ядре ${}^{8}\text{Li}^{*}$ в основном состоянии. Как следствие, в канале $n + {}^{8}\text{Li}^{*}$ зависимость от $\hbar\Omega$ энергии и АНК для основного состояния более сильная, чем в канале $n + {}^{8}\text{Li}$. В результате, несмотря на более узкий по $\hbar\Omega$ интервал, погрешности расчетов в обоих каналах сравнимы (см. табл. 1).

Результаты экстраполяции энергии связи ядра ⁹Li в обоих каналах в идеале должны совпадать, так как *S*-матрица должна иметь полюсы при одной и той же энергии во всех каналах. Но в наших расчетах энергии E_b в канале $n + {}^8Li^*$ отличаются от результатов, полученных в канале $n + {}^8Li$, примерно на 0.6 МэВ. Для оценки погрешности энергии на основе всего подхода мы использовали разброс полученных значений E_b в обоих каналах, а значение энергии в середине этого разброса мы приводим в строке "Предсказание" в табл. 1.

Энергия основного состояния $3/2^-$ ядра ⁹Li, полученная в наших расчетах в SS-HORSE– МОБИК с *NN*-взаимодействием Daejeon16, совпадает с экспериментальным значением в отличие от предсказания NCSMC [12], в соответствии с которым состояние $3/2^-$ лежит выше и, соответственно, ближе к порогу $n + {}^8$ Li на 1.3 МэВ.

Наши предсказания для АНК в основном состоянии в канале $n+{}^{8}$ Li в пределах оцененной погрешности согласуется со значениями, полученными на основе анализа экспериментальных данных, которые приводятся в табл. 1. Оценки АНК в канале $n + {}^{8}$ Li* на основе эксперимента отсутствуют.

На рис. 5 представлены собственные энергии МОБИК относительного движения нуклона и ядра ⁸Li в канале $n + {}^{8}$ Li, полученные по формуле (2) для связанного первого возбужденного состояния $1/2^{-}$ ядра ⁹Li. В соответствии с условиями, которые мы обсуждали выше, а также учитывая дополнительно, что для применимости метода SS-HORSE можно использовать только интервалы $\hbar\Omega$, где собственные энергии относительного движения для данного $N_{\rm max}$ растут с ростом $\hbar\Omega$, и что для экстраполяции в рамках SS-HORSE энергий связанных состояний разумно использовать только

отрицательные энергии относительного движения, полученные в МОБИК, в данном случае мы имеем крайне ограниченный набор результатов МОБИК. К этим результатам относятся расчеты в МОБИК в модельных пространствах $N_{\rm max} = 10, 12$ и 14 в диапазоне значений $\hbar\Omega$ от 12.5 до 20 МэВ.

Результаты, для которых выполняется условие $|A_\ell| \leq |A_\ell|_{\max}$, представлены на рис. 6. Видно, что результаты с $N_{\max} = 12$ и/или $N_{\max} = 14$ близки, что говорит о достигнутой сходимости. В связи с ограниченным набором результатов для энергий мы также использовали для нахождения трех параметров в параметризациях *S*-матрицы (3)–(5) три результата из разных модельных пространств МОБИК, а именно полученные с $N_{\max} = 12$, $\hbar\Omega = 12.5$ МэВ и с $N_{\max} = 14$, $\hbar\Omega = 12.5$ МэВ и в легенде как $N_{\max} = 12-14$, фактически совпадают с результатами из индивидуальных модельных пространств как для энергии, так и для АНК.

Относительный разброс значений $|A_1|$ достаточно велик, что отражается в большой неопределенности результата (см. табл. 1).

Мы также произвели расчеты для первого возбужденного состояния $1/2^-$ ядра ⁹Li в канале n ++ ⁸Li*. В этом случае мы действовали так же, как и в предыдущем случае канала $n + {}^8$ Li. Результаты представлены на рис. 6. Результаты для *Е*_b для двух каналов согласуются между собой и с результатами экстраполяции В для данных значений ħΩ. Окончательный результат представлен в табл. 1 с погрешностью, обусловленной разбросом результатов в разных каналах, полученных с различными $\hbar \Omega$ и $N_{\rm max} = 12$ и 14. В отличие от основного состояния ⁹Li, наши предсказания энергии первого возбужденного состояния хуже воспроизводят экспериментальные данные по сравнению с расчетами NCSMC: в соответствии с нашими расчетами состояние 1/2- лежит выше и гораздо ближе к порогу $n + {}^{8}$ Li, чем на эксперименте, в то время как NCSMC предсказывает это состояние немного ниже эксперимента. Если же сравнивать энергии возбуждения состояния $1/2^-$, то у нас она оказывается равной 3.7 МэВ, в расчетах NCSMC — 1.67 МэВ, а в эксперименте — 2.691 МэВ. Таким образом, мы примерно на 1 МэВ завышаем, а NCSMC примерно на 1 МэВ занижает энергию возбуждения этого состояния.

Для АНК в канале $n + {}^{8}$ Li состояния $1/2^{-}$ мы получили несколько меньшее значение, чем полученное из анализа экспериментальных данных.

3. РЕЗОНАНСНЫЕ СОСТОЯНИЯ

Перейдем к исследованию резонансных состояний ядра ⁹Li в подходе SS-HORSE, который раньше успешно применялся для изучения резонансных состояний в ядрах ⁵He и ⁵Li [17–21], ⁷He [49], а также в тетранейтроне [22]. Как отмечалось выше, эта задача актуальна в силу того, что на данный момент экспериментальная информация крайне скудна.

Для исследования резонансных состояний в SS-HORSE мы используем параметризацию функции эффективного радиуса

$$K_{\ell}(E) = k^{2\ell+1} \cot \delta_{\ell}, \qquad (11)$$

где $k = \frac{\sqrt{2\mu E}}{\hbar}$, сдвиг фазы рассеяния δ_{ℓ} связан с *S*-матрицей:

$$S_{\ell} = e^{2i\delta_{\ell}}.\tag{12}$$

В SS-HORSE функция эффективного радиуса для энергий, полученных в МОБИК, может быть рассчитана по формуле [17]:

$$K_{\ell}(E_i) = -k^{2\ell+1} \frac{C_{\aleph^i+2,\ell}(E_i)}{S_{\aleph^i+2,\ell}(E_i)}.$$
 (13)

В качестве энергий E_i для каждого из резонансных состояний мы по-прежнему должны использовать собственные энергии относительного движения, рассчитанные по формуле (2).

Как и в случае связанных состояний, для применения SS-HORSE необходимо провести отбор результатов, и только после этого функцию эффективного радиуса можно параметризовать с учетом аналитических свойств амплитуды рассеяния [19– 21]. Как известно (см., например, [45]), функция $K_{\ell}(E)$ может быть представлена в виде ряда по четным степеням импульса k или в виде ряда по целым степеням энергии E. Однако параметризация $K_{\ell}(E)$ в виде ряда опасна, так как при ненулевых энергиях, в которых фаза δ_{ℓ} принимает значения 0, $\pm \pi, \pm 2\pi, ...,$ функция $K_{\ell}(E)$ принимает бесконечные значения и не может быть описана конечным рядом. Поэтому мы параметризовали функцию эффективного радиуса Паде-аппроксимантом:

$$K_{\ell}(E) = \frac{v_0 + v_1 E + v_2 E^2}{1 + q_1 E}.$$
 (14)

Здесь величины v_0 , v_1 , v_2 и q_1 являются параметрами подгонки. Как видно из уравнений (11) и (12), *S*-матрицу можно легко выразить через $K_{\ell}(E)$, и, рассчитав подгоночные параметры в выражении (14), мы получаем простое аналитическое выражение для *S*-матрицы. Это выражение можно использовать в комплексной плоскости импульса k и

ЯДЕРНАЯ ФИЗИКА том 86 № 1 2023

провести численный поиск положения полюсов Sматрицы. Действительная и мнимая части импульса в полюсе S-матрицы в нижней полуплоскости комплексных импульсов задают энергию и ширину резонанса.

В таком подходе были рассмотрены резонансные состояния $5/2^-$, $3/2^-_2$, $3/2^-_3$ и $7/2^-$. Рассчитанные энергии и ширины приведены в табл. 1, а соответствующие сдвиги фаз резонансного рассеяния представлены на рис. 7.

Нижайший резонанс $5/2^-$ может наблюдаться только в упругом канале рассеяния $n + {}^8\text{Li}$. Канал с возбужденным состоянием ядра ${}^8\text{Li}{}^*$ закрыт. Рассчитанные значения энергии и ширины резонанса близки к экспериментальным значениям, но несколько больше их; отметим, что исследование в NCSMC [12] привело к еще немного большей энергии и ширине этого резонанса.

Следующими состояниями в МОБИК являются $3/2_2^-$ и $3/2_3^-$, которые достаточно близки по энергиям. Эти резонансы получились довольно широкими в канале $n + {}^{8}$ Li. В канале $n + {}^{8}$ Li* мы получили весьма близкие энергии этих резонансов, но существенно меньшую ширину. Это неудивительно, так как эти резонансы лежат при энергии, близкой к порогу данного канала. Таким образом, фаза рассеяния в этих состояниях при уменьшении энергии (см. рис. 7) в районе резонанса должна быстро опускаться к нулю на пороговом значении энергии. Следовательно, по поведению фазы и связанной с ней S-матрицы в данном канале невозможно сделать вывод о ширинах этих резонансов. Поэтому в строке "Предсказание" табл. 1 для ширин резонансов $3/2_2^-$ и $3/2_3^-$ мы игнорируем результаты, полученные в канале $n + {}^8Li^*$, и приводим ширины на основе расчетов в канале $n + {}^{8}$ Li. Отметим, что аналогичную ситуацию мы наблюдали для резонанса $1/2^{-}$ в ядре ⁷Не [49]. Этот резонанс с шириной более 4 МэВ в канале $n + {}^{6}$ Не* с ядром 6 Не в возбужденном состоянии 2+ лежит при энергии меньше 1 МэВ от порога этого канала. Соответственно в данном канале невозможно описать ширину этого резонанса, и в качестве окончательного результата мы приводили в работе [49] ширину этого резонанса, полученную в канале $n + {}^{6}\text{He}$ с ядром ⁶Не в основном состоянии.

Отметим, что полученные нами резонансные состояния $3/2_2^-$ и $3/2_3^-$ имеют энергии возбуждения соответственно 5.9(4) МэВ и 6.3(3) МэВ, что близко по энергии к наблюдавшемуся на эксперименте резонансу с энергией возбуждения 5.38 МэВ [4], ширина которого 600 ± 100 кэВ, впрочем, существенно меньше наших предсказаний. В расчетах в NCSMC получен резонанс $3/2_2^-$, который имеет ширину 590 кэВ. Отсчитанный от порога $n + {}^{8}$ Li, он лежит при энергии примерно на 0.8 МэВ ниже нашего. Однако энергия возбуждения этого резонанса в расчетах NCSMC существенно меньше, так как основное состояние в NCSMC лежит на 1.3 МэВ выше нашего.

Мы получили также в канале $n + {}^{8}Li$ сравнительно широкий низколежащий резонанс 7/2-, перекрывающийся с резонансами $3/2_2^-$ и $3/2_3^-$ (см. рис. 7 и табл. 1). В канале $n + {}^{8}Li^{*}$ ширина этого резонанса поджата не только близким порогом, но и центробежным барьером, обусловленным орбитальным моментом $\ell = 3$. Поэтому в строке "Предсказание" табл. 1 для ширины этого резонанса мы также игнорируем результат, полученный в канале $n + {}^{8}\text{Li}^{*}$. Отметим, впрочем, что в эксперименте наблюдался узкий резонанс с энергией возбуждения 6.43(15) МэВ и шириной 40 ± 20 кэВ, а энергия возбуждения резонанса $7/2^-$ в наших расчетах 7.1(4) МэВ оказывается близкой к этому значению. Ширина же этого резонанса в канале $n + {}^{8}Li^{*}$ составляет 56(5) кэВ, что хорошо согласуется с шириной резонанса 6.43(15) МэВ. В расчетах в NCSMC также наблюдался очень узкий резонанс $7/2^{-}$ при близких энергиях, параметры которого не приводятся в работе [12].

В исследовании состояний положительной четности ядра ⁹Li мы не обнаружили низколежащих резонансов.

4. ЗАКЛЮЧЕНИЕ

В методе SS-HORSE на основе расчетов *ab initio* ядер ⁹Li и ⁸Li, выполненных в МОБИК с нуклон-нуклонным взаимодействием Daejeon16, исследованы связанные и резонансные состояния ядра ⁹Li.

В основе метода SS-HORSE лежат аналитические свойства *S*-матрицы, что позволяет осуществить расчет ее полюсов. Это дает возможность осуществить для энергий связанных состояний экстраполяцию результатов МОБИК на случай бесконечного базиса, причем SS-HORSEэкстраполяция, в отличие от других разработанных методов экстраполяций, является теоретически обоснованной. Кроме этого, метод SS-HORSE позволяет определить АНК в связанных состояниях.

Энергия основного состояния $3/2^-$ ядра ⁹Li, полученная в наших расчетах, совпадает с экспериментальным значением в отличие от предсказания подхода NCSMC [12] с межнуклонными взаимодействиями киральной эффективной теории поля, в котором состояние $3/2^-$ лежит выше и, соответственно, ближе к порогу $n + {}^8$ Li на 1.25 МэВ. Наше предсказание для АНК в основном состоянии в канале $n + {}^{8}$ Li согласуется в пределах погрешности со значениями, полученными на основе анализа экспериментальных данных. Оценки АНК в канале $n + {}^{8}$ Li^{*} на основе эксперимента отсутствуют.

В отличие от основного состояния ⁹Li, наши предсказания энергии первого возбужденного состояния 1/2⁻ по сравнению с расчетами NCSMC хуже воспроизводят экспериментальные данные: энергия возбуждения состояния 1/2⁻ в наших расчетах равна 3.7 МэВ, в расчетах NCSMC — 1.67 МэВ, а экспериментальное значение — 2.691 МэВ. Таким образом, мы примерно на 1 МэВ завышаем, а NCSMC примерно на 1 МэВ занижает энергию возбуждения этого состояния.

Для АНК в канале $n + {}^{8}$ Li состояния $1/2^{-}$ мы получили несколько меньшее значение, чем полученное из анализа экспериментальных данных.

Нижайший резонанс $5/2^-$ может наблюдаться только в упругом канале рассеяния $n + {}^8Li$. Канал с возбужденным состоянием ядра ${}^8Li^*$ закрыт. Рассчитанные значения энергии и ширины резонанса близки к экспериментальным, но несколько больше их, а энергия и ширина этого резонанса, полученные в NCSMC, еще немного больше.

Близкие по энергиям перекрывающиеся резонансы $3/2_2^-$ и $3/2_3^-$ получились довольно широкими. Они существенно превосходят по ширине наблюдавшийся в той же области энергий резонанс неизвестной спин-четности с энергией возбуждения 5.38 МэВ и шириной 600 ± 100 кэВ [4]. В NCSMC получен резонанс $3/2_2^-$ с близкой к эксперименту шириной 590 кэВ, однако энергия возбуждения этого резонанса в расчетах NCSMC оказалось существенно меньше.

В канале $n + {}^{8}$ Li мы получили сравнительно широкий резонанс 7/2-, перекрывающийся с резонансами $3/2_2^-$ и $3/2_3^-$. В канале $n + {}^8\text{Li}{}^*$ с ядром ⁸Li в возбужденном состоянии 1⁺ этот резонанс поджат как близким порогом, так и центробежным барьером, поэтому ширина этого резонанса, полученная в канале $n + {}^{8}\text{Li}^{*}$, нам представляется существенно заниженной. Отметим, впрочем, что в эксперименте наблюдается узкий резонанс с энергией возбуждения 6.43(15) МэВ и шириной 40 ± ± 20 кэВ. Энергия возбуждения резонанса $7/2^{-}$ в наших расчетах 7.1(4) МэВ близка к этому значению, как и его ширина, для которой в канале n ++ ⁸Li* мы получили значение 56(5) кэВ. В расчетах в NCSMC также наблюдался очень узкий резонанс $7/2^{-}$ при близких энергиях.

В исследованиях состояний положительной четности ядра ⁹Li мы не обнаружили низколежащих резонансов.

Работа выполнена при поддержке РФФИ (грант № 20-02-00357) и Министерства науки и высшего образования Российской Федерации (проект № 0818-2020-0005) с использованием ресурсов ЦКП "Центр данных ДВО РАН".

Исследование также была частично поддержано Министерством энергетики США в рамках грантов DE-FG02-87ER40371 и DE-SC0023495 (SciDAC5/NUCLEI), а также Министерством науки и ИКТ и Национальным исследовательским фондом Кореи (2013M7A1A1075764).

СПИСОК ЛИТЕРАТУРЫ

- V. Guimarães, O. Camargo, R. Lichtenthäler, *et al.*, PoS (NIC-IX), 108 (2010).
- J. Görres, H. Herndl, I. J. Thompson, and M. Wiescher, Phys. Rev. C 52, 2231 (1995).
- V. D. Efros, W. Balogh, H. Herndl, R. Hofinger, and H. Oberhummer, Z. Phys. A 355, 101 (1996).
- D. R. Tilley, J. H. Kelley, J. L. Godwin, D. J. Milener, J. E. Purcell, C. G. Sheu, and H. R. Weller, Nucl. Phys. A 745, 155 (2004).
- 5. J. T. Huang, C. A. Bertulani, and V. Guimarães, At. Data Nucl. Data Tables **96**, 824 (2010).
- B. Guo, Z. H. Li, W. P. Liu, X. X. Bai, G. Lian, S. Q. Yan, B. X. Wang, S. Zeng, J. Su, and Y. Lu, Nucl. Phys. A 761, 162 (2005).
- Z. Mao and A. Champagne, Nucl. Phys. A 522, 568 (1991).
- H.-L. Ma, B.-G. Dong, Y.-L. Yan, and X.-Z. Zhang, Eur. Phys. J. A 48, 125 (2012).
- 9. P. Mohr, Phys. Rev. C 67, 065802 (2003).
- 10. P. Descouvemont, Astrophys. J. 405, 518 (1993).
- 11. S. B. Dubovichenko and A. V. Dzhazairov-Kakhramanov, Astrophys. J. **819**, 78 (2016).
- 12. C. McCracken, P. Navrátil, A. McCoy, S. Quaglioni, and G. Hupin, Phys. Rev. C **103**, 035801 (2021).
- M. Piarulli, A. Baroni, L. Girlanda, A. Kievsky, A. Lovato, E. Lusk, L. E. Marcucci, S. C. Pieper, R. Schiavilla, M. Viviani, and R. B. Wiringa, Phys. Rev. Lett. **120**, 052503 (2018).
- A. M. Shirokov, V. A. Kulikov, P. Maris, and J. P. Vary, in *NN and 3N Interactions*, Ed. by L. D. Blokhintsev and I. I. Strakovsky (Nova Science, Hauppauge, NY, 2014), Chap. 8, p. 231; https://novapublishers.com/wpcontent/uploads/2019/05/Bindings-and-Spectraof-Light-Nuclei-with-JISP16.pdf
 B. D. Borratt, D. Naurátil, and L. D. Vary, Drog. Dart
- 15. B. R. Barrett, P. Navrátil, and J. P. Vary, Prog. Part. Nucl. Phys. **69**, 131 (2013).
- 16. A. M. Shirokov, I. J. Shin, Y. Kim, M. Sosonkina, P. Maris, and J. P. Vary, Phys. Lett. B **761**, 87 (2016).
- 17. A. M. Shirokov, A. I. Mazur, I. A. Mazur, and J. P. Vary, Phys. Rev. C **94**, 064320 (2016).

ЯДЕРНАЯ ФИЗИКА том 86 № 1 2023

- 18. I. A. Mazur, A. M. Shirokov, A. I. Mazur, and J. P. Vary, Phys. Part. Nucl. **48**, 84 (2017).
- Л. Д. Блохинцев, А. И. Мазур, И. А. Мазур, Д. А. Савин, А. М. Широков, ЯФ 80, 102 (2017) [Phys. At. Nucl. 80, 226 (2017)].
- Л. Д. Блохинцев, А. И. Мазур, И. А. Мазур, Д. А. Савин, А. М. Широков, ЯФ 80, 619 (2017) [Phys. At. Nucl. 80, 1093 (2017)].
- 21. A. M. Shirokov, A. I. Mazur, I. A. Mazur, E. A. Mazur, I. J. Shin, Y. Kim, L. D. Blokhintsev, and J. P. Vary, Phys. Rev. C **98**, 044624 (2018).
- A. M. Shirokov, G. Papadimitriou, A. I. Mazur, I. A. Mazur, R. Roth, and J. P. Vary, Phys. Rev. Lett. 117, 182502 (2016).
- 23. А. М. Широков, А. И. Мазур, В. А. Куликов, ЯФ 84, 111 (2021) [Phys. At. Nucl. 84, 131 (2021)].
- 24. H. Zhan, A. Nogga, B. R. Barrett, J. P. Vary, and P. Navrátil, Phys. Rev. C **69**, 034302 (2004).
- P. Maris, J. P. Vary, and A. M. Shirokov, Phys. Rev. C 79, 014308 (2009).
- S. A. Coon, M. I. Avetian, M. K. G. Kruse, U. van Kolck, P. Maris, and J. P. Vary, Phys. Rev. C 86, 054002 (2012).
- 27. S. A. Coon, in Proceedings of the International Conference "Nuclear Theory in the Supercomputing Era – 2012" (NTSE-2012), Khabarovsk, Russia, June 18–22, 2012, Ed. by A. M. Shirokov and A. I. Mazur (Pacific National University, Khabarovsk, 2013), p. 171; http://ntse.khb.ru/files/uploads/2012/proceedings/ S Coon.pdf
- 28. R. J. Furnstahl, G. Hagen, and T. Papenbrock, Phys. Rev. C 86, 031301(R) (2012).
- 29. S. N. More, A. Ekström, R. J. Furnstahl, G. Hagen, and T. Papenbrock, Phys. Rev. C 87, 044326 (2013).
- M. K. G. Kruse, E. D. Jurgenson, P. Navrátil, B. R. Barrett, and W. E. Ormand, Phys. Rev. C 87, 044301 (2013).
- 31. R. J. Furnstahl, S. N. More, and T. Papenbrock, Phys. Rev. C **89**, 044301 (2014).
- 32. D. Sääf and C. Forssén, Phys. Rev. C **89**, 011303(R) (2014).
- 33. S. König, S. K. Bogner, R. J. Furnstahl, S. N. More, and T. Papenbrock, Phys. Rev. C **90**, 064007 (2014).
- 34. R. J. Furnstahl, G. Hagen, T. Papenbrock, and K. A. Wendt, J. Phys. G 42, 034032 (2015).
- 35. K. A. Wendt, C. Forssén, T. Papenbrock, and D. Sääf, Phys. Rev. C **91**, 061301(R) (2015).
- 36. S. A. Coon and M. K. G. Kruse, Int. J. Mod. Phys. E **25**, 1641011 (2016).
- D. Odell, T. Papenbrock, and L. Platter, Phys. Rev. C 93, 044331 (2016).
- 38. I. J. Shin, Y. Kim, P. Maris, J. P. Vary, C. Forssén, J. Rotureau, and N. Michel, J. Phys. G 44, 075103 (2017).
- 39. G. A. Negoita, G. R. Luecke, J. P. Vary, P. Maris, A. M. Shirokov, I. J. Shin, Y. Kim, E. G. Ng, and C. Yang, in Proceedings of the Ninth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking (COMPUTATION TOOLS 2018),

Feb. 18–22, 2018, Barcelona, Spain (IARIA, 2018), p. 20; arXiv: 1803.03215 [physics.comp-ph].

- G. A. Negoita, J. P. Vary, G. R. Luecke, P. Maris, A. M. Shirokov, I. J. Shin, Y. Kim, E. G. Ng, C. Yang, M. Lockner, and G. M. Prabhu, Phys. Rev. C 99, 054308 (2019).
- 41. W. G. Jiang, G. Hagen, and T. Papenbrock, Phys. Rev. C **100**, 054326 (2019).
- J. M. Bang, A. I. Mazur, A. M. Shirokov, Yu. F. Smirnov, and S. A. Zaytsev, Ann. Phys. (NY) 280, 299 (2000).
- A. M. Shirokov, Yu. F. Smirnov, and S. A. Zaytsev, in *Modern Problems in Quantum Theory*, Ed. by V. I. Savrin and O. A. Khrustalev (Moscow State University, Moscow, 1998), p. 184.
- С. А. Зайцев, Ю. Ф. Смиронов, А. М. Широков, ТМФ 117, 227 (1998) [Theor. Math. Phys. 117, 1291 (1998)].

- 45. А. И. Базь, Я. Б. Зельдович, А. М. Переломов, *Рассеяние, реакции и распады в нерелятивистской квантовой механике* (Наука, Москва, 1971).
- A. G. Negoita, PhD Thesis (Iowa State University, 2010), ProQuest 3418277; http://gradworks.umi.com/3418277.pdf
- L.-B. Wang, P. Mueller, K. Bailey, G. W. F. Drake, J. P. Greene, D. Henderson, R. J. Holt, R. V. F. Janssens, C. L. Jiang, Z.-T. Lu, T. P. O'Connor, R. C. Pardo, K. E. Rehm, J. P. Schiffer, and X. D. Tang, Phys. Rev. Lett. 93, 142501 (2004).
- 48. R. L. Workman *et al.* (Particle Data Group), Prog. Theor. Exp. Phys. **2022**, 083C01 (2022).
- I. A. Mazur, A. M. Shirokov, I. J. Shin, A. I. Mazur, Y. Kim, P. Maris, and J. P. Vary, Phys. Rev. C 106, 064320 (2022); arXiv: 2207.0736.

⁹Li BOUND AND RESONANT STATES WITH NN INTERACTION Daejeon16

I. A. Mazur^{1),2)}, A. I. Mazur¹⁾, V. A. Kulikov³⁾, A. M. Shirokov³⁾, I. J. Shin⁴⁾, Y. Kim⁴⁾, P. Maris⁵⁾, J. P. Vary⁵⁾

¹⁾ Pacific National University, Khabarovsk, Russia

²⁾ Center for Exotic Nuclear Studies, Institute for Basic Science, Daejeon, Republic of Korea.
 ³⁾ Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
 ⁴⁾ Rare Isotope Science Project, Institute for Basic Sciense, Daejeon, Republic of Korea
 ⁵⁾ Department of Physics and Astronomy, Iowa State University, Ames IA, USA

Presented are the results for ⁹Li bound state energies and asymptotic normalization coefficients as well as for energies and widths of the low-lying ⁹Li resonances. These studies were performed within the SS-HORSE method based on *ab initio* No-Core Shell Model calculations with nucleon-nucleon interaction Daejeon16.