= ЯДРА =

Sn-АНОМАЛИЯ В КУЛОНОВСКИХ ЭНЕРГИЯХ И АНАЛОГОВЫЕ РЕЗОНАНСЫ НЕЙТРОННО-ИЗБЫТОЧНЫХ ИЗОТОПОВ ОЛОВА

© 2023 г. Ю. С. Лютостанский^{1)*}

Поступила в редакцию 24.11.2022 г.; после доработки 21.12.2022 г.; принята к публикации 26.12.2022 г.

Определена аномалия в распределении кулоновских энергий изотопов олова (Sn-аномалия), которая проявляется в том, что в зависимости $\Delta E_{\rm C} A^{1/3}$ от A для изотопов $^{112-132}$ Sn наблюдается линейная зависимость экспериментальных данных по $\Delta E_{\rm C}$, близкая к Const. Разность кулоновских энергий $\Delta E_{\rm C}(A,Z)$ соседних ядер-изобар Sn-Sb аппроксимируется с помощью двухпараметрической формулы. Рассчитаны энергии изобар-аналоговых резонансов $E_{\rm AR}$ как с помощью полученной аппроксимации в феноменологической модели, так и в рамках микроскопической теории конечных ферми-систем для изотопов $^{110-140}$ Sn. Проведено сравнение с экспериментальными данными по $E_{\rm AR}$ и с другими известными расчетами в самосогласованных подходах. Показано, что феноменологическая модель.

DOI: 10.31857/S0044002723030133, EDN: RLFZWC

1. ВВЕДЕНИЕ

Исследование кулоновских энергий атомных ядер $E_{\rm C}(A, Z)$ было стимулировано в начале 1960х гг. открытием аналогового резонанса (AR) [1]. Появилась возможность с большой точностью в реакциях перезарядки измерять разницу кулоновских энергий соседних ядер-изобар:

$$\Delta E_{\rm C}(A, Z) = E_{\rm C}(A, Z+1) - E_{\rm C}(A, Z).$$
(1)

Оказалось, что AR имеет малую ширину и его энергия измеряется с хорошей точностью [1, 2].

Феноменологическая теория аналоговых состояний была построена Лейном [2, 3], и было введено новое квантовое число — изоспин, значение которого в основном состоянии соответствует $T_0 = (T_0)_Z = (N - Z)/2$. Согласно Лейну, при возбуждении AR в зарядово-обменных реакциях изоспин должен сохраняться.

Микроскопическая теория аналоговых состояний развивалась в то время в методе Хартри-Фока группой японских авторов [4, 5] и в теории конечных ферми-систем (ТКФС) [6] группой А.Б. Мигдала [7, 8].

В последние годы интерес к изобарическим состояниям резонансного типа, в том числе и к AR, возрос как в связи с развитием новых теоретических самосогласованных методов расчета [9–12] (см. ниже), так и в связи с развитием экспериментальных возможностей [13], а также появлением новых данных по зарядово-обменным резонансам, в частности по изотопам олова [14, 15].

Действительно, наиболее полные экспериментальные исследования зарядово-обменных возбуждений в девяти изотопах олова с A = 112 - 124были проведены в [14], где исследовалась реакция перезарядки Sn(³He, t)Sb при энергии $E(^{3}\text{He}) =$ = 200 МэВ. Энергии возбуждения (*E_x*), ширины (Г) и сечения $d\sigma/d\Omega$ (мбн/ср) были измерены для гигантского гамов-теллеровского, аналогового и трех пигми-резонансов. Относительно недавно были проведены исследования зарядово-обменных резонансов в реакции $^{132}{\rm Sn}(p,n)^{132}{\rm Sb}$ при энергии E(p) = 216 $M_{9}B$ на дважды магическом очень нейтронно-избыточном изотопе ¹³²Sn [15]. В этом эксперименте была также получена константа локального спин-изоспинового взаимодействия Ландау-Мигдала, которая сравнивается с настоящими расчетами.

В настоящей работе исследуются кулоновская энергия и связанная с ней энергия аналоговых резонансов изотопов олова, по которым имеется наиболее полный набор экспериментальных данных. Полученные зависимости сравниваются с работой [16], в которой ранее было представлено феноменологическое описание кулоновских энергий для более чем 400 ядер. Определена аномалия в распределении кулоновских энергий изотопов олова (Sn-аномалия). В настоящей работе новая аппроксимация кулоновских энергий для цепочки изото-

¹⁾Национальный исследовательский центр "Курчатовский институт", Москва, Россия.

^{*}E-mail: lutostansky@yandex.ru

Рис. 1. Зависимость величины $\Delta E_{\rm C} A^{1/3}$ от массового числа A для ядер в диапазоне A = 90-140.

пов Sn отличается от аппроксимаций, полученных ранее, что позволило рассчитать энергии AR для большого количества изотопов олова, в том числе и короткоживущих ядер с большим нейтронным избытком.

В настоящей работе также анализируются параметры изоспин-изоспинового взаимодействия из сравнения расчетных значений с экспериментальными данными по энергиям аналоговых резонансов. Зарядово-обменные резонансы исследуются в настоящей работе в рамках микроскопической теории конечных ферми-систем [6] с параметрами взаимодействия, полученными недавно [17, 18].

2. КУЛОНОВСКАЯ ЭНЕРГИЯ ИЗОТОПОВ ОЛОВА

В капельной модели ядра кулоновская энергия ядра с учетом обменных эффектов имеет вид [19]:

$$E_{\rm C}(A,Z) = \frac{3}{5} \frac{Z^2 e^2}{R_{\rm C}} \left[1 - 5 \left(\frac{3}{16\pi Z} \right)^{2/3} \right] = (2)$$
$$= a_{\rm C} \frac{Z^2}{R_{\rm C}} \left(1 - 0.76Z^{-2/3} \right),$$

где обычно полагается $R_{\rm C}=r_0A^{1/3}$. Если положить $r_0=1.25$ фм, то $a_{\rm C}/R_{\rm C}=0.7/A^{1/3}$ как в [19]

ЯДЕРНАЯ ФИЗИКА том 86 № 3 2023

(соотношение (2.19)). В работе [20] была предложена поправка к $R_{\rm C}$ с учетом поверхностных эффектов $R_D = R_{\rm C}(1 + \Delta)$, где

$$\Delta = \frac{5\pi^2}{6} \frac{d^2}{r_0^2 A^{1/3}} - \frac{1}{1 + A^{1/3}/k} \frac{N-Z}{6Z}.$$
 (3)

Здесь $d \approx 0.55$ фм, $3/(4\pi r_0^3) = 0.16$ фм⁻³, k < 1[21] и для A > 60, $Z \ge 30$ величина $\Delta \ll 1$, и в дальнейшем мы ее учитывать не будем.

Соответственно для энергетической разности $\Delta E_{\rm C}(A, Z)$ получается:

$$\Delta E_{\rm C}(A, Z) = \frac{a_{\rm C}}{R_{\rm C}} \bar{Z} \left(1 - 0.500 Z^{-2/3} \right), \quad (4)$$

rge $\bar{Z} = Z + 1/2.$

Слагаемое с 0.50 $Z^{-2/3}$ соответствует обменному члену в кулоновской энергии (2) и мало в тяжелых ядрах. Так, для изотопов Sn с Z = 50 — это будет $0.5/50^{2/3} \approx 0.037 \ll 1$, и, следовательно, имеем:

$$\Delta E_{\rm C}(A, Z = 50) R_{\rm C} = r_0 \Delta E_{\rm C} A^{1/3} = (5)$$

= $a_{\rm C}(Z + 1/2) = \text{Const.}$

Это хорошо видно на графике рис. 1, где линейная зависимость $\Delta E_{\rm C} A^{1/3}$ от A наблюдается для всех представленных изотопических цепочек в

Рис. 2. Зависимость разности кулоновских энергий $\Delta E_{\rm C}$ от параметра $x = (Z + 1/2)A^{1/3}$. Кривые (см. формулу (6)): I -для A = 5-244 [16], где a = 1.425 МэВ и b = -0.969 МэВ, 2 -для изотопов ¹¹²⁻¹³² Sn, где a = 1.2262 МэВ и b = 1.1540 МэВ.

диапазоне 90 < A < 140, а для всех изотопов Sn наблюдается линейная аномалия, близкая к Const (Sn-аномалия). Расчеты для Sn с экспериментальными данными по $\Delta E_{\rm C}$ дают: $\Delta E_{\rm C} A^{1/3} = 67.606 \pm \pm 0.124$ МэВ, т.е. отклонения от Const составляют <0.20%. Такое исключительное поведение изотопов олова позволяет использовать в дальнейших расчетах упрощенный феноменологический подход.

Известна простая двухпараметрическая аппроксимационная формула для энергии $\Delta E_{\rm C}$:

$$\Delta E_{\rm C}(A, Z) = axf(A) + b \,[{\rm M} \Im {\rm B}], \tag{6}$$

где $x = (Z + 1/2)A^{1/3}$ и f(A) — функция коррекции радиуса, в данном случае связанная с деформацией. Для f(A) = 1 соотношение (6) переходит в известную формулу Ј. Jänecke [22], впервые параметризованную в [23]. Для более чем 400 ядер (точнее 413) в интервале массовых чисел A = 5-244 в работе [16] было получено, что a = 1.425 МэВ и b = -0.969 МэВ со среднеквадратичным отклонением $\Delta E_{\rm C}$ от экспериментальных значений 102 кэВ.

Если взять экспериментальные данные по $\Delta E_{\rm C}$ [24] только для изотопов Sn, то получим:

$$\Delta E_{\rm C}(A, Z = 50) = 1.2262x + 1.1540 \,[{\rm M} \Im {\rm B}], \quad (7)$$

что отличается от общей зависимости в силу Snаномалии (см. рис. 2). Среднеквадратичное отклонение полученных из этой зависимости величин $\Delta E_{\rm C}$ от экспериментальных значений составляет $\delta(\Delta E_{\rm C}) = 0.024$ МэВ, т.е. <0.2% от минимального значения $\Delta E_{\rm C}$ для ¹³²Sn из рассматриваемой цепочки изотопов.

Рассчитанные согласно (7) энергии $\Delta E_{\rm C}$ для 31 изотопа олова $^{110-140}{\rm Sn}$ представлены на рис. 3 в зависимости от массовых чисел A. Получена зависимость

$$\Delta E_{\rm C}(A, Z = 50) = 17.70 - 0.033A.$$
(8)

Видно хорошее согласие с экспериментальными данными и линейный характер полученной зависимости, что связано с Sn-аномалией.

Рис. 3. Зависимость разности кулоновских энергий ΔE_C от массового числа A для изотопов олова. Кружки — расчет ΔE_C по формуле (7); сплошная синяя линия — фитирование (8), штриховая кривая (крестики) — экспериментальные данные.

3. АНАЛОГОВЫЕ РЕЗОНАНСЫ ИЗОТОПОВ ОЛОВА

Энергии изобарических аналоговых состояний E_{IAS} нейтронно-избыточных материнских ядер A(N, Z), наблюдаемые в дочерних ядрах-изобарах A(N - 1, Z + 1), связаны с энергией ΔE_{C} известным соотношением [23]:

$$E_{\text{IAS}} = \Delta E_{\text{C}} + M(A, Z) - M(A, Z + 1) + \quad (9) + M(\text{H}) - M(n),$$

которое для короткоживущих нейтронно-избыточных изотопов олова имеет вид:

$$E_{\text{IAS}} = \Delta E_{\text{C}}(\text{Sn}) + Q_{\beta^-}(\text{Sn}) - \Delta_{np}, \quad (10)$$
$$\Delta_{np} = M_n - M_{\text{H}} = 0.782 \text{ M} \Im \text{B},$$

где $Q_{\beta^-}(Sn)$ — энергия β^- -распада материнского изотопа олова [25]. Таким образом, зная энергию $\Delta E_{\rm C}$, например, из феноменологического подхода и энергию Q_{β} [25], можно определять энергию $E_{\rm AR} = E_{\rm IAS}$. В рамках развитой феноменологической модели (FM) рассчитаны энергии изобараналоговых резонансов $E_{\rm AR}$ для Sn-изотопов с A = 110-140, наблюдаемых в зарядово-обменных реакциях (см., например, [14]) как для четных значений A, так и для нечетных. Полученные таким

ЯДЕРНАЯ ФИЗИКА том 86 № 3 2023

образом энергии E_{AR} для изотопов олова с N > Z представлены ниже в табл. 1, 2.

В микроскопической теории изобарические зарядово-обменные возбуждения — рассчитывались в теории конечных ферми-систем [6] и первые предсказания энергий аналоговых резонансов для 72 ядер были получены 50 лет тому назад в работе автора [8].

В микроскопической ТКФС зарядово-обменные возбуждения описываются системой уравнений для эффективного поля [6]:

$$V_{pn} = e_q V_{pn}^{\omega} + \sum_{p'n'} F_{np,n'p'}^{\omega} \rho_{p'n'}, \qquad (11)$$
$$V_{pn}^{h} = \sum_{p'n'} F_{np,n'p'}^{\omega} \rho_{p'n'}^{h},$$

где V_{pn} и V_{pn}^{h} — эффективные поля квазичастиц и дырок в ядре, V_{pn}^{ω} — внешнее зарядово-обменное поле. Энергии возбужденных состояний дочернего ядра определялись системой секулярных уравнений ТКФС для эффективного поля [6]. Расчеты проводились в координатном представлении с учетом спаривания в одночастичном базисе, как в [17]. Пренебрегалось эффектами изменения спаривательной щели во внешнем поле, т.е. полагалось

Ядро нач./конечн.	Е _{АR} , Эксп. [14, 15]	Расчет [8], 1972 г.	Расчет ТКФС	Расчет FM	Расчет DF3-f [9]	Расчет DF3-f [31]
¹¹⁰ Sn- ¹¹⁰ Sb			5.09	4.904	5.13	5.21
¹¹² Sn- ¹¹² Sb	6.16		6.26	6.163	6.27	6.31
¹¹⁴ Sn- ¹¹⁴ Sb	7.28	6.91	7.12	7.080	7.15	7.16
¹¹⁶ Sn- ¹¹⁶ Sb	8.36	8.47	8.45	8.365	8.56	8.39
¹¹⁷ Sn- ¹¹⁷ Sb	11.27		11.34	11.275		
¹¹⁸ Sn- ¹¹⁸ Sb	9.33	9.23	9.28	9.340	9.60	9.46
¹¹⁹ Sn- ¹¹⁹ Sb	12.36		12.42	12.373		
¹²⁰ Sn- ¹²⁰ Sb	10.24	10.20	10.20	10.246	10.49	10.34
¹²² Sn- ¹²² Sb	11.24	11.17	11.17	11.252	11.41	11.31
¹²⁴ Sn- ¹²⁴ Sb	12.19	12.05	12.15	12.178	12.16	12.30
¹²⁶ Sn- ¹²⁶ Sb			13.12	13.102	13.08	13.03
¹²⁸ Sn- ¹²⁸ Sb			13.83	13.927	13.94	13.94
¹³⁰ Sn- ¹³⁰ Sb			14.82	14.749	14.87	14.77
¹³² Sn- ¹³² Sb	15.6		15.71	15.623	15.6	15.61

Таблица 1. Энергии аналоговых резонансов изотопов Sn, отсчитываемые в МэВ от основного состояния дочернего ядра Sb (приведены экспериментальные данные [14, 15] и результаты различных расчетов)

 $d_{pn}^1 = d_{pn}^2 = 0$, что оправдано для внешних полей с нулевыми диагональными элементами (см. [6], с. 200).

Система секулярных уравнений (11) решалась для разрешенных переходов с локальным нуклоннуклонным взаимодействием F^{ω} в форме Ландау– Мигдала:

$$F^{\omega} = C_0 \left(f'_0 + g'_0 \left(\boldsymbol{\sigma}_1 \boldsymbol{\sigma}_2 \right) \right) \left(\boldsymbol{\tau}_1 \boldsymbol{\tau}_2 \right) \delta \left(\mathbf{r}_1 - \mathbf{r}_2 \right), \quad (12)$$

где $C_0 = (d\rho/d\varepsilon_F)^{-1} = 300$ МэВ фм³ (ρ — средняя плотность ядерной материи), f'_0 и g'_0 — параметры соответственно изоспин-изоспинового и спин-изоспинового взаимодействий квазичастиц. Эти константы взаимодействия являются феноменологическими параметрами и подбираются из сравнения с экспериментальными данными (см., например, [17]).

Энергия аналогового резонанса $E_{\rm AR}$ линейно зависит от параметра изоспин-изоспинового взаимодействия f'_0 (11), определяющего наклон в зависимости

$$E_{\rm AR} = f'_0 \Delta E_{\rm F} = f'_0 \frac{4}{3} \varepsilon_{\rm F} \frac{N-Z}{A}, \qquad (13)$$
$$\varepsilon_{\rm F} \approx 40 \text{ M} \Im \text{B}.$$

Такая линейная зависимость E_{AR} от изотопического параметра (N-Z)/A получается в расчетах с использованием ТКФС [17], и такая же зависимость наблюдается в эксперименте, как видно из

рис. 4 для четных изотопов олова. Как видно из рис. 4, недавно измеренный экстремальный изотоп 132 Sn [15] хорошо ложится на эту зависимость, но для изотопов 112,114 Sn наблюдается небольшое отклонение, связанное с их деформацией [26] (см. ниже). В настоящих расчетах использовалось значение $f'_0 = 1.351 \pm 0.027$, полученное недавно [17], мало отличающееся от значения $f'_0 = 1.35$, полученного ранее [8, 27].

4. РЕЗУЛЬТАТЫ РАСЧЕТОВ

В настоящей работе энергии аналоговых резонансов рассчитывались в рамках ТКФС для изотопов ^{112–132}Sn с известными экспериментальными значениями E_{AR} , а также для четно-четных изотопов Sn с A = 110-132, которые рассчитывались ранее в работе [9]. Результаты наших расчетов по E_{AR} представлены на рис. 5 вместе с расчетами по феноменологической модели и с экспериментальными данными. Как видно из рис. 5, значения энергий E_{AR} в зависимости от массового числа Aаппроксимируются линейно для четных и нечетных значений A, что является следствием Sn-аномалии и наличием энергий Q_{β} для соседних ядер-изобар.

Энергии аналоговых резонансов изотопов ^{110–132}Sn представлены в табл. 1, где приведены эксперименталььные данные [14, 15] и результаты различных расчетов, в том числе предсказания

Рис. 4. Зависимость энергии аналогового резонанса от параметра $\Delta E = (4/3)\varepsilon_{\rm F} (N - Z)/A$, $\varepsilon_{\rm F} \approx 40$ МэВ для четночетных изотопов олова. Квадраты — экспериментальные данные, кружки — расчеты по ТКФС.

Рис. 5. Зависимость энергии аналогового резонанса E_{AR} от массового числа A для изотопов олова с A = 110-132. Кривые: сплошная красная — четные изотопы Sn, штриховая синяя — нечетные изотопы Sn. Точки: крестики — экспериментальные данные, кружки — расчеты по ТКФС (см. табл. 1), красные ромбики — расчеты по FM (см. табл. 1).

автора 50-летней давности [8]. Результаты настоящих расчетов по ТКФС и FM также представлены на рис. 5. В табл. 1 приведены результаты расчетов из работы [9], проведенные в рамках развиваемого И.Н. Борзовым и С.В. Толоконниковым самосогласованного подхода со спариванием, исполь-

ЯДЕРНАЯ ФИЗИКА том 86 № 3 2023

Рис. 6. Разности рассчитываемых и экспериментальных [14, 15] энергий аналоговых резонансов. Представлены расчеты по ТКФС, по FM, в самосогласованном DF3-f [9, 31] подходе и расчеты в релятивистской модели DD-PCX + RQRPA [11, 12].

зующего квазичастичное приближение случайных фаз с учетом континуума. Этот подход основан на новой модификации энергетического функционала плотности, предложенного ранее С.А. Фаянсом [28–30]. Также представлены результаты последних расчетов в этом подходе с уточненными параметрами теории [31].

Сравнение экспериментальных данных по E_{AB} различными расчетами, представленными в с табл. 1, показывает неплохую точность предсказаний 1972 г. и хорошую точность расчетов по FM. Результаты сравнения нескольких расчетов с экспериментальными данными представлены на рис. 6. Дополнительно к табл. 1 на рис. 6 представлены расчеты [11, 12], использующие релятивистскую модель, зависящую от плотности со спариванием DD-PCX + RQRPA. Как видно из рис. 6 два расчета: по FM и расчеты DD-PCX + + RQRPA [11, 12] имеют примерно одинаковую рекордную точность со средними отклонениями от эксперимента, меньшими 50 кэВ, а ТКФС и самосогласованные DF3-f расчеты [9, 31] имеют большие расхождения с экспериментом. Отметим расхождения для изотопов ¹¹²Sn и особенно для ¹¹⁴Sn, которые, скорее всего, связаны с их деформацией [26].

Расчеты для более тяжелых короткоживущих нейтронно-избыточных изотопов олова ¹³²⁻¹⁴⁰Sn

представлены в табл. 2. Для этих изотопов характерны большие энергии бета-распадов Q_{β^-} , что определяет и большие энергии AR, измеряемые в соседнем ядре-изобаре Sb. Так, для изотопов $^{133-140}$ Sn E_{AR} превышает 20 МэВ, хотя кулоновские энергии ΔE_C изменяются для этих тяжелых изотопов не сильно (см. также рис. 3). Отметим и резкое уменьшение периодов полураспада при переходе от 132 Sn к 133 Sn [32], что объясняется увеличением энергии Q_{β^-} при переходе на новую одночастичную оболочку в структуре 133 Sn. Более того, в новой оболочке возможны сильные деформации, которые в микроскопической теории пока не учитываются.

5. ЗАКЛЮЧЕНИЕ

В настоящей работе определена аномалия в распределении кулоновских энергий $\Delta E_{\rm C}$ изотопов олова, которая проявляется в том, что в зависимости $\Delta E_{\rm C} A^{1/3}$ от A для изотопов $^{112-132}$ Sn наблюдается линейная зависимость экспериментальных данных по $\Delta E_{\rm C}$, близкая к Const (Sn-аномалия). Такое упрощение позволило с хорошей точностью аппроксимировать разность кулоновских энергий $\Delta E_{\rm C}(A,Z)$ соседних ядер-изобар Sn—Sb с помощью двухпараметрической формулы. Рассчитываются разность кулоновских энергий $\Delta E_{\rm C}$ соседних ядер-изобар Sn—Sb с помощью двухпараметрической формулы. Рассчитываются разность кулоновских энергий $\Delta E_{\rm C}$ соседних ядер-изобар Sn—Sb и связанная с ней энергия

Ядро нач./конечн.	$T_{1/2}$, c [32]	$Q_{eta^-}, \ M$ эВ \pm кэВ [25]	$\Delta E_{ m C}$ Расчет FM	$E_{ m AR}$ Расчет FM
¹³² Sn- ¹³² Sb	39.7	3.0890 ± 3	13.316	15.623
¹³³ Sn- ¹³³ Sb	1.46	8.054 ± 4	13.285	20.553
¹³⁴ Sn- ¹³⁴ Sb	1.070	7.585 ± 4	13.255	20.058
¹³⁵ Sn- ¹³⁵ Sb	0.510	9.058 ± 4	13.225	21.501
¹³⁶ Sn- ¹³⁶ Sb	0.369	8.340 ± 200	13.196	20.754
¹³⁷ Sn- ¹³⁷ Sb	0.204	9.910 ± 300	13.166	22.294
¹³⁸ Sn- ¹³⁸ Sb	0.158	9.140 ± 500	13.137	21.495
¹³⁹ Sn- ¹³⁹ Sb	0.114	10.740 ± 570	13.108	23.066
140Sn-140Sb	_	9.900 ± 670	13.080	22.198

Таблица 2. Энергии кулоновских энергий и аналоговых резонансов короткоживущих нейтронно-избыточных изотопов ¹³²⁻¹⁴⁰Sn

аналоговых резонансов E_{AR} изотопов олова, по которым имеется наиболее полный набор экспериментальных данных. Расчеты ЕАR проводились как с помощью полученной аппроксимации в феноменологической модели, так и в рамках микроскопической теории конечных ферми-систем для изотопов ¹¹⁰⁻¹⁴⁰Sn. Проведено сравнение с экспериментальными данными по ЕАВ и с другими известными расчетами в самосогласованных подходах. Показано, что феноменологическая модель описывает энергии ЕАR с хорошей точностью, как и новая самосогласованная релятивистская модель [11, 12] со средними отклонениями от эксперимента, меньшими 50 кэВ, а ТКФС и самосогласованные DF3f расчеты [9, 31] имеют бо́льшие расхождения с экспериментом.

В настоящей работе также анализируются параметры ТКФС — изоспин-изоспинового взаимодействия f'_0 , и из сравнения расчетных значений $E_{\rm AR}$ с экспериментальными данными по энергиям аналоговых резонансов для изотопов олова показано, что практически нет расхождений со значениями параметра f'_0 , полученными ранее [8, 27] и недавно [17].

Разработанная методика в рамках феноменологической модели позволяет также рассчитывать энергии гамов-теллеровского [27, 33] и пигмирезонансов [34] с хорошей точностью и не только для изотопов олова.

Автор благодарен И.Н. Борзову, А.Н. Фазлиахметову, Г.А. Коротееву, В.Н. Тихонову и С.В. Толоконникову за дискуссии и помощь в работе.

Работа выполнена при частичной финансовой поддержке гранта НИЦ "Курчатовский институт" (приказ № 2767 от 28.10.2021).

СПИСОК ЛИТЕРАТУРЫ

- J. D. Anderson, C. Wong, and J. W. McClure, Phys. Rev. 126, 2170 (1962).
- 2. A. M. Lane and J. M. Soper, Nucl. Phys. 37, 663 (1962).
- 3. A. M. Lane, Nucl. Phys. 35, 676 (1962).
- 4. J. I. Fujita and K. Ikeda, Nucl. Phys. 67, 145 (1965).
- 5. J. I. Fujita, S. Fujii, and K. Ikeda, Phys. Rev. **133**, B549 (1964).
- А. Б. Мигдал, Теория конечных ферми-систем и свойства атомных ядер (Наука, Москва, 1983) [A. B. Migdal, Theory of Finite Fermi Systems and Applications to Atomic Nuclei (Nauka, Moscow, 1983, 2nd ed.; Interscience, New York, 1967, transl. 1st ed.)].
- 7. Д. Ф. Зарецкий, М. Г. Урин, ЖЭТФ **53**, 324 (1967).
- Ю. В. Гапонов, Ю. С. Лютостанский, ЯФ 16, 484 (1972) [Sov. J. Nucl. Phys. 16, 270 (1972)].
- И. Н. Борзов, С. В. Толоконников, ЯФ 82, 471 (2019) [Phys. At. Nucl. 82, 560 (2019)].
- Э. Е. Саперштейн, С. В. Толоконников, ЯФ 79, 703 (2016) [Phys. At. Nucl. 79, 1030 (2016)].
- 11. N. Paar, T. Nikšić, D. Vretenar, and P. Ring, Phys. Rev. 69, 054303 (2004).
- D. Vale, Y. F. Niu, and N. Paar, Phys. Rev. C 103, 064307 (2021); arXiv: 2012.11977 v2 [nucl-th] (2021).
- P. N. Huan, N. L. Anh, B. M. Loc, and I. Vidaña, Phys. Rev. C 103, 024601 (2021).
- K. Pham, J. Jänecke, D. A. Roberts, M. N. Harakeh, G. P. A. Berg, S. Chang, J. Liu, E. J. Stephenson, B. F. Davis, H. Akimune, and M. Fujiwara, Phys. Rev. C 51, 526 (1995).
- J. Yasuda, M. Sasano, R. G. T. Zegers, *et al.*, Phys. Rev. Lett. **121**, 132501 (2018).
- Ю. С. Лютостанский, В. Н. Тихонов, Изв. РАН. Сер. физ. 79, 466 (2015) [Bull. Acad. Sci.: Phys. 79, 425 (2015)].

- 17. Ю. С. Лютостанский, ЯФ 83, 34 (2020) [Phys. At. Nucl. 83, 33 (2020)].
- 18. Yu. S. Lutostansky, EPJ Web Conf. **194**, 02009 (2018).
- 19. О. Бор, Б. Моттельсон, *Структура атомного ядра* (Мир, Москва, 1971), т. 1 [А. Bohr and B. R. Mottelson, *Nuclear Structure* (W. A. Benjamin, New York, 1969), Vol. 1].
- 20. P. Danielewicz, Nucl. Phys. A 727, 233 (2003).
- 21. J. Dong, H. Zhang, L. Wang, and W. Zuo, Phys. Rev. C 88, 014302 (2013).
- J. Jänecke, Z. Phys. 160, 171 (1960); J. Jänecke, F. D. Becchetti, A. M. van Berg, G. P. A. Berg, G. Brouwer, M. B. Greenfield, M. N. Harakeh, M. A. Hofstee, A. Nadasen, D. A. Roberts, R. Sawafta, J. M. Schippers, E. J. Steohenson, D. P. Stewart, and S. Y. van der Werf, Nucl. Phys. A 526, 1 (1991).
- 23. J. D. Anderson, C. Wong, and J. W. McClure, Phys. Rev. B **138**, 615 (1965).
- 24. M. S. Antony, A. Pape, and J. Britz, At. Data Nucl. Data Tables **66**, 1 (1997).
- 25. M. Wang, W. J. Huang, F. G. Kondev, G. Audi, and S. Naimi, Chin. Phys. C **45**, 030003 (2021).

- 26. J. Kvasil, V. O. Nesterenko, W. Kleinig, D. Božík, and P.-G. Reinhard, Int. J. Mod. Phys. E **20**, 281 (2011).
- 27. Ю. С. Лютостанский, ЯФ 74, 1207 (2011) [Phys. At. Nucl. 74, 1176 (2011)].
- 28. I. N. Borzov, S. A. Fayans, E. Krömer, and D. Zawischa, Z. Phys. A **355**, 117 (1996).
- 29. S. A. Fayans, S. V. Tolokonnikov, E. L. Trykov, and D. Zawischa, Nucl. Phys. A **676**, 49 (2000).
- 30. С. А. Фаянс, Письма в ЖЭТФ **68**, 161 (1998) [JETP Lett. **68**, 169 (1998)].
- 31. И. Н. Борзов, С. В. Толоконников (2022), частное сообщение.
- J. Wu, S. Nisihimura, P. Möller, M. R. Mumpower, R. Lozeva, C. B. Moon, A. Odahara, H. Baba, F. Browne, R. Daido, P. Doornenbal, Y. F. Fang, M. Haroon, T. Isobe, H. S. Jung, G. Lorusso, *et al.*, arXiv: 2004.00119v1 [nucl-ex] (2020).
- Ю. В. Гапонов, Ю. С. Лютостанский, ЯФ 19, 62 (1974) [Sov. J. Nucl. Phys. 19, 33 (1974)].
- Ю. С. Лютостанский, Письма в ЖЭТФ 106, 9 (2017) [JETP Lett. 106, 7 (2017)].

Sn-ANOMALY IN COULOMB ENERGIES AND ANALOG RESONANCES OF THE NEUTRON-RICH TIN ISOTOPES

Yu. S. Lutostansky¹⁾

¹⁾National Research Center "Kurchatov Institute", Moscow, Russia

An anomaly in the distribution of Coulomb energies of tin isotopes (Sn-anomaly) is determined, which consists in the fact that in the dependence of $\Delta E_C A^{1/3}$ on A for $^{112-132}$ Sn isotopes, a linear dependence is observed for experimental data on ΔE_C close to Const. The difference between the Coulomb energies $\Delta E_C(A, Z)$ of neighboring Sn–Sb isobar nuclei is approximated using a two-parameter formula. The energies of isobar-analog resonances E_{AR} are calculated both using the obtained approximation in the phenomenological model and in the framework of the microscopic theory of finite Fermi systems for $^{110-140}$ Sn isotopes. A comparison is made with the experimental data on the E_{AR} and with other well-known calculations in self-consistent approaches. It is shown that the phenomenological model describes the E_{AR} energies with good accuracy, as well as the new self-consistent relativistic model.