= ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ И ПОЛЯ =

ВЛИЯНИЕ ФУНКЦИЙ РАСПРЕДЕЛЕНИЯ ПАРТОНОВ ПРИ СТОЛКНОВЕНИИ РЕЛЯТИВИСТСКИХ ЯДЕР НА РОЖДЕНИЕ *ф*-МЕЗОНА

© 2023 г. М. М. Митранкова^{1)*}, Е. В. Банников¹⁾, А. Я. Бердников¹⁾, Я. А. Бердников¹⁾, Д. О. Котов¹⁾, Ю. М. Митранков¹⁾, Д. М. Ларионова¹⁾

Поступила в редакцию 22.09.2022 г.; после доработки 22.09.2022 г.; принята к публикации 23.09.2022 г.

В работе проведено изучение влияния функций распределения партонов на рождение ϕ -мезонов в столкновениях p + Al, p + Au, d + Au и ³He + Au при энергии $\sqrt{s_{NN}} = 200$ ГэВ. Представлено сравнение результатов, измеренных в эксперименте PHENIX, с расчетами, выполненными с помощью генератора PYTHIA с использованием различных наборов функций распределения партонов (PYTHIA/Angantyr, PYTHIA +nCTEQ15, PYTHIA + EPPS16). На рождение ϕ -мезонов в столкновениях $p/d/^{3}$ He + Au, помимо ядерных модификаций функций распределения партонов, может оказывать влияние дополнительный физический механизм.

DOI: 10.31857/S0044002723010361, EDN: RFQZYI

1. ВВЕДЕНИЕ

Опытное наблюдение кварк-глюонной плазмы (КГП) [1], состояния ядерной материи, в которой партоны не связаны внутри адронов, неоднократно проводилось в столкновениях релятивистских тяжелых ядер (таких как Cu + Cu, Au + Au [2] и Cu + Au, U + U[3]) на Коллайдере релятивистских тяжелых ионов (RHIC, БНЛ) при энергии $\sqrt{s_{NN}} = 200$ ГэВ.

Одним из способов исследования физических процессов, протекающих при столкновении релятивистских ядер, является изучение особенностей рождения адронов во взаимодействиях ядер [4]. Образование фазы КГП в системе столкновения ядер можно наблюдать посредством проявления различных эффектов в спектрах рождения адронов. К эффектам, свидетельствующим об образовании фазы КГП, относятся увеличенный выход частиц, содержащих (анти)странные кварки [5], и эффект гашения струй [6]. Векторный ϕ -мезон состоит из s- и \bar{s} -кварков, и его выходы измеримы в области больших поперечных импульсов (до 7 ГэB/c), благодаря чему рождение ϕ -мезона чувствительно как к увеличенному выходу странности, так и к эффекту гашения струй [7]. Основные свойства и характеристики векторного ϕ -мезона представлены в табл. 1 [9].

Помимо эффектов, вызванных образованием КГП, на рождение адронов при столкновении ядер также оказывают влияние и эффекты холодной ядерной материи [10], обусловленные в основном ядерной модификацией функций распределения партонов (ФРП) [11] в нуклонах. Таким образом, для достоверного установления наличия фазы КГП необходимо детальное исследование эффектов холодной ядерной материи и отделения их от эффектов КГП.

Согласно расчетам квантовой хромодинамики (КХД) на решетке, ядерная материя претерпевает фазовый переход из состояния адронного газа в состояние КГП при достижении плотности энергии $\varepsilon_{\text{крит}} \approx 1 \text{ ГэВ/фм}^3$ [1]. Плотность энергии в столкновениях тяжелых релятивистских ядер намного

Таблица 1. Основные свойства и характеристики *ф*-мезона и его распада на два разнозаряженных *К*-мезона

Қанал распада	$\phi \to K^+K^-$
Macca, M $_{9}B/c^{2}$	1019.455 ± 0.020
Время жизни, фм/ c	42
Ширина распада, МэВ	4.26 ± 0.04
Вероятность распада по данному каналу, %	48.9 ± 0.5
Сечение взаимодействия с адронами, не содержащими странные кварки	$\sigma_{\phi N} pprox 10$ мбн [8]

¹⁾Санкт-Петербургский политехнический университет Петра Великого, Санкт-Петербург, Россия.

^{*}E-mail: mashalario@gmail.com

превосходит критическое значение [1], однако минимальные условия (в частности размер системы столкновения ядер при заданной энергии), достаточные для осуществления фазового перехода КХЛ, до сих пор не определены экспериментально. Считается [12], что в легких системах столкновений, таких как p + Al, p + Au, d + Au и 3 He + Au при энергии $\sqrt{s_{NN}} = 200$ ГэВ, плотность энергии недостаточна для достоверного наблюдения эффектов КГП, и преобладающую роль в эволюции системы столкновения релятивистских ядер играют эффекты холодной ядерной материи. Несмотря на это, последние экспериментальные результаты [4], полученные в легких системах столкновений релятивистских ядер, указывают на образование мини-ΚΓΠ.

Изучение влияния ядерных модификаций функций распределения партонов на рождение ϕ мезона в легких системах столкновений релятивистских ядер предоставит дополнительную возможность выявления эффектов, обусловленных образованием короткоживущей мини-КГП, а также интерпретации результатов, полученных в тяжелых системах столкновений релятивистских ядер.

2. МЕТОДИКА РАСЧЕТОВ

В качестве количественной характеристики для изучения эффектов КГП и эффектов холодной ядерной материи, влияющих на рождение адронов при столкновении релятивистских ядер x + A, используются факторы ядерной модификации R_{xA} [2-4]. Фактор ядерной модификации определяется как отношение выхода адронов в столкновении ядер x + A к выходу адронов в столкновении протонных пучков, нормированное на количество парных неупругих нуклон-нуклонных столкновений N_{coll} при взаимодействии x + A. Таким образом, при равенстве R_{xA} единице x + A столкновение может быть представлено как элементарная суперпозиция нуклон-нуклонных взаимодействий. Отклонение R_{xA} от единицы указывает на наличие различных эффектов, влияющих на рождение адронов в столкновении релятивистских ядер.

В качестве экспериментальных данных в работе использованы факторы ядерной модификации ϕ -мезонов, измеренные по каналу распада на два разнозаряженных *K*-мезона в легких системах столкновений p + Al, p + Au, d + Au и ³He + Au при энергии $\sqrt{s_{NN}} = 200$ ГэВ в области малых быстрот ($|\eta| < 0.35$)[4] в эксперименте PHENIX на коллайдере RHIC [13].

Целью работы является выявление роли функций распределения партонов в сталкивающихся ядрах на рождение *ф*-мезона в легких системах столкновений при энергии $\sqrt{s_{NN}} = 200$ ГэВ. Для достижения поставленной цели было проведено моделирование рождения ϕ -мезона в легких системах столкновений при энергии $\sqrt{s_{NN}} = 200$ ГэВ при помощи генератора событий РҮТНІА [14] с использованием различных наборов ФРП. На основе смоделированных данных были рассчитаны факторы ядерной модификации ϕ -мезона и проведено их сравнение с факторами ядерной модификации, измеренными в эксперименте.

В качестве наборов ФРП были выбраны наиболее широко используемые наборы Coordinated— Theoretical—Experimental Project on QCD— CTEQ6L1 [15], установленный в программном пакете PYTHIA/Angantyr [16] по умолчанию, Coordinated—Theoretical—Experimental Project on QCD (NCTEQ15) [17] и Eskola—Paakkinen— Paukkunen—Salgado (EPPS16) [18].

Факторы ядерной модификации в рамках модели Angantyr были получены согласно методике [2], применяемой к экспериментальным данным. Выходы ϕ -мезона в p + Al, p + Au, d + Au и ³He + Au при энергии $\sqrt{s_{NN}} = 200$ ГэВ были получены с помощью программного пакета РҮТНІА/Аngantyr, а выходы ϕ -мезона в столкновениях p + p при той же энергии были получены с помощью программного пакета РҮТНІА8.3. Значения N_{coll} извлечены из пакета РҮТНІА/Аngantyr и совпадают со значениями, использованными для экспериментальных данных [19], в пределах неопределенностей модельных расчетов.

Расчеты, основанные на ФРП NCTEQ15 и EPPS16, были реализованы с помощью генератора событий PYTHIA8.3 [14]. Факторы ядерной модификации в данном случае рассчитывались как отношение выходов ϕ -мезона в столкновении p + p с функциями распределения партонов в протонах, связанных внутри сталкивающихся ядер, к выходу ϕ -мезонов в столкновениях p + p, смоделированных с функциями распределения свободных протонов.

В качестве ФРП свободного протона использовался набор CTEQ6L, дейтрона — NNPDFv1 [20], ядра гелия — NCTEQ15. В качестве ФРП ядер алюминия и золота использовались оба набора NCTEQ15 и EPPS16.

3. РЕЗУЛЬТАТЫ

Сравнение факторов ядерной модификации ϕ мезонов в столкновениях p + Al, p + Au, d + Au и ³He + Au при энергии $\sqrt{s_{NN}} = 200$ ГэВ, измеренных в области малых быстрот ($|\eta| < 0.35$) в эксперименте PHENIX, с расчетами, выполненными с помощью генератора событий РҮТНІА/Аngantyr,

Рис. 1. Сравнение факторов ядерной модификации ϕ -мезонов в столкновениях. $a - p + Al, \delta - p + Au, s - d + Au, z - {}^{3}$ Не + Au при энергии $\sqrt{s_{NN}} = 200$ ГэВ, измеренное в области малых быстрот ($|\eta| < 0.35$) в эксперименте PHENIX — 1, с расчетами, выполненными с помощью генератора событий РҮТНІА/Angantyr — 2.

представлено на рис. 1. Аналогичное сравнение экспериментально измеренных $R_{xA} \phi$ -мезонов с расчетами, выполненными с помощью программных пакетов РҮТНІА + *n*СТЕQ15 и РҮТНІА + + EPPS16, представлено на рис. 2.

Факторы ядерной модификации $R_{xA} \phi$ -мезонов, измеренные в эксперименте и полученные расчетно, согласуются между собой во всех рассматриваемых системах столкновений во всем диапазоне по поперечному импульсу p_T в пределах неопределенностей измерений. Значения достигаемого *р*уровня значимости расчетов, произведенных с помощью программных пакетов РҮТНІА/Angantyr, РҮТНІА + *n*СТЕQ15 и РҮТНІА + EPPS16, представлены в табл. 2. Максимальный уровень значимости всех выполненных расчетов, близкий к единице, достигается для системы столкновений *p* + Al, тогда как для систем $p/d/^3$ He + Au он оказывается несколько меньше. Результаты расчетов, выполненные с помощью программных пакетов РҮТНІА/Апgantyr, РҮТНІА + nСТЕQ15 и РҮТНІА + ЕРРS16, не способны описать наблюдаемую в эксперименте закономерность $R_{\text{HeAu}} < R_{d\text{Au}} < R_{p\text{Au}}$ в диапазоне поперечного импульса $2 < p_T[\Gamma \beta B/c] < 5$. В закономерности не рассматривается система столкновения p + Al, так как диапазон поперечного импульса, доступный для экспериментального измерения $R_{xA} \phi$ -мезонов в данной системе, недостаточен ($p_T < 4 \Gamma \beta B/c$).

4. ЗАКЛЮЧЕНИЕ

В работе представлено сравнение факторов ядерной модификации ϕ -мезонов в столкновениях p + Al, p + Au, d + Au и ³He + Au при энергии

Рис. 2. Сравнение факторов ядерной модификации ϕ -мезонов в столкновениях. $a - p + Al, \delta - p + Au, s - d + Au, z - {}^{3}$ Не + Au при энергии $\sqrt{s_{NN}} = 200$ ГэВ, измеренное в области малых быстрот ($|\eta| < 0.35$) в эксперименте PHENIX - l, с расчетами, выполненными с помощью генератора событий PYTHIA + nCTEQ15 - 2 и PYTHIA + EPPS16 - 3.

Таблица 2. Значения достигаемого *p*-уровня значимости расчетов, произведенных с помощью программных пакетов PYTHIA/Angantyr, PYTHIA + *n*CTEQ15 и PYTHIA + EPPS16

Система столкновения	Достигаемый <i>р</i> -уровень значимости		
	PYTHIA/Angantyr	PYTHIA + $nCTEQ15$	PYTHIA + EPPS16
p + Al	9.99×10^{-1}	$9.86 imes 10^{-1}$	9.95×10^{-1}
p + Au	2.66×10^{-1}	1.34×10^{-1}	3.88×10^{-1}
d + Au	5.44×10^{-1}	$3.79 imes 10^{-1}$	6.43×10^{-1}
3 He + Au	2.54×10^{-1}	$9.79 imes 10^{-1}$	9.94×10^{-1}

 $\sqrt{s_{NN}} = 200$ ГэВ, измеренных в эксперименте PHENIX, с расчетами генератора РҮТНІА с использованием различных наборов функций распределения партонов — CTEQ6L1, установленный по умолчанию в программном пакете PYTHIA/Angantyr, *n*CTEQ15 и EPPS16.

Показано, что факторы ядерной модификации $R_{xA} \phi$ -мезонов, измеренные в эксперименте и полученные расчетно, согласуются между собой во

2023

ЯДЕРНАЯ ФИЗИКА том 86 № 1

всех рассматриваемых системах столкновений на всем диапазоне по поперечному импульсу в пределах неопределенностей измерений. Однако максимальный уровень значимости всех проведенных расчетов достигается для системы столкновений p + Al. Расчеты, выполненные с использованием различных функций распределения партонов, не способны описать наблюдаемую в эксперименте закономерность $R_{\text{HeAu}} < R_{d\text{Au}} < R_{p\text{Au}}$ в диапазоне поперечного импульса $2 < p_T [ГэB/c] < 5$.

На рождение ϕ -мезонов в столкновениях $p/d/^{3}$ Не + Аu, помимо ядерных модификаций функций распределения партонов, может оказывать влияние дополнительный физический механизм.

СПИСОК ЛИТЕРАТУРЫ

- PHENIX Collab. (K. Adcox, S. S. Adler, S. Afanasiev, C. Aidala, N. N. Ajitanand, Y. Akiba, A. Al-Jamel, J. Alexander, R. Amirikas, K. Aoki, L. Aphecetche, Y. Arai, R. Armendariz, S. H. Aronson, R. Averbeck, *et al.*), Nucl. Phys. A **757**, 184 (2005).
- A. Adare, S. Afanasiev, C. Aidala, N. N. Ajitanand, Y. Akiba, H. Al-Bataineh, J. Alexander, A. Al-Jamel, A. Angerami, K. Aoki, N. Apadula, L. Aphecetche, Y. Aramaki, R. Armendariz, S. H. Aronson, J. Asai, *et al.*, Phys. Rev. C 83, 024909 (2011).
- 3. A. Berdnikov, Ya. Berdnikov, D. Kotov, and Yu. Mitrankov, J. Phys.: Conf. Ser. **1135**, 012044 (2018).
- 4. M. M. Mitrankova, Ya. A. Berdnikov, A. Ya. Berdnikov, D. O. Kotov, Iu. M. Mitrankov, and for the PHENIX Collab., Phys. Scr. **96**, 084010 (2021).

- P. Koch, B. Müller, and J. Rafelski, Phys. Rep. 142, 167 (1986).
- 6. G.-Y. Qin and X.-N. Wang, Int. J. Mod. Phys. E 24, 1530014 (2015).
- 7. A. Shor, Phys. Rev. Lett. 54, 1122 (1985).
- 8. A. Sibirtsev, H.-W. Hammer, U.-G. Meißner, and A. W. Thomas, Eur. Phys. J. A **29**, 209 (2006).
- 9. P. A. Zyla *et al.* (Particle Data Group), Prog. Theor. Exp. Phys. **2020**, 083C01 (2020).
- 10. N. Armesto, EPJ Web Conf. 171, 11001 (2018).
- 11. P. Paakkinen, Frascati Phys. Ser. 33-40 (2017).
- 12. M. Mitrankova, J. Phys.: Conf. Ser. **1690**, 012125 (2020).
- 13. K. Adcox *et al.* (PHENIX Collab.), Nucl. Instrum. Methods Phys. Res. A **499**, 469 (2003).
- T. Sjöstrand, S. Ask, J. R. Christiansen, R. Corke, N. Desai, P. Ilten, S. Mrenna, S. Prestel, C. O. Rasmussen, and P. Z. Skands, Comput. Phys. Commun. 191, 159 (2015).
- J. Pumplin, D. R. Stump, J. Huston, H.-L. Lai, P. Nadolsky, and W.-K. Tung, JHEP 0207, 012 (2002).
- 16. A. Vieira da Silva et al., arXiv: 2002.10236 [hep-ph].
- K. Kovařík, A. Kusina, T. Ježo, D. B. Clark, C. Keppel, F. Lyonnet, J. G. Morfín, F. I. Olness, J. F. Owens, I. Schienbein, and J. Y. Yu, Phys. Rev. D 93, 085037 (2016).
- K. J. Eskola, P. Paakkinen, H. Paukkunen, and C. A. Salgado, Eur. Phys. J. C 77, 163 (2017).
- U. A. Acharya *et al.* (PHENIX Collab.), Phys. Rev. C 105, 064902 (2022).
- 20. J. Rojo, in *Proceedings of the 55th Rencontres de Moriond on QCD and High Energy Interactions*; arXiv: 2104.09174 [hep-ph].

THE ROLE OF PARTON DISTRIBUTION FUNCTIONS IN THE ϕ MESON PRODUCTION IN RELATIVISTIC ION COLLISIONS

ВЛИЯНИЕ ФУНКЦИЙ РАСПРЕДЕЛЕНИЯ ПАРТОНОВ

M. M. Mitrankova¹⁾, E. V. Bannikov¹⁾, A. Ya. Berdnikov¹⁾, Ya. A. Berdnikov¹⁾, D. O. Kotov¹⁾, Iu. M. Mitrankov¹⁾, D. M. Larionova¹⁾

¹⁾Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia

The paper presents the study of the role of parton distribution functions in the ϕ -meson production in p + Al, p + Au, d + Au, and ³He + Au collisions at the energy of $\sqrt{s_{NN}} = 200$ GeV. Comparisons of the experimental results, measured by PHENIX, to PYTHIA calculations with different sets of parton distribution functions (PYTHIA/Angantyr, PYTHIA + *n*CTEQ15, PYTHIA + EPPS16) are provided. Besides parton distribution functions, the additional physics mechanism might influence the ϕ -meson production in $p/d/^{3}\text{He} + \text{Au}$ collisions.