= ЯДРА =

ИССЛЕДОВАНИЕ (γ, p)-РЕАКЦИИ НА ИЗОТОПАХ НИКЕЛЯ 58,62 Ni

© 2023 г. М. В. Желтоножская^{1)*}, А. П. Черняев¹⁾, Д. А. Юсюк¹⁾, А. А. Щербаков¹⁾

Поступила в редакцию 22.09.2022 г.; после доработки 22.09.2022 г.; принята к публикации 24.09.2022 г.

В работе представлены результаты исследований фотоядерных реакций на мишенях естественного никеля при граничной энергии тормозных γ -квантов 20 и 37 МэВ. Получены значения средневзвешенных выходов (γ , p)-реакций на ядрах ^{58,62}Ni. Исследования облученных мишеней проводились методами полупроводниковой гамма-спектрометрии с использованием HPGe-спектрометров. Моделирование изученных реакций в рамках программного кода TALYS 1.9 и сравнение с экспериментальными результатами показали большую роль нестатистических процессов.

DOI: 10.31857/S0044002723010622, EDN: RICALX

1. ВВЕДЕНИЕ

В последние годы возобновился интерес к изучению фотоядерных реакций. Актуальность подобных исследований в первую очередь связана с возможностью получения информации о возбуждении ядер в области гигантского дипольного резонанса (ГДР), для которого основными каналами фотовозбуждения ядер являются реакции с вылетом протонов и нейтронов.

В настоящее время фотонейтронные сечения довольно подробно исследованы для большого числа ядер в диапазоне энергий от порога до 30 МэВ [1]. Эти реакции успешно описываются статистическими моделями в области максимума ГДР, в частности, в рамках программного кода TALYS. где рассматриваются комбинации испарительного и предравновесного механизмов распадов возбужденных атомных ядер. Совсем другая ситуация наблюдается с фотоядерными реакциями с вылетом заряженных частиц. Экспериментальных данных о сечении (γ, p)-реакций значительно меньше, и в основном они получены для легких ядер. Для средних и тяжелых ядер измерения фотопротонных сечений выполнены лишь в единичных случаях, при этом точность полученных результатов существенно уступает точности фотонейтронных сечений. Выход этих реакций на фоне реакций с вылетом нейтронов сильно заторможен, а имеющиеся оценки экспериментальных данных в области максимума ГДР в рамках статистических моделей дают заниженные на 1-2 порядка данные. Основная причина — это учет влияния кулоновского барьера.

Для понимания природы (γ, p) -процессов необходимо получить экспериментальную информацию для ядер в области $A \sim 50$, 100, 200. Поэтому эти исследования являются интересными с фундаментальной точки зрения, также подобные исследования важны для решения большого числа прикладных задач: получения пучков радиоактивных ионов или нейтронов, производства медицинских радиоизотопов, расчета радиационных ядерно-физических установок или развития различных активационных методик.

Ранее сечение (γ, p) -реакции исследовалось только на ⁵⁸Ni в работе [2] с невысокой точностью измерений. В то же время с использованием активационных подходов интегральные выходы для (γ, n) - и (γ, p) -реакций можно измерить с высокой точностью, так как распад остаточных ядер происходит испусканием близких по энергии γ -квантов (γ 122 кэВ для (γ, p) -реакции и 127 кэВ для (γ, n) -реакции).

2. МАТЕРИАЛЫ И МЕТОДЫ ЭКСПЕРИМЕНТА

Исследование фотоядерных реакций на изотопах никеля проводилось методом наведенной активности на тормозных γ -квантах для пучков электронов с энергией 20 и 37 МэВ. Облучение мишеней тормозным излучением с граничной энергией 20 МэВ проводилось на линейном медицинском ускорителе Varian Trilogy. Продолжительность облучения образцов составила 30 мин. В эксперименте облучалась сборка из объемных мишеней естественного изотопного состава металлического никеля и металлического циркония, а также плоская мишень естественного тантала. Размеры объемных мишеней составляли $1 \times 1 \times 1 \, {\rm cm}^3$, размеры

¹⁾Московский государственный университет имени М. В. Ломоносова, Москва, Россия.

^{*}E-mail: **zhelton@yandex.ru**

Рис. 1. Гамма-спектр облученной мишени из естественного никеля.

плоской мишени — толщина 50 мкм и площадь 1 \times \times 1 см $^2.$

Наведенную активность измеряли у-спектрометрами на базе HPGe-детекторов с эффективностью регистрации 15-40% по сравнению с NaI(Tl)детектором размерами 3' × 3" и энергетическим разрешением 1.8–2 кэВ на γ -линии ⁶⁰Со. Обработка ү-спектров проводилась с помощью программы Winspectrum [3]. Эффективность регистрации у-квантов распада определялась с помощью объемного смешанного калибровочного источника. В ү-спектрах облученных мишеней надежно измерены продукты (γ, p)-реакций на изотопах никеля ⁵⁸Ni и ⁶²Ni — ⁵⁷Co с периодом полураспада $T_{1/2}=272$ сут (γ -лучи 122, 136 кэВ) и $^{61}{
m Co}\,{
m c}$ периодом полураспада $T_{1/2} = 1.65$ ч (γ -лучи 67, 909 кэВ), а также продукт (γ , n)-реакции на ⁵⁸Ni — изотоп ⁵⁷Ni с периодом полураспада $T_{1/2} =$ = 35.6 ч (γ-лучи 127, 1378 и 1758 кэВ).

Традиционно нами в качестве мониторной мишени используется (γ , n)-реакция на ¹⁸¹Та с периодом полураспада $T_{1/2} = 8.1$ ч (γ -лучи 93, 103 кэВ)

[4]. Как мы уже обсуждали выше, близость γ квантов по энергии в ⁵⁷Со и ⁵⁷Ni позволяет определить соотношение выходов с точностью лучше, чем 2%. Однако измерение интегрального выхода (γ , n)-реакции надежнее проводить через выход γ лучей 1377 кэВ, так как в этом случае значительно упрощаются оценки самопоглощения γ -квантов объемной мишени. По этой же причине в данном эксперименте в качестве мониторной мишени использовалась (γ , n)-реакция на ⁹⁰Zr. В этой реакции образуется ⁸⁹Zr с периодом полураспада $T_{1/2} = 78$ ч и его распад происходит с испусканием γ -квантов с энергией 909 и 1745 кэВ, которые близки по энергиям с энергиями γ -квантов из распада ⁵⁷Ni и ⁶¹Со.

Важным фактором при таком выборе мониторной мишени является и тот факт, что порог (γ, n) -реакции составляет 12.2 МэВ для ⁵⁸Ni и 12.0 МэВ для ⁹⁰Zr, что позволяет значительно уменьшить погрешности измерений, связанные с оценкой потока тормозных γ -квантов. Отметим, что интегральные выходы (γ, n) -реакции измерены с высокой точностью в ранее проведенных иссле-

Реакция	$Y_{ m cp}$, мбн, эксперимент	Y _{ср} , мбн, [2]	Y _{cp} , мбн, TALYS	$Y_{ m cp}$, мбн, с учетом изоспина
20 МэВ				
$^{58}\mathrm{Ni}(\gamma,n)^{57}\mathrm{Ni}$	11.2 ± 0.6	10.8	8.9	—
${}^{58}\mathrm{Ni}(\gamma,p){}^{57}\mathrm{Co}$	11.5 ± 0.6	5.3	6.5	10.7
$^{62}\mathrm{Ni}(\gamma,p)^{61}\mathrm{Co}$	1.83 ± 0.12	—	0.44	2.11
37 МэВ				
$^{58}\mathrm{Ni}(\gamma,n)^{57}\mathrm{Ni}$	12.6 ± 0.1	13.4	10.1	—
${}^{58}\mathrm{Ni}(\gamma,p){}^{57}\mathrm{Co}$	16.8 ± 0.12	17.5	12.3	18.8

Таблица 1. Значения средневзвешенных по потоку выходов изученных реакций для граничной энергии тормозных γ-квантов 20 и 37 МэВ

дованиях [5], и поэтому цирконий был использован в качестве мониторной мишени при исследовании (γ , p)-реакции. Для контрольных проверок потоки γ -квантов оценивались и с использованием мониторной мишени тантала. На рис. 1 и 2 представлены измеренные спектры активности облученных мишеней из естественного никеля и циркония.

Для оценки потока определялись интенсивности γ -линий 909 и 1713 кэВ, сопровождающие распад ⁸⁹Zr и средневзвешенный выход реакции ⁹⁰Zr(γ , n)⁸⁹Zr. Средневзвешенный выход вышеуказанной реакции был получен в результате свертки табличных значений сечений этой реакции для монохроматических γ -квантов с шагом 0.5 МэВ с относительными величинами смоделированного в Geant4 спектра тормозных γ -квантов:

$$Y_{\rm cp}^{\rm Zr} = \frac{\sum_{i=1}^{N} \sigma_i \varphi_i}{\sum_{i=1}^{N} \varphi_i}.$$
 (1)

Значения сечений реакции 90 Zr(γ, n) 89 Zr для монохроматических γ -квантов были взяты из работы [5]. На рис. З приведен смоделированный нами спектр тормозных γ -квантов с использованием программного кода Geant4 [6] и спектр тормозных γ -квантов из статьи [7]. Относительные величины смоделированного потока тормозных γ -квантов, приведенные к пороговым величинам реакции на цирконии, были взяты из тормозного спектра. После этого рассчитывались потоки тормозных γ квантов по формуле, $\gamma/(cm^2 c)$ [8]:

$$F = \frac{S\lambda A}{(1 - e^{-\lambda t_{\rm irr}})e^{-\lambda t_p}(1 - e^{-\lambda t_m})\xi k\alpha Y_{\rm cp}^{\rm Zr}N_{\rm A}mp},$$
(2)

ЯДЕРНАЯ ФИЗИКА том 86 № 1 2023

где S — площади фотопиков, сопровождающих үраспад ⁸⁹Zr; α — квантовые выходы γ -квантов при распаде ⁸⁹Zr; ξ — эффективность регистрации γ -квантов; $t_{\rm irr}$, t_p , t_m — времена облучения, охлаждения и измерения соответственно, с; ккоэффициенты самопоглощения у-квантов распада; p — абсолютное содержание ⁹⁰Zr в естественной смеси (51.5%); $N_{\rm A} = 6.02 \times 10^{23}$ — число Авогадро; Y^{Zr} — средневзвешенный выход реакции 90 Zr(γ, n) 89 Zr, рассчитанный согласно (1); *m* — масса мишени, нормированная на единицу площади, г/см²; A = 90 — массовое число атомов циркония, а.е.м.; λ — постоянная распада, с⁻¹. Величины λ, k, α, A, p берутся из [9]; S — из экспериментальных γ -спектров, а ξ — из калибровочных кривых, дополнительно проверенных с помощью моделирования в программном коде Geant4 [6].

Далее по формуле (2), используя эти потоки и поправки на разницу энергетических порогов, рассчитывались средневзвешенные по потоку выходы изученных реакций на никеле. Вдобавок нами были исследованы γ -спектры облученных образцов из нержавеющей стали тормозными γ -квантами с граничной энергией 37 МэВ, и из этих данных были рассчитаны значения средневзвешенных выходов (γ , p)-реакции на ⁵⁸Ni. Полученные результаты приведены в табл. 1.

Отметим, что при расчетах средневзвешенного выхода исследуемых реакций учитываются потоки тормозных γ -квантов в области энергий 15— 19 МэВ, поэтому погрешность таких расчетов достигает 10%.

3. ОБСУЖДЕНИЕ ПОЛУЧЕННЫХ РЕЗУЛЬТАТОВ

Можно отметить, что полученное значение $Y_{\rm cp}$ для (γ, n) -реакции находится в хорошем согласии

Рис. 2. Гамма-спектр облученной мишени из естественного циркония.

с ранее проведенными измерениями. Некоторое занижение наших результатов при облучении на ускорителе с энергией пучка 37 МэВ по сравнению с данными из [2] обусловлено тем, что в упомянутой работе (γ , n)-реакция изучалась до 34 МэВ. Полученные же экспериментальные результаты средневзвешенного выхода (γ, p) -реакции для граничной энергии тормозных у-квантов 20 МэВ значительно расходятся с ранее полученными результатами. В то же время для облучения тормозными уквантами с граничной энергией 37 МэВ мы наблюдаем согласие в пределах погрешности измерений. Нельзя не упомянуть, что Уср в работе [2] измерялся до энергии 30 МэВ, что также приводит к небольшому расхождению по сравнению с нашими результатами для 37 МэВ. Как уже отмечалось, близость по энергии γ -лучей для (γ, n) - и (γ, p) реакции позволяет измерить их соотношение с точностью 2%. И если предположить, что Уср для (γ, n) -реакции измерен правильно, то мы не можем значительно ошибаться при оценке (γ, p) -реакции для 20 МэВ.

Нами было проведено моделирование (γ , n)- и

 (γ, p) -реакций в рамках программного кода TALYS 1.9 [10]. Рассчитанные средневзвешенные выходы исследуемых (γ , n)-реакций в пределах погрешности совпадают с полученными экспериментальными значениями и значениями из [2]. В то же время средневзвешенный выход (γ , p)-реакции превышает данные из расчетов с использованием программного кода TALYS 1.9 для всех исследуемых радионуклидов. Это указывает на большую роль нестатистических процессов. Поэтому для расчетов выходов (γ, p) -реакции мы также учитывали полупрямой механизм распада ГДР с учетом его изоспинового расщепления [11]. Время такого распада мало — $\sim 10^{-21}$ с и меньше характерного времени действия кулоновских сил $\sim 10^{-18}$ с [12, 13]. Таким образом, мы должны исключить роль кулоновского барьера, но ввести поправку на изотопический сдвиг. Природа этого сдвига видна из формулы Вайцзеккера для энергии связи ядра. Энергии всех состояний ядра (N+1, Z- – 1) будут сдвинуты вверх по энергии относительно состояния ядра (N, Z) за счет возрастания энергии симметрии. В работе [11] проанализирована роль

Рис. 3. Смоделированный тормозной спектр (точечная кривая) и полученный в работе [7] (сплошная) линейного ускорителя электронов с граничной энергией тормозного излучения 20 МэВ.

коллективизации возбужденных состояний ГДР и показано, что изоспиновое расщепление ГДР описывается следующим выражением:

$$\Delta E_T = \frac{60(T_0 + 1)}{A},$$
 (3)

где T — изоспин атомного ядра в интервале $T_0 = = |N - Z/2|$ до A/2.

С учетом вышеизложенного в табл. 1, кроме рассчитанных с использованием программного кода TALYS 1.9 средневзвешенных выходов (γ , p)реакции на изотопах никеля, приведены и суммарные средневзвешенные выходы с учетом вклада статистического и полупрямого канала взаимодействия. Как видно, при учете полупрямых процессов экспериментальные и расчетные значения находятся в согласии в пределах погрешности измерений и расчетов. Можно отметить, что вклад этих двух каналов соизмерим, что значительно отличается от (γ , p)-реакции для ядер с $A \sim 90$ и 180 [14, 15], где полупрямой процесс доминирует.

4. ЗАКЛЮЧЕНИЕ

В работе представлены экспериментальные данные о средневзвешенных выходах (γ, p) -реакции на ядрах ^{58,62}Ni. Моделирование (γ, n) - и (γ, p) -реакций в рамках программного кода TALYS 1.9. показало, что значения расчетных средневзвешенных выходов (γ, n) -реакций в пределах

ЯДЕРНАЯ ФИЗИКА том 86 № 1 2023

погрешности измерений совпадают с экспериментальными значениями. В то же время средневзвешенный выход (γ , p)-реакции превышает расчетные данные с использованием программного кода TALYS 1.9 для всех исследуемых радионуклидов, что указывает на большую роль нестатистических процессов. Оценка вклада полупрямого механизма распада ГДР с учетом его изоспинового расщепления приводит расчетные значения в хорошее согласие с экспериментальными результатами.

Работа выполнена при поддержке РНФ, грант № 22-29-01013.

СПИСОК ЛИТЕРАТУРЫ

- A. V. Varlamov, V. V. Varlamov, D. S. Rudenko, and M. E. Stepanov, *Atlas of Giant Dipole Resonances* (IAEA Nuclear Data Section, Vienna, 1999).
- Б. С. Ишханов, И. М. Капитонов, И. М. Пискарев,
 В. Г. Шевченко, О. П. Шевченко, ЯФ 11, 485 (1970).
- M. V. Zheltonozhskaya, V. A. Zheltonozhsky, D. E. Myznikov, A. N. Nikitin, N. V. Strilchuk, and V. P. Khomenkov, Bull. Russ. Acad. Sci.: Phys. 85, 1122 (2021).
- M. V. Zheltonozhskaya, V. A. Zheltonozhsky, E. N. Lykova, A. P. Chernyaev, and V. N. Iatsenko, Nucl. Instrum. Methods Phys. Res. B 470, 38 (2020).
- D. Brajnik, D. Jamnik, G. Kernel, M. Korun, U. Miklavžič, B. Pucelj, and A. Stanovnik, Phys. Rev. C 13, 1852 (1976).
- S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee, G. Barrand, F. Behner, L. Bellagamba, J. Boudreau, L. Broglia, A. Brunengo, *et al.*, Nucl. Instrum. Methods Phys. Res. A 506, 250 (2003).
- 7. L. Brualla, M. Rodriguez, J. Sempau, and P. Andreo, Rad. Oncol. **14**, 6 (2019).
- 8. V. A. Zheltonozhsky and A. M. Savrasov, Nucl. Instrum. Methods Phys. Res. B **456**, 116 (2019).
- R. B. Firestone, V. S. Shirley, C. M. Baglin, and S. Y. F. Chu, *Table of Isotopes* (Springer, Hungary, 1997).
- A. J. Koning and D. Rochman, Nucl. Data Sheets 113, 2841 (2012).
- B. S. Ishkhanov and I. M. Kapitonov, Phys. Usp. 64, 141 (2021).
- 12. H. Morinaga, Phys. Rev. 97, 444 (1955).
- 13. R. Ö. Akyüz and S. Fallieros, Phys. Rev. Lett. 27, 1016 (1971).
- V. A. Zheltonozhsky and A. M. Savrasov, Eur. Phys. J. A 58, 118 (2022).
- V. A. Zheltonozhsky, A. M. Savrasov, M. V. Zheltonozhskaya, and A. P. Chernyaev, Eur. Phys. J. A 57, 121 (2021).

INVESTIGATION OF (γ, p) -REACTION ON ^{58,62}Ni NICKEL ISOTOPES

M. V. Zheltonozhskaya¹⁾, A. P. Chernyaev¹⁾, D. A. Iusiuk¹⁾, A. A. Shcherbakov¹⁾

¹⁾Lomonosov Moscow State University, Moscow, Russia

The paper presents the results of studies of photonuclear reactions on natural nickel targets at bremsstrahlung of 20 and 37 MeV end-point energies. The weighted average yields of (γ, p) -reactions on ^{58,62}Ni nuclei were obtained using the induced activity method. Research of irradiated targets were carried out by semiconductor γ spectrometry using HPGe spectrometers. Modeling of the studied reactions within the TALYS 1.9 program code framework and comparison with the experimental results showed the important role of non-statistical processes.