= ЯДРА =

СПЕКТРЫ МГНОВЕННЫХ НЕЙТРОНОВ ДЕЛЕНИЯ В РЕАКЦИЯХ 235 U(n, F) И 239 Pu(n, F)

© 2023 г. В. М. Маслов^{*}

Поступила в редакцию 16.01.2023 г.; после доработки 05.05.2023 г.; принята к публикации 08.05.2023 г.

Исследовано влияние эксклюзивных спектров предделительных нейтронов $(n, xnf)^{1,...x}$ на наблюдаемые спектры мгновенных нейтронов деления (СМНД), полную кинетическую энергию осколков (продуктов) деления ТКЕ, среднее число мгновенных нейтронов деления. Эксклюзивные спектры $(n, xnf)^{1,...x}$ нейтронов соответствуют согласованному описанию сечений реакций деления (эмиссии нейтронов) 235 U(n, F) (235 U(n, xn)) и 239 Pu(n, F) (239 Pu(n, xn)) для нейтронов с энергией до 20 МэВ. Обширная база экспериментальных данных по СМНД позволила детально исследовать/подтвердить сложную зависимость от делимости составных/композитных ядер ²³⁶U и ²⁴⁰Pu формы наблюдаемых спектров мгновенных нейтронов деления. Установлена корреляция этого эффекта с вкладами эмиссионного деления (n, xn f) в наблюдаемое сечение деления и конкуренцией реакций $(n, n\gamma)$ и (n, xn). Эксклюзивные спектры предделительных нейтронов реакций $(n, xnf)^{1,...x}$, а также эксклюзивные спектры нейтронов $(n, n\gamma)$ и $(n, xn)^{1,...x}$ вычислялись в рамках формализма Хаузера-Фешбаха одновременно с сечениями (n, F)- и (n, xn)-реакций. Показано, что угловая анизотропия эксклюзивных спектров нейтронов реакций (n, xnf) существенно влияет на наблюдаемые СМНД и их средние энергии $\langle E \rangle$. Отношение средних энергий СМНД $\langle E \rangle$ для эмиссии предделительных нейтронов в реакциях 235 U(n, xnf) и 239 Pu(n, xnf) "вперед" и "назад" согласуется с экспериментальными данными. Вы-делены парциальные компоненты наблюдаемых СМНД, обусловленные реакциями (n, f) и (n, xnf). Исходные значения параметров модели фиксированы при описании спектров мгновенных нейтронов деления под действием тепловых нейтронов. Продемонстрированы возможности рассматриваемого подхода по предсказанию СМНД и $\langle E \rangle$ для реакций ²³⁸U(n, F) и ²⁴⁰Pu(n, F).

DOI: 10.31857/S0044002723050318, EDN: IEFJAT

1. ВВЕДЕНИЕ

Спектры мгновенных нейтронов деления (СМНД) для энергий нейтронов от $E_n \sim E_{\rm th}$ до $E_n \sim 20$ МэВ существенно влияют на расчеты нейтронных полей и коэффициентов размножения нейтронов k_{300} в быстрых, промежуточных и тепловых критических системах с различными видами и конфигурациями ядерного топлива [1]. Матрицы спектров мгновенных нейтронов деления для реакций 235 U(n, F) и 239 Pu(n, F) [2, 3], существенно отличающиеся от широко использовавшихся на тот момент СМНД из библиотек ENDF/B, JEFF и БРОНД, использовались, например, в прикладных и тестовых расчетах [2-4]. СМНД в [2, 3] были согласованы с имевшимися на тот момент экспериментальными дифференциальными данными, чего нельзя сказать в отношении СМНД в библиотеках ENDF/B, JEFF-3.3, JENDL-4.0 и БРОНД. Для реакторных систем с ²³⁵U либо ²³⁹Pu был выявлен ряд произвольных вариаций нейтронных сечений, использовавшихся для компенсации погрешностей

традиционных спектров мгновенных нейтронов деления. Коэффициенты размножения $k_{\rm эф\phi}$ для

[&]quot;бенчмарков" простой геометрии воспроизводятся в [2, 4] с точностью, достигнутой ранее для СМНД из РОСФОНД, JEFF или ENDF/B. Ввиду того, что формы СМНД в [2, 3] и традиционных спектров нейтронов деления существенно различаются, это обстоятельство можно считать проявлением эффекта "внутренней компенсации". Например, в спектре мгновенных нейтронов деления ENDF/В-VII.0 завышенное число мгновенных нейтронов деления с энергией в диапазоне $\varepsilon \sim 1-3$ МэВ компенсирует, в ряде случаев, недостаток нейтронов с энергией $\varepsilon \sim 0.001-1$ МэВ. Для урановых и плутониевых растворов в [2, 4], при использовании новых СМНД, был обнаружен положительный скачок в k_{ij} , причем δk_{ij} достигает ~2.5%, что является прямым проявлением некомпенсированного влияния повышенного числа нейтронов с энергией менее ~1 МэВ в новых СМНД. Можно было бы полагать, что вариации сечений деления и среднего числа мгновенных нейтронов, либо взаимное влияние неупругого рассеяния

^{*}E-mail:mvm2386@yandex.ru,mvmmvm1955@mail.ru

нейтронов, угловых распределений вторичных нейтронов, реакций радиационного захвата и спектров мгновенных нейтронов деления на коэффициент размножения позволят достичь минимального отклонения от экспериментальных значений k_{add} урановых/плутониевых сборок при использовании традиционных СМНД. Однако систематические расчеты $k_{
m sob}$ в [5] показали, что при использовании независимых оценок СМНД из ENDF/B-VIII.0 и JEFF-3.3 сравнимые погрешности $k_{
m эф\phi}$ для быстрых критических систем достигаются лишь при использовании резко различающихся сечений упругого и неупругого рассеяния нейтронов, радиационного захвата и реакций (n, 2n). Это означает, что для различных гибридных, быстрых, промежуточных или тепловых критических систем с различными видами и конфигурациями ядерного топлива потребовались бы неоправданные вариации нейтронных сечений и дифференциальных/дважды дифференциальных спектров, что было отмечено уже в [2, 3]. Дифференциальные измерения спектров мгновенных нейтронов деления [6, 7] продемонстрировали неадекватность СМНД для 235 U(n, F) и 239 Pu(n, F) в ENDF/B-VIII.0 и JEFF-3.3. Адекватность СМНД [2, 3] для 235 U(n, F) и 239 Pu(n, F) измерениями [6, 7] была подтверждена, хотя результаты измерений в [6, 7] были представлены фрагментарно. Числовые данные для СМНД, использованные в [8, 9], появились в открытом доступе позднее [10-12].

Обновленная версия СМНД для реакций 235 U(n, F) и 239 Pu(n, F), представленная на LXXII Международной конференции "Ядро-2022, Фундаментальные вопросы и приложения" [8, 9], а именно ее описанию посвящена настоящая работа, несколько отличается от использованной в расчетах [2, 4]. Это связано с несколькими обстоятельствами. Во-первых, с доступностью полной версии измерений СМНД для 239 Pu(n, F) [10, 11] и ²³⁵U(n, F) [12]. Во-вторых, слабым местом моделирования СМНД [2, 3] является интервал энергий $E_n \sim 8-10$ МэВ. В новых измерениях СМНД [10-12] этот интервал энергий исследован детально. Наблюдаемая в интервале $E_n \sim 8-10$ МэВ вариация формы СМНД для реакций 235 U(n, F) и 239 Pu(n, F) согласуется с аналогичными данными для реакции $^{238}{\rm U}(n,F)$ [13]. В-третьих, с перенормировкой параметров модели [14-19] к данным новых измерений в интервале $E_n \sim E_{\rm th} - 20$ МэВ полных кинетических энергий осколков деления ТКЕ [20–23], что влияет, главным образом, на форму спектров нейтронов из осколков деления ядер ²³⁶U и ²⁴⁰Pu в диапазоне энергий нейтронов є выше E_{nnf1} , максимальной энергии эксклюзивных нейтронов реакции $(n, nf)^1$.

В-четвертых, основой модели расчета СМНД является согласованное описание СМНД для интервала энергий налетающих нейтронов $E_n \sim \sim E_{\rm th} - 20$ МэВ. Для этого оправдана малая вариация формы СМНД для $E_n \sim E_{\rm th}$.

Предделительные нейтроны определяют форму спектров мгновенных нейтронов деления в интервале энергий $E_n \sim E_{nnf} - 20$ МэВ, где E_{nnf} порог эмиссии предделительных нейтронов, они существенно влияют на полную кинетическую энергию ТКЕ осколков и продуктов деления, среднее число мгновенных нейтронов деления, массовые распределения осколков деления и проявляются в "ступенчатой" структуре наблюдаемых сечений деления. Предделительными считаются x нейтронов, которые испускаются из ядра (A + 1), где A - массовое число ядра-мишени при условии, что остаточного возбуждения достаточно для деления любого из (A + 1 - x) ядер. Предделительные нейтроны в [6, 7, 10–12] регистрируются в совпадении с осколками деления без разделения осколков по массам. Испарительные предделительные нейтроны испускаются сферически симметрично относительно пучка налетающих нейтронов. Возможная угловая анизотропия испускания нейтронов связана с предравновесным и прямым механизмами эмиссии первого нейтрона $(n, nX)^1$. В этом случае направление вылета первого нейтрона реакции $(n, nX)^1$ равно, как и шесть его парциальных составляющих, эксклюзивных спектров нейтронов реакций $(n, n\gamma)^1$, $(n, 2n)^1$, $(n, 3n)^1$ и интересую-щих нас $(n, nf)^1$, $(n, 2nf)^1$ и $(n, 3nf)^1$ нейтронов, коррелирует с импульсом налетающих нейтронов. Здесь и в дальнейшем верхний индекс идентифицирует последовательно испускаемые нейтроны в соответствующей реакции. Направление эмиссии мгновенных нейтронов деления из осколков деления коррелирует, главным образом, с направлением разлета осколков, т.е. осью деления. Те и другие нейтроны регистрируются в экспериментах в совпадении с осколками деления и разделить их можно было бы, например, регистрируя нейтроны под разными углами относительно падающего пучка. В [24] для реакции 239 Pu(n, F) показано, что, регистрируя таким образом мгновенные нейтроны деления, можно выделить угловую зависимость эмиссии предделительных нейтронов и определить ее влияние на СМНД. Моделируя угловую зависимость эксклюзивных спектров предделительных нейтронов, можно воспроизвести данные [24] и предсказать подобные эффекты для реакции 235 U(*n*, *F*), фрагментарно описанные в [12]. Однако основным фактором, определяющим наблюдаемые характеристики мгновенных нейтронов деления, является энергия возбуждения делящихся ядер после эмиссии x нейтронов.

Рис. 1. Спектр мгновенных нейтронов деления ²³⁹Ри тепловыми нейтронами относительно спектра Максвелла с *T* = = 1.37093 МэВ. Кривые: сплошная — настоящая работа; штриховая — [3]; штрихпунктирная — ENDF/B-VIII.0 [48]; точечная — JEFF-3.3 [49]. Точки: • — [10]; • — [26]; △ — [30].

2. МОДЕЛИРОВАНИЕ СПЕКТРОВ МГНОВЕННЫХ НЕЙТРОНОВ ДЕЛЕНИЯ

Мы будем рассматривать моделирование СМНД для Z-четных, N-нечетных ядер-мишеней на примере взаимодействия ²³⁹Pu + n. Для расчета спектров мгновенных нейтронов деления (МНД) реакции ²³⁹Pu(n, F) (²³⁵U(n, F)) для $E_n > E_{nnf}$ мы использовали статистическую модель, частично описанную в [14–19]. Эксклюзивные спектры вторичных нейтронов $(n, xnf)^{1,...x}$ и $(n, xn)^{1,...x}$, которые могут быть испущены ядром (A + 1), однозначно фиксируются при согласованном описании сечений ²³⁹Pu(n, F)(²³⁵U(n, F)), ²³⁹Pu(n, 2n) (²³⁵U(n, 2n)) и ²³⁹Pu(n, 3n) (²³⁵U(n, 3n)), а также эмиссионных нейтронных спектров при $E_n \sim 14$ МэВ. Одновременно определяются вклады реакций ²³⁹Pu(n, xnf) (²³⁵U(n, xnf)) в наблюдаемое сечение деления ²³⁹Pu(n, F)(²³⁵U(n, F)).

Исходные значения параметров модели для расчета СМНД фиксированы при описании спектров мгновенных нейтронов деления тепловыми нейтронами [2, 3]. При определении энергии возбуждения осколков

$$U = E_r + E_n + B_n - E_f^{\text{pre}} \tag{1}$$

используются новые данные [20–23] для полных кинетических энергий осколков деления до эмиссии нейтронов из осколков $E_f^{\rm pre}$, E_r — энергия реакции деления, E_n и B_n — кинетическая и энергия связи нейтрона соответственно. Форма СМНД в тепловой точке $E_n \sim E_{\rm th}$ — очень важный элемент моделирования, поскольку испускание нейтрона в реакции (n, nf) может изменить форму СМНД настолько, что $\langle E \rangle$ СМНД станет меньше, чем $\langle E \rangle$ для реакции деления тепловыми нейтронами [14–19].

В измерениях СМНД [6, 7, 10–13, 25] диапазон регистрации мгновенных нейтронов деления $\varepsilon < \langle E \rangle$ вполне перекрывает соответствующий диапазон измерений СМНД для $E_n \sim E_{\rm th}$ в [26– 31], поэтому следующая возможная итерация в данном анализе будет связана с согласованием формы СМНД ²³⁹Pu(n, f) и ²³⁵U(n, f) в диапазоне $\varepsilon < \langle E \rangle$ для $E_n = E_{\rm th}$ и $E_n \sim 1$ МэВ [10].

Рис. 2. Спектр мгновенных нейтронов деления ²³⁵U тепловыми нейтронами относительно спектра Максвелла с T = 1.32 МэВ. Кривые: сплошная — настоящая работа; штриховая — [3]; штрихпунктирная — ENDF/B-VIII.0 [48]; дважды штрихпунктирная — JEFF-3.3 [49]. Точки: • — [47]; △ — [31]; ○ — [26]; ◇ — [12]. $E_n = 1.5$ МэВ.

Для энергий падающих нейтронов выше порога эмиссионного деления спектр МНД $S(\varepsilon, E_n)$ есть суперпозиция спектров предделительных нейтронов из реакций $(n, xnf) - d\sigma_{nxnf}^k/d\varepsilon$ (x = 0, 1, 2, 3; k = 1, ..., x) и постделительных спектров $S_{A+1-x}(\varepsilon, E_n)$ нейтронов, испаряющихся из осколков деления:

$$\begin{split} S(\varepsilon, E_n) &= \tilde{S}_{A+1}(\varepsilon, E_n) + \tilde{S}_A(\varepsilon, E_n) + \qquad (2) \\ &+ \tilde{S}_{A-1}(\varepsilon, E_n) + \tilde{S}_{A-2}(\varepsilon, E_n) = \\ &= \nu_p^{-1}(E_n) \Biggl\{ \nu_{p1}(E_n)\beta_1(E_n)S_{A+1}(\varepsilon, E_n) + \\ &+ \nu_{p2}(E_n - \langle E_{nnf} \rangle)\beta_2(E_n)S_A(\varepsilon, E_n) + \\ &+ \beta_2(E_n) \frac{d\sigma_{nnf}^1}{d\varepsilon} + \nu_{p3}(E_n - B_n^A - \langle E_{n2nf}^1 \rangle - \\ &- \langle E_{n2nf}^2 \rangle \big)\beta_3(E_n)S_{A-1}(\varepsilon, E_n) + \\ &\beta_3(E_n) \Biggl[\frac{d\sigma_{n2nf}^1}{d\varepsilon} + \frac{d\sigma_{n2nf}^2}{d\varepsilon} \Biggr] + \nu_{p4}(E_n - B_n^A - \\ &- B_n^{A-1} - \langle E_{n3nf}^1 \rangle - \langle E_{n3nf}^2 \rangle - \\ &\leq 2023 \end{split}$$

+

$$\times \beta_4(E_n)S_{A-2}(\varepsilon, E_n) + \beta_4(E_n) \times \left\{ \frac{d\sigma_{n3nf}^1}{d\varepsilon} + \frac{d\sigma_{n3nf}^2}{d\varepsilon} + \frac{d\sigma_{n3nf}^3}{d\varepsilon} \right\}.$$

В уравнении (2) $\tilde{S}_{A+1-x}(\varepsilon, E_n)$ — вклад (x + 1)го шанса деления в наблюдаемый спектр мгновенных нейтронов деления, $\langle E_{nxnf}^k \rangle$ — средняя энергия k-го нейтрона реакции (n, xnf) со спектром $d\sigma_{nxnf}^k/d\varepsilon$, где $k \leq x$, величины $S(\varepsilon, E_n)$ и $d\sigma_{nxnf}^k/d\varepsilon$ нормированы на единицу. Индекс (x + 1)обозначает шанс деления (ядер ²⁴⁰Pu, ²³⁹Pu, ²³⁸Pu и ²³⁷Pu) после эмиссии x предделительных нейтронов, $\beta_x(E_n) = \sigma_{n,xnf}/\sigma_{n,F}$ — вклад (x + 1)-го шанса деления в наблюдаемое сечение, $\nu_p(E_n)$ наблюдаемое среднее число мгновенных нейтронов (множественность), $\nu_{px}(E_{nx})$ — среднее число мгновенных нейтронов деления, испускаемых из осколков деления ядер ²⁴⁰Pu(²³⁶U), ²³⁹Pu(²³⁵U), ²³⁸Pu(²³⁴U) или ²³⁷Pu(²³³U).

Рис. 3. Отношение спектров мгновенных нейтронов деления ²³⁹Pu и ²³⁵U тепловыми нейтронами и $E_n = 0.5$ МэВ. Кривые: сплошная — настоящая работа; штрихпунктирная — ENDF/B-VIII.0 [48]; дважды штрихпунктирная — JEFF-3.3 [49]. Точки: \Diamond — [26]; \circ — [30, 31]; \bullet — [50]. $E_n = 0.5$ МэВ.

Спектры нейтронов, испаряющихся из осколков деления $S_{A+1-x}(\varepsilon, E_n)$, как предложено в [32], были представлены суммой двух распределений Уатта [33]:

$$S_x(\varepsilon, E_n) = 0.5 \sum_{j=1}^2 W_j(\varepsilon, E_n, T_{xj}(E_n), \alpha), \quad (3)$$

$$W_j(\varepsilon_n, E_n, T_{xj}(E_n), \alpha) = \frac{2}{\sqrt{\pi} T_{xj}^{3/2}} \sqrt{\varepsilon} \times \qquad (4)$$

$$\times \exp\left(-\frac{\varepsilon}{T_{xj}}\right) \exp\left(-\frac{E_{vxj}^0}{T_{xj}}\right) \frac{\operatorname{sh}(\sqrt{b_{xj}\varepsilon})}{\sqrt{b_{xj}\varepsilon}},$$

$$b_{xj} = \frac{4E_{vxj}^0}{T_{xj}^2},$$
 (5)

$$T_{xj} = k_{xj}\sqrt{E_i^*} = k_{xj}\sqrt{E_r - E_{fx}^{\text{pre}} + U_x}.$$

После эмиссии x эксклюзивных предделительных (n, xnf) нейтронов энергия возбуждения остаточных ядер уменьшается на величину энергий связи нейтронов B_{nx} и их средних кинетических энергий $\langle E_{xj} \rangle$. Величина энергии возбуждения U_x для ядра (A + 1 - x) после эмиссии x нейтронов определяется как

$$U_x = E_n + B_n - \sum_{x,1 \le k \le x} \left(\langle E_{nxnf}^k \rangle + B_{nx} \right).$$
(6)

Энергия возбуждения осколков определяется как

$$E_{nx} = E_r - E_{fx}^{\text{pre}} + E_n + B_n -$$
(7)
$$-\sum_{x,1 \leq k \leq x} \left(\left\langle E_{nxnf}^k \right\rangle + B_{nx} \right).$$

Величина "температуры" для каждого осколка при делении ядра (A + 1 - x) определяется уравнением (5). Для легкого и тяжелого осколков (j = l, h) T_{xj} — "температуры" для *x*-го ядра при делении после предварительной эмиссии нейтронов, α — отношение кинетической энергии осколков ТКЕ в момент эмиссии нейтронов к значению ТКЕ после

Рис. 4. Отношение спектров мгновенных нейтронов деления ²³⁹ Ри и ²³⁵ U при $E_n = 0.5$ МэВ и $E_n = 1.5$ МэВ. Кривые: сплошная — настоящая работа; штрихпунктирная — ENDF/B-VIII.0 [48]; дважды штрихпунктирная — JEFF-3.3 [49]. Точки: $\Diamond - [26]; \circ - [30, 31]; \bullet - [50].$

полного ускорения осколков, $\alpha = 0.860$ для ²⁴⁰ Ри и $\alpha = 0.950$ для ²³⁶U. В формулах (3)–(5) энергия на один нуклон в с.ц.м. равна $E_{vxj}^0 = \frac{A_{hx}}{A_{lx}A_x} \alpha E_{fx}^{\rm pre}$. Предположение, что легкий и тяжелый осколки испускают одинаковое число нейтронов, является упрощением, однако в [34, 35] показано, что учет зависимости множественности мгновенных нейтронов в реакции ²³⁵U(n, F) от массы осколка слабо сказывается на форме спектров МНД. Отношение значений "температур" для легкого и тяжелого осколков $\frac{T_l}{T_h} = 1.1215$ является еще одним полуэмпирическим параметром, который позволяет описать форму СМНД. Его мы будем считать неизменным от ядра к ядру, k_{ij} — обратное значение квадратного корня основного параметра плотности уровней для осколков деления.

Средняя энергия СМНД $\langle E \rangle$ в л.с. определяется как $\langle E \rangle = \langle \varepsilon \rangle + E_v$, где $\langle \varepsilon \rangle$ — средняя энергия МНД в с.ц.м., а E_v — параметр распределения

ЯДЕРНАЯ ФИЗИКА том 86 № 5 2023

Уатта [32, 33]. Обычно предполагается, что большинство мгновенных нейтронов деления испускается полностью ускоренными осколками, однако можно предположить, что часть нейтронов испускается в момент или вскоре после разрыва ядра [36], до полного ускорения осколков. С другой стороны, вклад в формирование наблюдаемых спектров мгновенных нейтронов вносят разнообразные пары осколков, возможен целый спектр кинетических энергий, энергий возбуждения и энергий реакции деления. Для компенсации приближений, состоящих в использовании пары "псевдоосколков", усредненных энергии реакции деления, ТКЕ и проч., и будет использоваться свободный параметр " α ".

Для описания спектров МНД для $E_n > E_{n2nf}$, где E_{n2nf} — порог реакции (n, 2nf), потребовалось дополнительное уменьшение скорости СЦМ в момент эмиссии нейтронов [14, 15], введение дополнительного параметра " α_1 " позволило описать наблюдаемые спектры МНД для реакций ²³⁸U(n, F), ²³⁵U(n, F) и ²³²Th(n, F)[2, 3, 14–19].

Рис. 5. Отношение спектров мгновенных нейтронов деления ²³⁹Ри и ²³⁵U при $E_n = 1.5$ МэВ. Кривые: сплошная — настоящая работа; штрихпунктирная — ENDF/B-VIII.0 [48]; дважды штрихпунктирная — JEFF-3.3 [49]. Точки: \circ — [30, 31]; \bullet — [50]; \blacktriangle — [51].

2.1. Спектры предделительных $(n, xnf)^1$ нейтронов

Вклад реакций эмиссионного деления 239 Pu(n, xnf) в наблюдаемое сечение деления 239 Pu(n, F)

$$\sigma_{nF}(E_n) = \sigma_{nf}(E_n) + \sum_{x=1}^{X} \sigma_{n,xnf}(E_n) \quad (8)$$

определяет вероятность деления $P_f^{J\pi}(E)$ ядер $\mathrm{Pu}(\mathrm{U})$, т.е. $^{240}\mathrm{Pu}, ^{239}\mathrm{Pu}$ и . . . $^{240-x}\mathrm{Pu}$, как

$$\sigma_{n,xnf}(E_n) = \sum_{J\pi}^{J} \int_{0}^{U_{x+1}^{max}} W_{A+1-x}^{J\pi}(U) \times \qquad (9)$$
$$\times P_{f(A+1-x)}^{J\pi}(U) dU,$$

где $W_{A+1-x}^{J\pi}(U)$ — заселенность состояний (A + 1-x) ядра с энергией возбуждения U после эмиссии x предделительных нейтронов. Энергия возбуждения U_{x+1}^{\max} определяется энергией налетающих нейтронов и энергией, уносимой из яд-

ра A+1 вторичными нейтронами, для реакции 235 U(n, F) процедура аналогична.

Конкуренция деления и эмиссии нейтронов из ядер $^{240-x}$ Pu, образовавшихся после эмиссии первого испарительного/предравновесного нейтрона, моделируется в формализме Хаузера-Фешбаха. Вклады реакций $(n, nf), (n, 2nf) \dots (n, xnf),$ т.е. вероятности деления $P_{f(A+1-x)}^{J\pi}$, определяются при согласованном описании наблюдаемого сечения деления 239 Pu(n, F), сечений деления 238 Pu $(n, F), ^{237}$ Pu(n, F) и 236 Pu(n, F), а также сечения реакции 239 Pu(n, 2n) [17, 18]. Для СМНД реакции 235 U $(n, F), ^{234}$ U $(n, F), ^{233}$ U(n, F) и 232 U(n, F), а также сечения реакции 235 U $(n, F), ^{233}$ U(n, F) и 232 U $(n, F), ^{234}$ U(n, F) (235 U(n, 2n)) и 235 U(n, 2n) [16].

Спектр первого нейтрона реакции $(n, nX)^1$

$$\frac{d\sigma_{nnx}^1}{d\varepsilon} = \sum_{J,\pi} W^A(E_n - \varepsilon, J^\pi)$$
(10)

Рис. 6. Спектр мгновенных нейтронов деления при $E_n = 1.5$ МэВ реакции ²³⁹ Рu(n, F) относительно спектра Максвелла с T = 1.385 МэВ. Кривые: сплошная — настоящая работа; штрихпунктирная — ENDF/B-VIII.0 [48]; дважды штрихпунктирная — JEFF-3.3 [49]; короткая штриховая — [32]. Точки: $\Delta - [10]$; $\circ - [11]$; $\delta - [51]$; $\nabla - [52]$; $\Diamond - [53]$.

зависит от делимости ядра-мишени нейтронами и определяет эксклюзивные спектры всех парциальных реакций (вычисление этих спектров реализовано нами в компьютерном коде STAPRE [37]). В уравнении (10) $W^A(E_n - \varepsilon, J^{\pi})$ есть вероятность заселения состояний остаточного ядра A со спином и четностью J^{π} при энергии возбуждения U = $= E_n - \varepsilon$. Для компаунд-ядра с массой A + 1 энергия возбуждения равна $U = E_n + B_n$, для остаточного ядра $A U = E_n - \varepsilon$.

В дальнейшем можно не приводить индексы спина и четности J^{π} в обозначениях делительной Γ_f , нейтронной Γ_n и полной Γ ширин, а также суммирования по спину и четности J^{π} , которые проводились с учетом законов сохранения при последовательной эмиссии нейтронов. Эксклюзивный спектр первого нейтрона в реакции $(n, nf)^1$ можно определить как

$$\frac{d\sigma_{nnf}^1}{d\varepsilon} = \frac{d\sigma_{nnx}^1(\varepsilon)}{d\varepsilon} \frac{\Gamma_f^A(E_n - \varepsilon)}{\Gamma^A(E_n - \varepsilon)}.$$
 (11)

Спектр первого нейтрона содержит предравновесную/полупрямую компоненту, жесткая часть

ЯДЕРНАЯ ФИЗИКА том 86 № 5 2023

эксклюзивного спектра нейтронов из реакции $(n, nf)^1$ определяется вероятностью деления ядра А. Наиболее исследованным для определения спектра первого нейтрона реакции $(n, nX)^1$ является ядро-мишень ²³⁸U. Эмиссионные спектры нейтронов, формирующиеся при взаимодействии нейтронов с ядром-мишенью ²³⁸U, проявляют сильную угловую анизотропию [38, 39]. Учет прямого возбуждения коллективных уровней полосы основного состояния $J^{\pi} = 0^+, 2^+, 4^+, 6^+,$ 8⁺ в модели жесткого ротатора, прямого возбуждения уровней γ -ротационных полос K^{π} = $=0^+, 2^+,$ уровней октупольной полосы $K^{\pi}=0^$ с помощью модели мягкого деформируемого ротатора [40] позволяет аппроксимировать угловую зависимость спектра эмиссии первого нейтрона, соответствующую энергии возбуждения ядер ²³⁸U U = 1 - 6 MэВ. как

$$d\sigma_{nnx}^{1}/d\varepsilon \approx d\tilde{\sigma}_{nnx}^{1}/d\varepsilon + \sqrt{\frac{\varepsilon}{E_{n}}} \frac{\langle \omega(\theta) \rangle_{\theta}}{E_{n} - \varepsilon}.$$
 (12)

Усредненную по углу эмиссии функцию $\omega(\theta)$, $\langle \omega(\theta) \rangle_{\theta}$ можно аппроксимировать как $\langle \omega(\theta) \rangle_{\theta} \sim$

Рис. 7. Спектр мгновенных нейтронов деления при $E_n = 1.5$ МэВ реакции ²³⁵U(n, F) относительно спектра Максвелла с T = 1.34175 МэВ. Кривые: сплошная — настоящая работа; штриховая — [2, 3]; штрихпунктирная — ENDF/B-VIII.0 [48]; дважды штрихпунктирная — JEFF-3.3 [49]; короткая штриховая — [32]. Точки: \circ — [12]; ▲ — [51]; \diamond — [53]; \diamond — [54]; ∇ — [55].

 $\sim \omega(\theta \approx 90^\circ)$. Спектр эмиссии первого нейтрона $d ilde{\sigma}^1_{nnx}/darepsilon$ соответствует сумме компаундной и слабо зависящей от угла эмиссии предравновесной компонент. В таком феноменологическом подходе удается воспроизвести экспериментальные эмиссионные нейтронные спектры [38, 39] для взаимодействия ²³⁸U + n. Для нейтронных реакций наиболее продвинутыми являются методы QRPA, однако пока не удается приемлемо описать эмиссионные нейтронные спектры ни для ${}^{238}\mathrm{U}+n$, ни для 239 Pu + n [41]. Не удается распространить и модель мягкого ротатора на Z-четные, N-нечетные ядрамишени. Поэтому аппроксимация спектра первого нейтрона (12), полученная из условия описания дифференциальных эмиссионных спектров ²³⁸U + + n [38, 39], будет использована для описания эмиссионных спектров взаимодействий ²³⁹Pu + n и ${}^{235}\text{U} + n$. Одновременно адекватно учитывается влияние делимости ядра-мишени на спектр вторичных нейтронов.

Анизотропная часть дважды дифференциального спектра первого нейтрона максимально проявится в анизотропии спектра эмиссии нейтронов реакции $(n, n\gamma)^1$. Заметно проявится анизотропия при энергиях возбуждения, сравнимых с барьером деления ядер ²³⁹Pu или ²³⁵U, и в эксклюзивных спектрах $(n, nf)^1$, $(n, 2nf)^1$ и $(n, 2n)^1$ для $E_n > 12$ МэВ [42], и, как следствие, в наблюдаемых под разными углами СМНД [10–12, 24].

Спектр первого нейтрона для реакции (n, 2nx), т.е. $(n, 2nx)^1$, определяется спектром первых нейтронов реакции $(n, nX)^1$ и вероятностью эмиссии нейтрона из ядра A как

$$\frac{d\sigma_{n2nx}^1}{d\varepsilon} = \frac{d\sigma_{nnx}^1(\varepsilon)}{d\varepsilon} \frac{\Gamma_n^A(E_n - \varepsilon)}{\Gamma^A(E_n - \varepsilon)}.$$
 (13)

Спектр первого нейтрона для реакции 239 Pu(n, 2nf), т.е. 239 Pu $(n, 2nf)^1$, определяется как

$$\frac{d\sigma_{n2nf}^1}{d\varepsilon} = \int_{0}^{E-B_n^{239}} \frac{d\sigma_{n2nx}^1(\varepsilon)}{d\varepsilon} \times$$
(14)

Рис. 8. Парциальные составляющие наблюдаемого сечения деления нейтронами ²³⁹Pu(*n*, *F*) и ²³⁵U(*n*, *F*). Кривые: сплошная — ²³⁹Pu(*n*, *f*); штриховые — ²³⁹Pu(*n*, *xnf*); сплошная — ²³⁵U(*n*, *f*); штриховые — ²³⁹Pu(*n*, *xnf*). Точки: • — ²³⁵U(*n*, *f*); $\nabla = ^{235}$ U(*n*, *f*); $\blacksquare = ^{235}$ U(*n*, 2*nf*); $\Diamond = ^{235}$ U(*n*, 3*nf*).

$$\times \frac{\Gamma_f^{238}(E_n - B_n^A - \varepsilon - \varepsilon_1)}{\Gamma^{238}(E_n - B_n^A - \varepsilon - \varepsilon_1)} d\varepsilon_1.$$

Спектры первого и последующих нейтронов для 238 U(n, 3nf) рассмотрены в [15], для реакций 239 Pu(n, 3nf) и 235 U(n, 3nf) они определяются аналогично, но рассматривать их здесь не следует, так как вклад реакций (n, 3nf) в наблюдаемое сечение, например, 239 Pu(n, F), не превышает ~ 10 мбн.

Форма СМНД при $E_n \sim 6-7$ МэВ коррелирует с делимостью ядер, образующихся в реакциях (n, nf), и сечениями конкурирующих реакций $(n, xn\gamma)$. Эксклюзивные спектры нейтронов реакции (n, nf) и нейтронов реакций $(n, n\gamma)$, $(n, 2n)^{1,2}$ позволяют детально определить, как относительные амплитуды нейтронных спектров реакций $(n, nf)^1$ варьируются с ростом энергии налетающих нейтронов E_n в зависимости от делимости ядер (A + 1) и A. Когда реакция (n, nf) конкурирует только с реакцией $(n, n\gamma)$, формы спектров пределительных нейтронов слабо зависят от делимости ядра-мишени нейтронами. С ростом

ЯДЕРНАЯ ФИЗИКА том 86 № 5 2023

энергии налетающих нейтронов E_n открывается канал реакции (n, 2n) и форма спектров (n, nf) нейтронов оказывается весьма чувствительной к парциальным/эксклюзивным спектрам нейтронов $(n, 2n)^1$ и $(n, 2n)^2$.

2.2. Спектры предделительных $(n, xnf)^2$ нейтронов

Спектры вторых нейтронов в реакции (n, 2nx), $(n, 2nx)^2$, т.е. спектры эмиссии вторых нейтронов (нейтронов, испущенных из ядра с массовым числом A), рассчитывались путем интегрирования по спектру первых нейтронов реакции $(n, 2nx)^1$ как

$$\frac{d\sigma_{n2nx}^2}{d\varepsilon} = \int_{0}^{E-B_n^A-\varepsilon} \frac{d\sigma_{n2nx}^1(\varepsilon)}{d\varepsilon} \times \qquad (15)$$
$$\times \frac{\Gamma_n^A(E_n - B_n^A - \varepsilon - \varepsilon_1)}{\Gamma^A(E_n - B_n^A - \varepsilon - \varepsilon_1)} d\varepsilon_1.$$

Спектр второго нейтрона $(n, 2nf)^2$ реакции 239 Рu(n, 2nf) есть двойной интеграл от спектра

Рис. 9. Парциальные составляющие спектра мгновенных нейтронов деления при $E_n = 6.0$ МэВ реакции ²³⁹ Рu(n, F) относительно спектра Максвелла с T = 1.4241 МэВ. Кривые: сплошная — (n, F); штриховые — (n, xnf). Точки: $\circ - (n, F)$ [11]; $\bullet - (n, nf)$ [11]; $\bullet - (n, nf)$ [10]; $\Box - (56]$.

эмиссии вторых нейтронов 239 Pu $(n, 2nx)^2$, определяется он как

$$\frac{d\sigma_{n2nf}^2}{d\varepsilon} = \int_{0}^{E-B_n} \frac{d\sigma_{n2nx}^2(\varepsilon)}{d\varepsilon} \times$$
(16)

$$\times \frac{\Gamma_f^{A-1}(E_n - B_n^A - \varepsilon_1 - \varepsilon_2)}{\Gamma^{A-1}(E_n - B_n^A - \varepsilon_1 - \varepsilon_2)} d\varepsilon_1.$$

Эксклюзивные спектры первого и вторых нейтронов реакции ²³⁹ Pu(n, 2nf) определяются вероятностью деления ядра ²³⁸ Pu. Жесткая часть спектра первого нейтрона $\frac{d\sigma_{n2nf}^1}{d\varepsilon}$ реакции ²³⁹ Pu(n, 2nf) определяется вероятностью деления ядра ²³⁸ Pu вблизи порога деления.

2.3. Кинетическая энергия осколков и продуктов деления и множественность $\nu_p(E_n)$

Значения ТКЕ, кинетических энергий осколков до момента эмиссии мгновенных нейтронов $E_F^{\rm pre}$,

моделировались как суперпозиция ТКЕ ядер, дающих вклад в наблюдаемое сечение деления:

$$E_F^{\rm pre}(E_n) = \sum_{x=0}^X E_{fx}^{\rm pre}(E_{nx})\sigma_{n,xnf}/\sigma_{n,F}.$$
 (17)

Энергия возбуждения ядер $A, \ldots, A+1-x$ определяется уравнением (7) с помощью средних энергий спектров эксклюзивных предделительных $(n, xnf)^{1,\ldots x}$ нейтронов. Кинетическая энергия продуктов деления, т.е. осколков после эмиссии мгновенных нейтронов из осколков $E_F^{\rm post}$, определялась как

$$E_F^{\text{post}} \approx E_F^{\text{pre}} \left(1 - \nu_{\text{post}} / \left(A + 1 - \nu_{\text{pre}} \right) \right).$$
(18)

Подобная зависимость E_f^{post} от E_n использовалась в [43] до порога эмиссии предделительных нейтронов E_{nnf} .

Наблюдаемое среднее число мгновенных нейтронов $\nu_p(E_n)$ определяется как

$$\nu_p(E_n) = \nu_{\text{post}} + \nu_{\text{pre}} = \tag{19}$$

Рис. 10. Парциальные составляющие спектра мгновенных нейтронов деления при $E_n = 6.0$ МэВ реакции ²³⁵U(n, F) относительно спектра Максвелла с T = 1.4241 МэВ. Кривые: см. рис. 9, сплошная — $(n, nf)^1$; пунктирная — [16]; штриховая — JENDL-4.0 [67]; штрихпунктирная — ENDF/B-VIII.0 [48]; дважды штрихпунктирная — JEFF-3.3 [49]. Точки: $\circ - [12]; \bullet - (n, nf)[12].$

$$=\sum_{x=0}^{X}\nu_{px}(E_{nx}) + \sum_{x=1}^{X}(x-1)\beta_{x}(E_{n}).$$

Выделение постделительных ($\nu_{\text{post}}(E_n)$) и предделительных ($\nu_{\text{pre}}(E_n)$) компонент нейтронов деления основано на совместном описании среднего числа мгновенных нейтронов $\nu_p(E_n)$ [44–46] и сечения деления ²³⁹Pu(n, F) для $E_n < 20$ МэВ. При $E_n =$ = 20 МэВ вклад предделительных нейтронов в $\nu_p(E_n)$ может достигать ~0.15 ν_p [15, 16].

3. МОДЕЛИРОВАНИЕ СМНД ²³⁹Pu(n, f)И ²³⁵U(n, f) ДО ПОРОГА РЕАКЦИИ (n, nf)

Данные недавних детальных измерений СМНД для ²³⁹Pu($n_{\rm th}$, f) и ²³⁵U($n_{\rm th}$, f) [30, 31] отличаются от данных [26–29] и [47] систематически. Учет данных [30, 31] в рамках безмодельного описания СМНД [2, 3] с помощью сплайнов привел бы к значительному изменению форм СМНД, полученных для реакций деления ²³³U($n_{\rm th}$, f), ²³⁵U($n_{\rm th}$, f) и ²³⁹Pu($n_{\rm th}$, f) (см. рис. 1 и рис. 2). Данные [26–29]

ЯДЕРНАЯ ФИЗИКА том 86 № 5 2023

представлены на рис. 1 и рис. 2 в виде сплайнаппроксимации [2, 3], которая отражает эмпирические закономерности, обнаруженные при совместном статистическом анализе измерений СМНД для ²³³U(*n*_{th}, *f*), ²³⁵U(*n*_{th}, *f*) и ²³⁹Pu(*n*_{th}, *f*) и ²⁵²Cf(*sf*) [26-29]. Анализ данных [30, 31] для ²³⁹Pu(*n*_{th}, *f*) и 235 U($n_{\rm th}, f$) показывает, что в диапазоне энергий нейтронов деления $0.02 < \varepsilon < 5 \, {
m M}$ эВ они поддерживают оценку ENDF/B-VIII.0 [48], которая систематически противоречит данным [26-29]. При этом в диапазоне энергий СМНД $5 < \varepsilon < 11$ МэВ данные измерений [30] для 239 Pu(n, f) вполне согласуются с оценкой [2, 3], основанной на измеренных данных [26-29]. Оценки СМНД ²³⁹ Ри(*n*_{th}, *f*) в ENDF/B-VIII.0 [48] и JEFF-3.3 [49] согласуются во многих чертах с данными [30], но по существу игнорируют данные измерений [26-29]. В случае 235 U($n_{\rm th}, f$) СМНД в ENDF/B-VIII.0 [48] согласуется с оценкой [2, 3], но для $E_n > E_{\rm th}$ различия оценок ENDF/B-VIII [48] и JEFF-3.3 [49] от новых данных [6, 7, 10–12] довольно велики. Данные [47] детально поддерживают оценку СМНД

Рис. 11. Парциальные составляющие спектра мгновенных нейтронов деления при $E_n = 6.5$ МэВ реакции ²³⁹ Ри(n, F) относительно спектра Максвелла с T = 1.4241 МэВ. Кривые: сплошная — (n, F); штриховые — (n, xnf). Точки: $\circ - (n, F)$ [11]; $\bullet - (n, nf)$ [11]; $\nabla - (n, F)$ [10]; $\Delta - (n, nf)$ [10]; $\Box -$ [56].

 235 U($n_{\rm th}, f$) настоящей работы и безмодельного описания [2, 3].

Эти обстоятельства и определяют необходимость согласованного описания массива измеренных СМНД для E_n от $E_{\rm th}$ до 20 МэВ.

Перенормировка параметров модели [14–19] к данным новых измерений полных кинетических энергий осколков деления ТКЕ [20–23] влияет, главным образом, на форму спектров нейтронов из осколков деления первичного ядра A + 1 в диапазоне $\varepsilon > E_{nnf1}$, где E_{nnf1} — граничная энергия $(n, nf)^1$ нейтрона.

Сравнение экспериментальных данных по СМНД для реакций ²³⁵U(n, f) и ²³⁹Pu(n, f) [6, 7, 10–13, 25–31] для интервала энергий $E_{\rm th} < E_n < E_{nnf}$ показывает, что повышенный выход нейтронов деления с энергией $\varepsilon < 1$ МэВ наблюдается во всех случаях, за исключением измерений СМНД при $E_n = E_{\rm th}$ в [30, 31]. В работе [30, 31] СМНД измерены относительно спектра мгновенных нейтронов спонтанного деления ²⁵²Cf. Абсолютизация такого отношения сопряжена с введением различных поправок, которые могут

привести к систематическому искажению СМНД. Для отношения спектров СМНД 239 Pu($n_{\rm th}, f$) и 235 U($n_{\rm th}, f$) такие погрешности будут частично подавлены.

Отношения СМНД ²³⁹Pu($n_{\rm th}, f$) и ²³⁵U($n_{\rm th}, f$) из работ [30, 31] можно сравнить с измерениями отношения этих спектров в [50] для $E_n \sim$ $\sim 0.5\,{
m M}$ эВ. На рис. 3 и рис. 4 видно, что в диапазоне энергий $1 < \varepsilon < 10$ МэВ отношения измеренных СМНД для 239 Ри(n, f) и 235 U(n, f) при $E_n \sim E_{\rm th}$ и $E_n\sim 0.5~{
m M}$ э ${
m B}$ слабо зависят от энергии налетающих нейтронов. Соответствующие отношения теоретических СМНД для $E_n \sim E_{
m th}$ и $E_n \sim$ $\sim 0.5~{
m M}$ эВ как из [2,~3,~16], так и из настоящей работы, наилучшим образом согласуются с экспериментальной зависимостью отношений СМНД [30, 31] и [50]. СМНД из ENDF/B-VIII.0 [48] не воспроизводят измеренные отношения СМНД для 239 Ри(n,f) и 235 U(n,f) как для $E_n \sim E_{
m th}$ [30, 31], так и для $E_n \sim 0.5~{
m M}$ эВ [50]. Для диапазона энергий $\varepsilon < 10~{
m M}$ эВ завышенная величина отношения СМНД ENDF/B-VIII.0 [48] обусловлена нормировкой к данным [51]. Аномальная зависимость

Рис. 12. Парциальные составляющие спектра мгновенных нейтронов деления при $E_n = 6.5$ МэВ реакции ²³⁵U(n, F) относительно спектра Максвелла с T = 1.4241 МэВ. Кривые: сплошная — (n, F); штриховые — (n, xnf); пунктирная — [16]; штрихпунктирная — JEFF-3.3 [49]; дважды штрихпунктирная JENDL-4.0 [67]. Точки: о — [12]; • — (n, nf) [12].

отношения СМНД ENDF/B-VIII.0 для $E_n \sim E_{\rm th}$ при $\varepsilon > 10$ МэВ объясняется завышенной оценкой СМНД для ²³⁵U($n_{\rm th}, f$)[48].

Эмпирическая закономерность, обнаруженная для измеренных отношений СМНД ²³⁹Pu(n, f) и ²³⁵U(n, f) для $E_n \sim E_{\rm th}$ и $E_n \sim 0.5$ МэВ, имеет место для расчетных СМНД из [2, 3, 16] и настоящей работы и при $E_n \sim 1.5$ МэВ (см. рис. 5). Для $E_n \sim 1.5$ МэВ отношения СМНД ²³⁹Pu(n, f) и ²³⁵U(n, f), полученные при описании интегрального эксперимента [51], систематически выше расчетов настоящей работы и расчетов [2, 3, 16]. Отношения СМНД из ENDF/B-VIII.0 [48] при $E_n \sim E_{\rm th}, E_n \sim 0.5$ МэВ и $E_n \sim 1.5$ МэВ в диапазоне энергий 0 < ε < 9 МэВ слабо зависят от E_n , однако воспроизводят они только энергетическую зависимость отношения СМНД ²³⁹Pu(n, f) и ²³⁵U(n, f) из работы [51] (см. рис. 5).

Для $E_n \sim E_{\rm th}$ и $E_n \sim 0.5$ МэВ расчеты/оценки [48, 49] противоречат отношениям экспериментальных СМНД для ²³⁹Pu(n, f) и ²³⁵U(n, f) [30, 31]. Отчасти это связано с нормировкой расчетов СМНД [48] для ²³⁹Pu(n, f) к данным интегральных измерений [51] для $E_n \sim 1.5$ МэВ. По сравнению с дифференциальными данными [6, 7, 10–13, 25–29] для ²³⁹Pu(n, f) данные интегральных измерений [51] для $E_n \sim 1.5$ МэВ оказываются завышенными в области $\varepsilon \sim \langle E \rangle$ на ~5%. На рис. 6 видно, что оценка СМНД ²³⁹Pu(n, f) [3] и настоящей работы для $E_n \sim 1.5$ МэВ хорошо согласуется с данными [10] в диапазоне энергий нейтронов $\varepsilon \sim$ ~ 0.1–10 МэВ. Данные [52–56] характеризуются значительным разбросом, однако следует отметить, что предварительные данные авторов [52], представленные в [55], согласуются с данными новых измерений [10].

Для СМНД ²³⁵U(n, f) при $E_n \sim 1.5$ МэВ измеренные данные [54] и [12] согласуются в диапазоне энергий $\varepsilon < 7$ МэВ (см. рис. 7). Повышенное количество "мягких" нейтронов в расчете данной работы и [2, 3, 16], по сравнению с оценкой ENDF/B-VIII [48], подтверждается дифференциальными экспериментами [6, 7, 10–13, 25–29].

Для $E_n \sim E_{\rm th}$ перенормировка параметров модели с учетом новых данных по кинетическим энергиям осколков приводит к уменьшению вклада

Рис. 13. Парциальные составляющие спектра мгновенных нейтронов деления при $E_n = 7.0$ МэВ реакции ²³⁹ Рu(n, F) относительно спектра Максвелла с T = 1.4241 МэВ. Кривые: сплошная — (n, F); штриховые — (n, f), (n, nf); точечные — (n, F), (n, f), (n, nf) [17, 18]; дважды штрихпунктирная — JEFF-3.3 [49]; штрихпунктирная — JENDL-4.0 [67]. Точки: $\Box = [54]$; о — [11]; •, $\Diamond = (n, nf)$ [11]; $\nabla = (n, f)$ [10]; $\triangle = (n, nf)$ [10]. В нижней части рисунка: сплошная, пунктирная и штриховая кривые — спектры предделительных нейтронов для $E_n = 6, 6.5, 7$ МэВ соответственно.

нейтронов с энергией $\varepsilon < 1$ МэВ на $\sim 2-3\%$ для 239 Рu(n, f) и на $\sim 1-2\%$ для 235 U(n, f).

4. ПРЕДДЕЛИТЕЛЬНЫЕ НЕЙТРОНЫ В РЕАКЦИЯХ ²³⁵U(*n*, *F*) И ²³⁹Pu(*n*, *F*)

В реакции 235 U(n, F) предделительные нейтроны впервые наблюдались под действием нейтронов с энергией $E_n \sim 14.3$ МэВ [57, 58] и с энергией $E_n \sim 7$ МэВ [59, 60]. В обоих экспериментах был исследован сравнительно узкий диапазон энергий мгновенных нейтронов деления ($\varepsilon \sim 0.4-$ 5 МэВ). В работах [61, 62] для ²³⁵U(*n*, *F*) при $E_n \sim 14.7 \text{ МэВ}$ диапазон регистрации мгновенных нейтронов деления был существенно расширен ($\varepsilon \sim$ $\sim 0.2 - 10 \text{ M}$ эB), что позволило выделить как "мягкие", так и жесткие компоненты спектра предделительных нейтронов. Мгновенные нейтроны деления в [57-62] регистрировались под углом 90° к падающему пучку нейтронов. В работе [63] оценка средних энергий СМНД $\langle E
angle$ для интервала $E_n \sim 0.5-$ 20 МэВ была получена на основании измерений

спектров нейтронов деления в диапазоне энергий $\varepsilon \sim 0.8 - 7.5 \text{ МэВ}$ для нескольких углов (105°, 90°, 120°). Снижение средней энергии спектра МНД $\langle E \rangle$ вблизи порога реакций второго 235 U(n, nf) и третьего ${}^{235}U(n, 2nf)$ шансов деления проявилось в этом эксперименте достаточно отчетливо. Экстраполяция спектров в область энергий $\varepsilon < 0.8$ и $\varepsilon > 7.5 \text{ МэВ в [63]}$ привела к некоторому искажению энергетической зависимости $\langle E \rangle$, особенно в интервале энергий 7 < $E_n < 15~{
m M}
m{
m yB}$ в сравнении с измерениями [61, 62] и ранее выполненными нами расчетами [16]. В работе [63] были измерены СМНД и для реакции 238 U(n, F), полученные величины средних энергий $\langle E \rangle$ для диапазона $\varepsilon \sim$ $\sim 0.8-7.5~{
m M}$ эВ хорошо согласуются с расчетами [19]. Это означает, что, несмотря на увеличение абсолютных величин $\langle E \rangle$ на ~0.5 МэВ, признаки влияния (n, xnf) нейтронов сохраняются много лучше, чем при произвольной экстраполяции спектров в область $\varepsilon < 0.8$ и $\varepsilon > 7.5$ МэВ. Для реакции 239 Рu(n, F) измерения СМНД при $E_n \sim 14.3$ МэВ [57] долго оставались уникальными. Однако, как

Рис. 14. Парциальные составляющие спектра мгновенных нейтронов деления 235 U(*n*, *F*) при $E_n = 7.0$ МэВ относительно спектра Максвелла с T = 1.4241 МэВ. Кривые: сплошная — (*n*, *F*); штриховые — (*n*, *f*), (*n*, *nf*)¹; пунктирные — [16]. Точки: $\circ - [12]$; $\bigtriangledown - (n, nf)[12]$; $\bigtriangleup - [59, 60]$. В нижней части рисунка: сплошная, пунктирная, штриховая и дважды штрихпунктирная кривые — спектры предделительных нейтронов для $E_n = 6, 6.25, 6.5, 7$ МэВ соответственно; $\diamondsuit - [47]$.

было продемонстрировано в [9], вклад "мягких" предделительных нейтронов, полученный в [64] для 239 Pu(n, F), сравним с наблюдающимся для реакции 238 U(n, F), т.е. был существенно завышен.

Анализ наблюдаемых спектров МНД для реакций ²³²Th(n, F), ²³⁸U(n, F) и ²³⁵U(n, F) показал, что целый ряд особенностей в СМНД коррелирует с влиянием предделительных нейтронов [15, 16, 19]. Например, для $E_n > E_{n2nf}$ ступенчатые структуры в наблюдаемых СМНД ²³²Th(n, F) и ²³⁸U(n, F) для $E_n \sim 14-19$ МэВ в диапазоне энергий $\varepsilon \sim 3-5$ МэВ обусловлены первым нейтроном $(n, 2nf)^1$ реакции (n, 2nf).

Вариации в средних энергиях СМНД наибольшего масштаба были предсказаны для реакции ²³²Th(n, F) вблизи порога реакции ²³²Th(n, nf) [14, 15, 19]. Вклады реакций (n, xnf) в полные сечения деления для реакций ²³⁹Pu(n, F) и ²³⁵U(n, F) существенно иные, поэтому и проявляться спектры $(n, xnf)^{1,...x}$ в наблюдаемых характеристиках будут иначе. В реакции ²³⁹Pu(n, F) относительный вклад реакции (n, nf) в наблюдаемое сечение

ЯДЕРНАЯ ФИЗИКА том 86 № 5 2023

деления существенно ниже, чем в случае реакции 235 U(n, F). Тем не менее и в случае реакции 239 Pu(n, F) первый и второй предделительные нейтроны, $(n, nf)^1$, $(n, 2nf)^1$ и $(n, 2nf)^2$, существенно влияют на форму спектров МНД.

Эксклюзивные спектры предделительных нейтронов $(n, nf)^1$, $(n, 2nf)^{1,2}$ и $(n, 3nf)^{1,2,3}$, зависящие от делимости ядер в реакциях 235 U(n, xnf)[2, 16] и ²³⁹ Рu(n, xn f) [17, 18] и полученные с их помощью СМНД, в частности, численные данные для СМНД 235 U(n,F) для $E_{\mathrm{th}} < E_n < 20$ МэВ [16], нашли убедительное подтверждение в измерениях [6, 7, 10-13, 25]. Для СМНД ²³⁵U(n, F) экспериментальные данные [6, 7, 12, 13, 25] детально подтверждают относительно высокий вклад эксклюзивных спектров нейтронов реакций ²³⁵U (n, nf) при $E_n \sim 7$ МэВ. Согласуются с экспериментом вклады нейтронов $(n, 2nf)^1$ и $(n, 2nf)^2$ при $E_n \sim 14.7 \; {
m M}$ эВ и "жесткая" форма спектра нейтронов реакции (n, nf), предсказанные для реакции 235 U(n, F) в [2, 16]. Экспериментальные данные

Рис. 15. Парциальные составляющие спектра мгновенных нейтронов деления при $E_n = 9$ МэВ для реакции ²³⁹ Рu(n, F) относительно спектра Максвелла с T = 1.4241 МэВ. Кривые: сплошная — $(n, nf)^1$; штрихштриховая — JENDL-4.0 [67]; штрихпунктирная — ENDF/B-VIII.0 [48]; дважды штрихпунктирная — JEFF-3.3 [49]. Точки: о—[11]; •, \Diamond —(n, nf) [11]; ∇ —(n, f) [10]; Δ —(n, nf) [10]. В нижней части рисунка: сплошная и пунктирная кривые — спектры предделительных нейтронов для $E_n = 8, 9$ МэВ соответственно.

подтверждают относительно низкий вклад эксклюзивных спектров нейтронов реакций (n, nf) при $E_n \sim 7$ МэВ [14–18], а также нейтронов $(n, 2nf)^1$ и $(n, 2nf)^2$ при $E_n \sim 14.7$ МэВ, и "жесткую" форму спектра нейтронов реакции (n, nf), предсказанные для реакции ²³⁹Pu(n, F) в [17, 18].

4.1. СМНД ²³⁹ Ри(n, F) и ²³⁵ U(n, F) выше порога реакции (n, nf)

При энергиях возбуждения выше порога реакции (n, nf) форма наблюдаемых СМНД коррелирует с делимостью ядер, образующихся в реакциях ²³⁹Pu(n, xnf) (²³⁵U(n, xnf)) и сечениями конкурирующих реакций $(n, xn\gamma)$. При $E_n \sim 6-9$ МэВ эксклюзивные спектры нейтронов реакции и спектры нейтронов реакций $(n, n\gamma)^1$, $(n, 2n)^{1,2}$ позволяют детально определить, как изменяются с ростом энергии нейтронов E_n относительные амплитуды нейтронных спектров $(n, nf)^1$ в реакциях ²³⁹Pu(n, F) и ²³⁵U(n, F). В работе [56] были

получены СМНД для реакции ²³⁹ Рu(n, F), величины средних энергий $\langle E \rangle$ для диапазона $\varepsilon \sim 0.4$ — 7.0 МэВ хорошо согласуются с расчетами [17, 18]. Это означает, что, несмотря на увеличение абсолютных величин $\langle E \rangle$ на ~0.5 МэВ, признаки влияния (n, xnf) нейтронов сохраняются много лучше, чем при произвольной экстраполяции спектров в область $\varepsilon < 0.4$ и $\varepsilon > 7.5$ МэВ.

В том случае, когда реакция (n, nf) конкурирует только с реакцией $(n, n\gamma)$, формы спектров предделительных нейтронов $(n, nf)^1$ слабо зависят от делимости ядра-мишени нейтронами, хотя вклад реакции (n, nf) в сечение реакции 235 U(n, F) выше, чем в реакции 239 Pu(n, F). Когда открывается канал реакции 239 Pu(n, 2n) (235 U(n, 2n)), форма спектров (n, nf) нейтронов оказывается весьма чувствительной к парциальным спектрам нейтронов реакции $(n, 2n)^1$ и $(n, 2n)^2$. Для ядра-мишени 238 U в [65] было показано, насколько радикально меняется спектр пределительных нейтронов 238 U $(n, nf)^1$ при увеличении энергии налетающих

Рис. 16. Парциальные составляющие спектра мгновенных нейтронов деления при $E_n = 8.5$ МэВ для реакции ²³⁵ U(n, F) относительно спектра Максвелла с T = 1.4241 МэВ. Кривые: сплошная — (n, F); штриховые — (n, xnf); точечная — [16]; штрихпунктирная — ENDF/B-VIII.0 [48]; дважды штрихпунктирная — JEFF-3.3 [49]; штрихштриховая линия — JENDL-4.0 [67]. Точки: \circ — [12]; \bullet — (n, nf) [12].

нейтронов с 6.0 до 7.0 МэВ. Пороги реакций (n, 2n)и вклады реакций (n, xnf) в наблюдаемые сечения деления для реакций ²³⁹Pu(n, F) и ²³⁵U(n, F)существенно иные, поэтому проявляться спектры (n, nf) в наблюдаемых характеристиках будут слабее, чем реакции ²³⁸U(n, F).

Разложение наблюдаемых сечений деления нейтронами на вклады эмиссионного и безэмиссионного деления позволяет выделить вклады в спектре МНД деления ядра ²⁴⁰Pu — $\tilde{S}_{A+1}(\varepsilon, E_n)$, деления второго шанса — эксклюзивных нейтронов реакции $(n, nf)^1$ и нейтронов из осколков деления ядра ²³⁹Pu, $\tilde{S}_A(\varepsilon, E_n)$, деления третьего шанса — эксклюзивных нейтронов реакции $(n, 2nf)^{1,2}$ и нейтронов из осколков деления ядра ²³⁸Pu, $\tilde{S}_{A-1}(\varepsilon, E_n)$, деления четвертого шанса эксклюзивных нейтронов реакции $(n, 3nf)^{1,2,3}$ и нейтронов из осколков деления ядра ²³⁷Pu, $\tilde{S}_{A-2}(\varepsilon, E_n)$. Для реакции ²³⁵U(n, F) и ²³⁹Pu(n, F)на рис. 8 показаны парциальные относительные вклады реакций $(n, xnf) - \beta_x(E_n) = \sigma_{n,xnf}/\sigma_{n,F}$

ЯДЕРНАЯ ФИЗИКА том 86 № 5 2023

в наблюдаемые сечения деления 239 Pu(n, F) (235 U(n, F)). Они существенно отличаются от аналогичных функционалов из [66], что и является одной из причин неадекватных аппроксимаций СМНД в [66] и различных версиях прикладных библиотек ENDF/B, JEFF или JENDL.

Вычитанием расчетного вклада реакции (n, f) из наблюдаемого СМНД для реакции (n, F) можно получить полуэкспериментальную оценку вклада реакции (n, nf). На рис. 9 и рис. 10 отчетливо видно, что для $E_n \sim 6$ МэВ спектры нейтронов из осколков деления для реакций 239 Pu(n,nf)и 239 Pu(n,f) соответствующие энергии $\varepsilon > E_{nnf1}$ имеют существенно разные энергетические зависимости. Компонента спектра мгновенных нейтронов деления реакции 235 U(n, nf), соответствующая нейтронам из осколков деления ядер ²³⁵U, также падает с ростом энергии мгновенных нейтронов деления ε гораздо быстрее, чем в случае реакции 235 U(n, f). Так проявляется "охлаждение" делящихся ядер после эмиссии $(n, nf)^1$ нейтронов. Для $E_n \sim 6 \text{ МэВ}$ относительный вклад

Рис. 17. Парциальные составляющие спектра мгновенных нейтронов деления при $E_n = 11$ МэВ для реакции ²³⁹ Рu(n, F) относительно спектра Максвелла с T = 1.4241 МэВ. Кривые: сплошная — (n, nf); штриховые — (n, nf), $(n, nf)^1$; штрихштриховая — JENDL-4.0 [67]; штрихпунктирная — ENDF/B-VIII.0 [48]; дважды штрихпунктирная — JEFF-3.3 [49]. Точки: $\Box = [56]$; $\circ = [11]$; $\bullet, \diamond = (n, nf)[11]$; $\nabla = (n, F)[10]$; $\Delta = (n, nf)[10]$.

нейтронов реакций ²³⁹Pu(n, nf) в СМНД реакции ²³⁹Pu(n, F) в ~1.5 раза выше, чем вклад реакции ²³⁵U(n, nf) в наблюдаемый СМНД ²³⁵U(n, F) (см. рис. 9, 10). На рис. 9–20 все наблюдаемые СМНД и все парциальные компоненты реакций ²³⁹Pu(n, F) и ²³⁵U(n, F) представлены как отношение к максвелловскому спектру с температурой T = 1.4241 МэВ. Нормировка экспериментальных спектров к расчетным производится сравнением интегралов спектров в области перекрытия.

Для $E_n \sim 6.5 \text{ МэВ}$ относительный вклад нейтронов реакций ²³⁹Pu(n, nf) в СМНД реакции ²³⁹Pu(n, F) в ~2 раза ниже, чем вклад реакции ²³⁵U(n, nf) в полный СМНД ²³⁵U(n, F) (см. рис. 11, 12). Для $E_n \sim 6.5 \text{ МэВ}$ вблизи максимума наблюдаемого спектра нейтронов деления ²³⁹Pu(n, nf)¹, $\varepsilon \sim 0.2 \text{ МэВ}$, $\tilde{S}_{239}(\varepsilon, E_n) \sim$ $\sim 0.5 \tilde{S}_{240}(\varepsilon, E_n)$, а для ²³⁵U(n, F): $\tilde{S}_{235}(\varepsilon, E_n) \sim$ $\sim \tilde{S}_{236}(\varepsilon, E_n)$. Это соотношение подтверждается данными экспериментов [6, 7, 10–13, 25] для реакций ²³⁹Pu(n, F) и ²³⁵U(n, F) и извлеченными компонентами СМНД 239 Ри(n, nf) и 235 U(n, nf) соответственно.

Влияние нейтронов реакции $^{239}{
m Pu}(n,nf)^1$ на среднюю энергию $\langle E \rangle$ СМНД реакции ²³⁹ Pu(n, F)таково, что относительная амплитуда $eta_2(E_n) imes$ $imes
u_p^{-1}(E_n) d\sigma_{nnf}/d\varepsilon$ при $E_n \sim 6.5$ МэВ примерно вдвое ниже, чем для СМНД реакции 235 U(n, F). Энергия возбуждения для $E_n \sim 6.5~{
m M}$ эВ выше порога реакции 239 Ри(n, 2n), поэтому форма спектра предделительных нейтронов определяется конкуренцией реакций 239 Pu $(n, nf), ^{239}$ Pu(n, 2n)и 239 Pu($n, n\gamma$), а в спектре первого нейтрона выделяются эксклюзивные спектры нейтронов $(n,n\gamma)^1, \; (n,2n)^1, \; (n,2n)^2$ и $(n,nf)^1.$ При $E_n \sim$ $\sim 6~$ MэB канал реакции 239 Pu(n,2n) закрыт и в спектре первого нейтрона выделены только эксклюзивные спектры нейтронов $(n,n\gamma)^1$ и $(n,nf)^1.$ Относительный вклад предделительных нейтронов $eta_2(E_n)
u_p^{-1}(E_n) d\sigma_{nnf}/darepsilon$ в реакции $^{239} {
m Pu}(n,nf)$ при $E_n \sim 6$ МэВ гораздо выше, чем при $E_n \sim$ $\sim 7 \,\mathrm{M}$ эB. Такое соотношение имеет место несмотря

Рис. 18. Парциальные составляющие спектра мгновенных нейтронов деления при $E_n = 11$ МэВ для реакции ²³⁵ U(n, F) относительно спектра Максвелла с T = 1.4241 МэВ. Кривые: сплошная — (n, F); штриховые — (n, f), (n, nf); пунктирные — [16]; штрихпунктирная — JEFF-3.3 [49]; дважды штрихпунктирная — JENDL-4.0 [67]. Точки: о — [12]; • — (n, nf)[12].

на то, что вклад реакции 239 Pu(n, nf) в наблюдаемое сечение деления при $E_n \sim 6$ МэВ в ~ 2 раза ниже, чем при $E_n \sim 7$ МэВ.

Впервые избыток мягких нейтронов в наблюдаемом спектре МНД при $E_n = 7$ МэВ был замечен в реакции ²³⁵U(n, F) [59, 60], однако поначалу его сочли следствием многократного рассеяния нейтронов в детекторе, а попытка [70] учесть предделительные нейтроны оказалась неудачной ввиду неадекватных (испарительной) формы и вклада спектра предделительных $(n, nf)^1$ нейтронов. Примером адекватного предсказания СМНД для Zчетного, N-нечетного ядра-мишени, кроме реакции ²³⁵U(n, F) [2, 3, 16], может служить СМНД для ²³³U(n, F) [71, 72].

Для $E_n \sim 7$ МэВ средняя энергия пределительных нейтронов реакции ²³⁹ Pu $(n, nf) \langle E_{n,nf} \rangle \sim$ ~ 0.5 МэВ, поэтому средняя энергия возбуждения делящегося ядра ²³⁹ Pu примерно соответствует энергии возбуждения ядер ²³⁸ Pu нейтронами с энергией $E_n \sim 1$ МэВ. Форма спектра нейтронов из осколков деления реакции ²³⁹ Pu(n, nf) (см. рис. 13) будет похожа на СМНД реакции 238 Рu(n, f) для $E_n \sim 1$ МэВ. Форма спектра нейтронов из осколков деления реакции 235 U(n, nf) подобна форме СМНД 235 U(n, F) [47] для $E_n \sim \sim E_{\rm th}$ (см. рис. 14).

Представленные на рис. 13 и рис. 14 амплитуды $\beta_2(E_n)\nu_p^{-1}(E_n)d\sigma_{nnf}/d\varepsilon$ спектров предделительных нейтронов для интервала энергий $E_n = 6-7$ МэВ показывают, что для реакции ²³⁵U(n, F) влияние предделительных нейтронов намного существеннее, чем в случае реакции ²³⁹Pu(n, F). Легко заметить корреляцию формы спектров $(n, nf)^1$ нейтронов с открытием каналов реакции (n, 2n).

На рис. 13, 14 представлены расчеты СМНД 235 U(n, F)[13]2005 г. и расчеты СМНД 239 Pu(n, F)[17, 18] 2006–2007 гг., они убедительно подтверждены дифференциальными измерениями [6, 7, 10–13, 25]. Это означает, что перенормировка параметров модели СМНД с учетом новых данных по ТКЕ существенно изменяет только жесткую часть спектра мгновенных нейтронов из осколков.

Рис. 19. Парциальные составляющие спектра мгновенных нейтронов деления при $E_n = 14.7$ МэВ для реакции ²³⁹ Ри(n, F) относительно спектра Максвелла с T = 1.4241 МэВ. Кривые: сплошная — (n, F), пунктирная, штриховая, дважды штрихпунктирная — (n, f), (n, nf) и (n, 2nf) соответственно для эмиссии $(n, nX)^1$ нейтрона под углом 90°; штриховая — JEFF-3.3 [49]; штрихпунктирная — ENDF/B-VIII.0 [48]. Точки: $\Diamond = [56]$; $\circ = [11]$; $\bigtriangledown = [10]$. В нижней части рисунка: верхняя штриховая кривая — $(n, nf)^1$; сплошная — $(n, 2nf)^1$; штриховая — $(n, 2nf)^2$.

Энергетическую зависимость спектров МНД 238 U(n, F), 232 Th(n, F) и 235 U(n, F) выше порога реакции (n, 2nf) удалось воспроизвести в [14–16], уменьшив энергию в СЦМ на один нуклон в соответствии со следующей формулой:

$$E_{vxj} = \alpha_1 E_{vxj}^0. \tag{20}$$

Для описания измеренных СМНД ²³⁹Pu(n, F) и ²³⁵U(n, F) [6, 7, 10–13, 25] для интервала энергий 6 < E_n < 12 МэВ достаточно предположения, что параметр $\alpha_1 = 1$ для E_n < 6 МэВ и $\alpha_1 =$ = 0.8 для $E_n > 12$ МэВ, параметр α_1 между этими энергиями изменяется линейно. Эта дополнительная коррекция средней энергии постделительных нейтронов устраняет разногласия расчетных и наблюдаемых СМНД в интервале $E_n \sim 6-$ 10 МэВ. На рис. 15 и рис. 16 видно, как такая коррекция адекватно исправляет форму СМНД для $E_n = 8.5$ МэВ в диапазоне $E_{nnf1} > 2.5$ МэВ как для ²³⁹Pu(n, F), так и для ²³⁵U(n, F). На рис. 15 показаны эксклюзивные спектры нейтронов 239 Ри $(n,nf)^1 \longrightarrow \beta_2(E_n)\nu_p^{-1}(E_n)d\sigma_{nnf}/d\varepsilon$ для $E_n \sim$ ~ 8 и $E_n \sim 9$ МэВ.

С ростом энергии налетающих нейтронов E_n граничная энергия E_{nnf1} спектра нейтро-нов реакций ²³⁹Pu $(n, nf)^1$ и ²³⁵U $(n, nf)^1$ уве-личивается, появляется жесткая компонента. На рис. 17 и рис. 18 представлено сравнение рассчитанных и измеренных спектров для $E_n \sim$ ~ 11 МэВ. Сечение реакции 239 Ри(n, 2nf) здесь не превышает 1 мбн, средняя энергия $\langle E_{nnf} \rangle \sim$ ~ 2.5 МэВ, $E_{nnf1} \sim 5.5$ МэВ. Вклад в СМНД, $S(\varepsilon, E_n)$, в диапазоне $\varepsilon > 5.5$ МэВ дают только нейтроны, испускаемые осколками деления. Расчет предсказывает рост с энергией вклада реакции 239 Ри(n, f) в СМНД и резкое падение с энергией вклада реакции 239 Pu(n, nf) для $\varepsilon > 5.5$ МэВ. Для СМНД 235 U(n, F) из расчета следует слабая зависимость от энергии вклада реакции 235 U(n, f)и резкое падение с энергией вклада $^{235}\mathrm{U}(n,nf)$ для $\varepsilon > 4.5$ МэВ. На рис. 15–18 для ²³⁹Рu(n, F)

Рис. 20. Парциальные составляющие спектра мгновенных нейтронов деления при $E_n = 14.7$ МэВ для реакции 235 U(n, F) относительно спектра Максвелла с T = 1.4241 МэВ. Кривые: сплошная — (n, F), пунктирная, штриховая, дважды штрихпунктирная — (n, f), (n, nf) и (n, 2nf) соответственно для эмиссии $(n, nX)^1$ нейтрона под углом 90°; штрихпунктирная — ENDF/B-VIII.0 [48]; дважды штрихпунктирная — JEFF-3.3 [49]. Точки: • — [61, 62]; • — [12]; $\Delta - (n, F)$ [25]. В нижней части рисунка: верхняя штриховая кривая — $(n, nf)^1$; сплошная — $(n, 2nf)^1$; штриховая — $(n, 2nf)^2$.

и ²³⁵U(n, F) видно, что оценки ENDF/B-VIII.0 [48] и JENDL-4.0 [67] радикально расходятся с данными новых измерений [6, 7, 10–13, 25] в диапазоне энергий $\varepsilon > 5.5$ МэВ. Оценка JEFF-3.3 [49] воспроизводит данные измерений [10] при некоторых E_n , однако парциальные составляющие СМНД в JEFF недоступны.

4.2. СМНД ²³⁹ Ри(n, F) и ²³⁵ U(n, F) выше порога реакции (n, 2nf)

С ростом энергии налетающих нейтронов в спектре нейтронов реакций ²³⁹Pu $(n, nf)^1$ и ²³⁵U $(n, nf)^1$ появляется жесткая компонента, впервые она была обнаружена в эксперименте [61, 62] при $E_n = 14.7$ МэВ. Эксклюзивные спектры нейтронов реакций $(n, n\gamma)^1$, $(n, 2n)^{1,2}$, $(n, 3n)^{1,2,3}$ и предделительные спектры нейтронов реакций $(n, nf)^1$ и $(n, 2nf)^{1,2}$ позволяют детально

ЯДЕРНАЯ ФИЗИКА том 86 № 5 2023

определить зависимость вклада предделительных нейтронов в СМНД от делимости (A + 1 - x) ядер в реакциях ²³⁵U(n, F) и ²³⁹Pu(n, F). Измеренные СМНД подтверждают относительно низкий вклад эксклюзивных спектров нейтронов реакций $(n, 2nf)^1$ и $(n, 2nf)^2$ при $E_n \sim 14.7$ МэВ, предсказанный для реакции ²³⁹Pu(n, F) в [17, 18]. Для реакции ²³⁵U(n, F) вклад спектров нейтронов реакций $(n, 2nf)^1$ и $(n, 2nf)^2$ в наблюдаемые СМНД [6, 7, 10–13, 25] при $E_n \sim 14.7$ МэВ, полученный в [16], сравним с наблюдающимся в реакции ²³⁸U(n, F) [61, 62]. СМНД для ²³⁸U(n, F) были детально рассмотрены в [14, 15, 19, 65].

Корреляция формы СМНД и вклада реакций (n, xnf) в наблюдаемое сечение реакции деления (n, F) позволяет получить и парциальные составляющие ²³⁹Pu(n, xnf) наблюдаемых СМНД для реакции ²³⁹Pu(n, F). Вклады шансов деления $\tilde{S}_{240}(\varepsilon, E_n)$, $\tilde{S}_{239}(\varepsilon, E_n)$, $\tilde{S}_{238}(\varepsilon, E_n)$ и $\tilde{S}_{237}(\varepsilon, E_n)$ в

Рис. 21. Средняя энергия СМНД $\langle E \rangle$ для деления нейтронами ²³⁹ Рu(*n*, *F*). Кривые: сплошная — (*n*, *F*); штриховая — [3]; верхняя и нижняя точечные — $\langle E(30^\circ) \rangle$ и $\langle E(150^\circ) \rangle$ соответственно; штрихпунктирная — ENDF/B-VIII.0 [48]; дважды штрихпунктирная — JEFF-3.3 [49]. Точки: \circ — [10]; \blacklozenge — (*n*, *F*) [11]; \blacktriangle — [30].

СМНД определяются спектрами предделительных нейтронов и вкладами шансов в наблюдаемое сечение деления. Вклад деления первого шанса для 239 Ри(n, F) при $E_n = 14.7$ МэВ (см. рис. 19) выше вкладов второго и третьего шансов деления в СМНД, и только вблизи $\varepsilon \sim 8$ МэВ вклад второго шанса сравнивается с вкладом первого. Нейтроны реакции 239 Pu $(n, nf)^1$ формируют широкий пик в наблюдаемом спектре МНД. Вклад второго шанса в диапазоне $\varepsilon \ge 10$ МэВ быстро падает, и наблюдаемый спектр определяется нейтронами, испускаемыми из осколков деления ядер ²⁴⁰Ри. Вклад реакции 239 Ри(n, 2nf) $\tilde{S}_{238}(\varepsilon, E_n)$ много меньше вкладов реакций 239 Pu $(n, f) - \tilde{S}_{240}(\varepsilon, E_n)$ и 239 Ри(n,nf) — $ilde{S}_{239}(arepsilon,E_n)$. Ступенька вблизи $arepsilon\sim$ ~ 4 МэВ обусловлена эксклюзивными нейтронами реакции $(n, 2nf)^1$.

На рис. 20 расчетные спектры МНД для реакции ²³⁵U(n, F) при $E_n = 14.7$ МэВ сравниваются с наблюдаемыми СМНД. Эволюция вклада предделительных нейтронов (n, nf) от $E_n = 6$ МэВ до $E_n = 14.7$ МэВ обусловлена увеличением пороговой энергии $E_{nnf1} \sim E_n - B_f$, что проявляется на рисунках как "волна", смещающаяся с увеличением E_n слева направо. На рис. 19 и рис. 20 показаны эксклюзивные вклады предделительных нейтронов $(n, 2nf)^1$ и $(n, 2nf)^2$ реакции (n, 2nf): $\beta_3(E_n)\nu_p^{-1}\left[\frac{d\sigma_{n2nf}^1}{d\varepsilon}\right]$ и $\beta_3(E_n)\nu_p^{-1}\left[\frac{d\sigma_{n2nf}^2}{d\varepsilon}\right]$. Оче-

видно, спектр первого нейтрона $(n, 2nf)^1$ жестче спектра второго нейтрона $(n, 2nf)^2$, вклад этих нейтронов и определяет энергетическую зависимость наблюдаемых СМНД вблизи средней энергии $\langle E \rangle$ и в диапазоне энергий $\varepsilon < \langle E \rangle$. В случае ²³⁵U(n, F) относительный вклад предделительных нейтронов вдвое выше, чем в случае ²³⁹Pu(n, F). Мягкая часть эксклюзивного спектра $(n, nf)^1$ нейтрона $\beta_2(E_n)\nu_p^{-1}(E_n)d\sigma_{nnf}^1/d\varepsilon$ в случае реакции ²³⁹Pu(n, F) подавлена, по сравнению с реакцией ²³⁵U(n, F). Подобного качества описание измеренных СМНД получено и для других $E_n \sim 1-20$ МэВ.

Существенным недостатком методов анализа СМНД для библиотек ENDF/B-VIII.0 [48],

Рис. 22. Средняя энергия СМНД $\langle E \rangle$ для деления нейтронами ²³⁵ U(*n*, *F*). Кривые: сплошная — (*n*, *F*); верхняя и нижняя точечные — $\langle E(30^{\circ}) \rangle$ и $\langle E(150^{\circ}) \rangle$ соответственно; штриховая — [3]; штрихпунктирная — ENDF/B-VIII.0 [48]; дважды штрихпунктирная — JEFF-3.3 [49]. Точки: \circ — [12]; \checkmark — [31]; \blacktriangle — [63].

JENDL-4.0 [67], JEFF-3.3 [49] является заниженный вклад мягких нейтронов, особенно для $E_n > E_{nnf}$. Это связано как с искажением расчетных спектров нейтронов из осколков деления для E_n от $E_{\rm th}$ до 20 МэВ, так и неадекватными методами вычисления спектров предделительных нейтронов. В [48, 49, 67] вклад деления второго шанса для ${}^{235}U(n,F)$ был существенно завышен с целью компенсации заниженного вклада мягких предделительных нейтронов в наблюдаемый СМНД. Такими способами в библиотеках ENDF/B-VIII.0 [48], JENDL-4.0 [67], JEFF-3.3 [49] иногда удавалось воспроизвести основные особенности поведения средних энергий СМНД $\langle E \rangle$ для реакций 238 U $(n,F), {}^{235}$ U(n,F) или 239 Pu(*n*, *F*), но полученные при этом спектры МНД неприемлемо отличались от дифференциальных данных.

4.3. Средние энергии спектров $MH_{\mathcal{A}}(E)$ и ТКЕ

Средние энергии спектров МНД — это лишь их довольно грубая интегральная характеристика.

ЯДЕРНАЯ ФИЗИКА том 86 № 5 2023

Зависимость $\langle E \rangle$ от E_n для ²³⁹ Pu(n, F) сравнивается с данными [10, 11, 24] на рис. 21. Величина $\langle E \rangle$, определенная для диапазона энергий нейтронов $\varepsilon \sim 0.01 - 10 \, \text{МэВ}$, неплохо воспроизводит совокупность экспериментальных данных [10, 11], особенно вблизи порогов реакций 239 Pu(n, nf) и 239 Ри(n,2nf). Для $E_n>15\,{
m M}$ эВ расчетный спектр МНД довольно жесткий, и $\langle E \rangle$ для диапазона $\varepsilon \sim$ $\sim 10^{-5}$ эВ-20 МэВ имеет иную энергетическую зависимость. Оценка данной работы отличается от нашей прежней оценки [3] только в интервале энергий $E_n \sim 8-12$ МэВ. Это было связано как с отсутствием экспериментальных данных в этом интервале энергий как для 239 Pu(n, F), так и для 235 U(n, F), а также с большим статистическим разбросом данных по СМНД для реакции 238 U(n, F) [73, 74], что не позволило выявить этот эффект раньше. Теоретические оценки [48, 49] не воспроизводят экспериментальную зависимость $\langle E \rangle$ от E_n для 239 Pu(n,F), равно как и форму СМНД [6, 7, 10-13, 25]. Несмотря на то, что СМНД из JENDL-4.0 [67] и ENDF/B-

Рис. 23. ТКЕ для осколков и продуктов деления для реакции ²³⁹ Рu(n, F): E_F^{pre} : сплошная кривая — (n, F); точечная — (n, f); \circ — [75]; ■ — [76]; \bullet — [21]; E_f^{post} : \triangle — [20]; \forall — [21]; сплошная — (n, F); точечная — (n, f); штрихпунктирная — ENDF/B-VIII.0 [48]; штриховая кривая — средняя энергия СМНД $\langle E \rangle$, $\varepsilon \sim 0.01-10$ МэВ.

VIII.0 [48] демонстрируют некоторые вариации $\langle E \rangle$ для ²³⁹Pu(n, F) выше порога E_{nnf} , корреляцию этих вариаций с (n, xnf) нейтронами можно считать условной, так как в этих работах корреляции формы СМНД с вкладами $\beta_x(E_n) = \sigma_{n,xnf}/\sigma_{n,F}$ и спектрами $(n, xnf)^{1,...x}$ и ТКЕ существенно искажены.

Наша оценка $\langle E \rangle$ для ²³⁵U(n, F) жестко коррелирует с формой СМНД. Теоретические оценки СМНД [48, 49] сравнительно неплохо воспроизводят экспериментальную зависимость $\langle E \rangle$ от E_n для ²³⁵U(n, F) [11], но абсолютно не описывают форму СМНД [6, 7, 11–13, 25] для $E_n \sim E_{\rm th} - 20$ МэВ. Несмотря на то, что СМНД из JEFF-3.3 [49] и ENDF/B-VIII.0 [48] демонстрируют некоторую вариацию $\langle E \rangle$ для ²³⁵U(n, F) выше порога E_{nnf} , корреляцию этих вариаций с (n, xnf) нейтронами также можно считать условной, так как в этих работах корреляции формы СМНД с вкладами $\beta_x(E_n) = \sigma_{n,xnf}/\sigma_{n,F}$ и спектрами (n, xnf)^{1,...x} и ТКЕ также существенно искажены.

Оценка $\langle E \rangle$ в данной работе отличается от

оценки [2, 3] только в интервале энергий $E_n \sim 8-$ 12 МэВ. В расчетах [2, 3] параметр $\alpha_1 = 1$ для $E_n < 10$ МэВ и $\alpha_1 = 0.8$ для $E_n > 12$ МэВ. Используя параметр $\alpha_1 = 1$ для $E_n < 6$ МэВ и $\alpha_1 = 1$ = 0.8 для $E_n > 12$ МэВ, удалось описать СМНД и $\langle E \rangle$ для $E_n \sim 8-12$ МэВ в диапазоне $\varepsilon > E_{nnfl}$. Предварительные экспериментальные данные для 238 U(n, F), представленные в [13], также воспроизводятся. Влияние эксклюзивных спектров нейтронов $(n, nf)^1$ и $(n, 2nf)^{1,2}$ на $\langle E \rangle$ для 235 U(n, F)намного сильнее, чем для реакции 239 Pu(n, F), это ясно видно на рис. 21 и рис. 22. Сохраняющиеся различия между экспериментальными и теоретическими $\langle E \rangle$ данной работы могут быть связаны с тем, что в работах [6, 7, 10-13, 25] использовались два детектора нейтронов, для диапазона энергий СМНД $\varepsilon < 1.5$ МэВ и для $\varepsilon > 0.8$ МэВ. Взаимная нормировка двух участков спектра МНД неизбежно связана с некоторым произволом ввиду погрешностей определения эффективностей регистрации нейтронов.

Рис. 24. ТКЕ для осколков и продуктов деления для реакции ²³⁵ U(*n*, *F*): E_F^{pre} : сплошная кривая — (*n*, *F*); точечная — (*n*, *f*); о — [22]; □ — [78]; △ — [77]; E_f^{post} : ∇ — [22]; ▲ — [84]; ♦ — [79]; сплошная кривая — (*n*, *F*); точечная — (*n*, *f*); штриховая — ЕNDF/B-VIII.0 [48]; штрихпунктирная кривая — средняя энергия СМНД (E), ε ~ 0.01–10 МэВ.

4.4. Средние энергии ТКЕ

На рис. 23 и рис. 24 представлено сравнение экспериментальных ТКЕ для фрагментов и продуктов деления, $E_F^{\rm pre}$ и $E_f^{\rm post}$, с расчетами. Воспроизвести наблюдаемые величины $E_F^{\rm pre}$ для 239 Ри(n, F) и 235 U(n, F) можно в предположении линейной зависимости $E_{f0}^{\text{pre}}(E_n)$, т.е. ТКЕ для деления "первого" шанса ²³⁹Pu(n, f) и ²³⁵U(n, f). Уменьшение $E_f^{\rm pre}$ с ростом энергии возбуждения делящегося ядра в реакции деления "первого" шанса при $E_n < E_{nnf}$ в [80] интерпретировано как следствие увеличения расстояния между осколками в точке разрыва. Замедление уменьшения и локальные максимумы наблюдаемой кинетической энергии осколков деления ТКЕ при $E_n > E_{nnf}$ до и после эмиссии мгновенных нейтронов деления вблизи порогов реакций 239 Pu(n, nf) и 239 Pu(n, 2nf) воспроизводятся с помощью уравнений (17)-(19). На рис. 23 видно, что оценка ТКЕ для 239 Pu(n, F) жестко коррелирует со средней энергией $\langle E \rangle$ СМНД.

ЯДЕРНАЯ ФИЗИКА том 86 № 5 2023

Вклад реакции (n, nf) в $\sigma_{n,F}$ ²³⁵ U(n, F) больше, чем вклад (n, nf) в сечение реакции ²³⁹Pu(n, F)(см. рис. 8), поэтому рост ТКЕ вблизи порогов ²³⁵U(n, nf) и ²³⁵U(n, 2nf) проявляется сильнее. Воспроизвести наблюдаемые величины $E_F^{\rm pre}$ для ²³⁵U(n, F) также можно в предположении линейной зависимости $E_{f0}^{\rm pre}(E_n)$, т.е. ТКЕ для осколков деления "первого" шанса ²³⁵U(n, f). Корреляция локальных вариаций в ТКЕ и $\langle E \rangle$ СМНД проявляется для ²³⁵U(n, F) более отчетливо, чем в случае реакции ²³⁹Pu(n, F) (см. рис. 23 и рис. 24).

Уменьшение $E_f^{\rm pre}$ для реакций деления "первого" шанса ²³⁵U(n, f) и ²³⁹Pu(n, f) при дальнейшем повышении энергии возбуждения можно связать с переходом от преимущественно асимметричного деления к смеси асимметричных и симметричной мод деления [81]. Относительные вклады симметричной и асимметричной мод зависят от энергии возбуждения и нуклонного состава делящихся ядер [82, 83]. Быстрый рост вклада моды симметричного деления при $E_n > 10$ МэВ [82, 83] приводит

Рис. 25. Среднее число мгновенных нейтронов деления для ²³⁹ Pu(n, F). Кривые: сплошная кривая — ²³⁹ Pu(n, F); точечная — ²³⁹ Pu(n, f); штриховая — ²³⁹ Pu(n, nf); дважды штрихпунктирная линия — ²³⁹ Pu(n, 2nf); штрихпунктирные — ν_{post} и ν_{pre} соответственно. Точки: $\Delta - [44]$; $\circ - [45]$; $\bullet - [46]$; $\diamond - [90]$.

к уменьшению $E_f^{\rm pre}$ и $E_f^{\rm post}$ для ядер в реакции деления первого и других шансов и проявляется как уменьшение наблюдаемых ТКЕ, т.е. E_{F}^{pre} и E_{E}^{post} . Переход от преимущественно асимметричного деления к смеси асимметричных и симметричной мод деления зависит от энергии возбуждения и нуклонного состава делящихся ядер [83]. В рассматриваемом диапазоне энергий возбуждения ядер U и Pu вклад симметричной моды не превышает ~10%, и учитывать его при описании СМНД мы пока не будем. В рассматриваемом диапазоне энергий возбуждения ядер U и Pu для $E_n < 20$ МэВ вклад симметричной моды невелик, а разница величин $E_{fasym}^{
m pre}$ и $E_{fsym}^{
m pre}$ не превышает 10-15 МэВ. Учет уменьшения массы делящегося ядра за счет эмиссии предделительных нейтронов $u_{\rm pre}$ в уравнении (18) существенно сказывается на энергетической зависимости $E_F^{\rm post}$ для энергий нейтронов $E_n > E_{nnf}$.

Уменьшение с ростом энергии налетающих нейтронов E_n полной кинетической энергии ТКЕ осколков $E_F^{\rm pre}$ и продуктов деления $E_f^{\rm post}$ наблю-

далось в реакциях 239 Pu(n, F) [20, 21, 75, 76] и ²³⁵U(n, F) [22, 23, 77-79, 84]. Локальные максимумы кинетической энергии осколков деления ТКЕ до, $E_F^{\rm pre}$, и после, $E_F^{\rm post}$, эмиссии мгновенных нейтронов деления впервые наблюдались в реакции 238 U(n, F) в [85] и впоследствии в [86] вблизи порогов реакций 238 U(n, nf) и 238 U(n, 2nf). Вариации ТКЕ вблизи порогов (n, xnf) связаны с уменьшением энергии возбуждения делящихся ядер после эмиссии предделительных нейтронов, что проявляется также в массовых распределениях осколков. Вклад реакции (n,nf) в $\sigma_{n,F}$ ²³⁹ Pu(n,F)много меньше, чем для реакции ${}^{238}{
m U}(n,F)$, поэтому этот эффект проявляется в ТКЕ 239 Pu(n, F) намного слабее. Для реакций ${}^{235}U(n, F)$ и ${}^{238}U(n, F)$ амплитуды локальных максимумов в ТКЕ сравнимы.

4.5. Множественность нейтронов

Для определения $\nu_p(E_n)$ ²³⁹Pu(n, F) использовались данные измерений [44–46], для $\nu_p(E_n)$

Рис. 26. Среднее число мгновенных нейтронов деления для ²³⁵ U(*n*, *F*). Кривые: сплошная — ²³⁵ U(*n*, *F*); точечная — ²³⁵ U(*n*, *f*); штриховая — ²³⁵ U(*n*, *nf*); дважды штрихпунктирная — ²³⁵ U(*n*, 2*nf*); штрихпунктирные — ν_{post} и ν_{pre} соответственно. Точки: ◊ — [63]; ◦ — [87]; ⊽ — [88]; △ — [89]; □ — [90]; ♦ — [91].

 235 U(n, F) — [87–91]. Парциальные множественности нейтронов $\nu_{px}(E_{nx})$ определяют относительные вклады предделительных спектров нейтронов из осколков, $S_{A+1-x}(\varepsilon, E_n)$ в $\tilde{S}_{A+1-x}(\varepsilon, E_n)$. Для вычисления $\nu_p(E_n)$ для E_n выше порога эмиссионного деления используются данные для соответствующих ядер U и Pu при низких энергиях. На рис. 25 и рис. 26 показано сравнение модельного расчета (уравнение (19)) с экспериментальными данными по множественности нейтронов. В случае реакций 239 Pu(n,F) и 235 U(n,F)парциальные вклады предделительных нейтронов не изменяют монотонной зависимости $u_p(E_n)$ выше порога эмиссионного деления, тогда как в случае реакции 232 Th(n, F) соответствующая нерегулярность вполне воспроизводится [15]. Вклады ν_{nost} и $\nu_{\rm pre}$ для 239 Pu(n,F) и 235 U(n,F) различаются, главным образом, ввиду различий $\beta_x(E_n) =$ $=\sigma_{n,xnf}/\sigma_{n,F}$. Такое выделение различных компонент множественности нейтронов обеспечивает описание формы СМНД.

ЯДЕРНАЯ ФИЗИКА том 86 № 5 2023

4.6. Анизотропия предделительных (n, xnf) нейтронов

Угловая анизотропия эмиссии нейтронов относительно пучка налетающих нейтронов в реакциях 235 U + n, 238 U + n и 239 Pu + n была обнаружена в [38] в 1972 г. Анизотропная часть дважды дифференциального спектра первого нейтрона, соответствующая возбуждениям, меньшим, либо сравнимым с барьером деления ядра 239 Pu(235 U), ярко проявляется в дважды дифференциальных эмиссионных спектрах [38, 92, 93], причем, главным образом, в анизотропии спектра эмиссии нейтронов в реакции $(n, n\gamma)^1$. Менее заметно проявляется анизотропия в эксклюзивных спектрах $(n, nf)^1$, $(n,2nf)^1$ и $(n,2n)^1$ для $E_n>12$ МэВ [42] и, как следствие, в наблюдаемых под разными углами СМНД [24]. Дважды дифференциальный эмиссионный нейтронный спектр определяется как

$$\frac{d^2\sigma(\varepsilon, E_n, \theta)}{d\varepsilon d\Omega} =$$

$$= \frac{1}{4\pi} \bigg[\nu_p(E_n, \theta) \sigma_{nF}(E_n, \theta) S(\varepsilon, E_n, \theta) +$$
(21)

Рис. 27. Дважды дифференциальный нейтронный эмиссионный спектр для $E_n = 14$ МэВ и угла 90° для реакции ²³⁹ Рu(n, F) и его парциальные составляющие. Кривые: сплошная — (n, nX); пунктирная — (n, F); штриховая — $(n, n\gamma)^1$; дважды штрихпунктирная — $(n, 2n)^1$; штриховая — $(n, 2n)^2$; штрихпунктирная — $(n, 3n)^1$; штриховая — $(n, 3n)^2$; сплошная — $(n, 3n)^3$; точечные кривые — $(n, nf)^1$, $(n, 2nf)^1$, $(n, 2nf)^2$; пунктирная — $(n, n) + (n, n\gamma)$ для дискретных уровней. Точки: \circ — [38]; \blacktriangle — [92]; \bullet — [93].

$$+ \sigma_{nn\gamma}(\varepsilon, E_n, \theta) \frac{d\sigma_{nn\gamma}^1(\varepsilon, E_n, \theta)}{d\varepsilon} + \sigma_{n2n}(\varepsilon, E_n, \theta) \times \\ \times \left(\frac{d\sigma_{n2n}^1(\varepsilon, E_n, \theta)}{d\varepsilon} + \frac{d\sigma_{n2n}^2(\varepsilon, E_n, \theta)}{d\varepsilon} \right) + \\ + \sigma_{n3n}(\varepsilon, E_n, \theta) \left(\frac{d\sigma_{n3n}^1(\varepsilon, E_n, \theta)}{d\varepsilon} + \\ + \frac{d\sigma_{n3n}^2(\varepsilon, E_n, \theta)}{d\varepsilon} + \frac{d\sigma_{n3n}^3(\varepsilon, E_n, \theta)}{d\varepsilon} \right) + \\ + \sum_q \frac{d\sigma_{nn\gamma}(\varepsilon, E_q, E_n, \theta)}{d\theta} G(\varepsilon, E_q, E_n, \Delta_{\theta}) \bigg],$$

$$G(\varepsilon, E_q, E_n, \Delta_{\theta}) = (22)$$
$$= \frac{2}{\Delta_{\theta} \sqrt{\pi}} \exp\left\{-\left[\frac{\varepsilon - (E_n - E_q)}{\Delta_{\theta}}\right]^2\right\},$$

т.е. суперпозиция нейтронов деления, эксклюзивных спектров нейтронов $(n, n\gamma)^1$, $(n, 2n)^{1,2}$ и $(n,3n)^{1,2,3}$, $\frac{d\sigma_{nxn}^k(\varepsilon, E_n, \theta)}{d\varepsilon}$, нормированных на единицу, упруго рассеянных нейтронов и неупруго рассеянных нейтронов, сопровождающихся возбуждением дискретных коллективных состояний ²³⁹Pu, $\frac{d\sigma_{nn\gamma}(\varepsilon, E_q, E_n, \theta)}{d\theta}$. Спектр мгновенных нейтронов $S(\varepsilon, E_n, \theta)$ — суперпозиция эксклюзивных спектров предделительных нейтронов $(n, nf)^1$, $(n, 2nf)^{1,2}$, $(n, 3nf)^{1,2,3}$, а также $S_{A+1-x}(\varepsilon, E_n, \theta)$ спектров нейтронов, испускаемых из осколков деления. $G(\varepsilon, E_q, E_n, \Delta_{\theta})$ — это функция разрешения, зависящая от E_n и слабо зависящая от угла эмиссии. В таком представлении эмиссионные спектры нормированы с учетом сечений реакций (n, xn) и (n, F), а также множественности мгновенных нейтронов деления.

В дважды дифференциальных эмиссионных спектрах нейтронов $^{238}\mathrm{U}+n$ для $E_n\sim1{-}3~\mathrm{M}э\mathrm{B}$ наблюдаются структуры, связанные с возбуждением коллективных уровней полосы основного

Рис. 28. Дважды дифференциальный нейтронный эмиссионный спектр для $E_n = 14$ МэВ и угла 30° для реакции ²³⁹ Ри(n, F) и его парциальные составляющие. Кривые: сплошная—(n, nX); пунктирная—(n, F); штриховая— $(n, n\gamma)^1$; дважды штрихпунктирная— $(n, 2n)^1$; штриховая— $(n, 2n)^2$; штрихпунктирная— $(n, 3n)^1$; штриховая— $(n, 3n)^2$; сплошная— $(n, 3n)^3$; точечные кривые— $(n, nf)^1$, $(n, 2nf)^1$, $(n, 2nf)^2$; пунктирная— $(n, n) + (n, n\gamma)$ для дискретных уровней. Точки: \circ —[38]; \blacktriangle —[92]; \bullet —[93].

Рис. 29. Отношение средних энергий СМНД $\langle E(\theta) \rangle / \langle E(\theta^1) \rangle$ для ²³⁹ Рu(*n*, *F*). Кривые: сплошная $-\langle E(30^\circ) / E(150^\circ) \rangle$, диапазон энергий $\varepsilon \sim 1-12$ МэВ; штриховая $-\langle E(30^\circ) \rangle / \langle E(150^\circ) \rangle$, диапазон энергий $\varepsilon \sim 0-20$ МэВ; дважды штрихпунктирная $-\langle E(30^\circ) \rangle / \langle E(150^\circ) \rangle$, диапазон энергий $\varepsilon \sim 0-20$ МэВ; дважды диприхпунктирная $-\langle E(30^\circ) \rangle / \langle E(150^\circ) \rangle$, диапазон энергий $\varepsilon \sim 0-20$ МэВ; Точки: $\bullet - [24] \langle E(30^\circ) \rangle / \langle E(150^\circ) \rangle$, диапазон энергий $\varepsilon \sim 1-12$ МэВ; $\nabla - [24] \langle E(30^\circ) \rangle / \langle E(150^\circ) \rangle$, диапазон энергий $\varepsilon \sim 1-12$ МэВ; $\nabla - [24] \langle E(30^\circ) \rangle / \langle E(150^\circ) \rangle$, диапазон энергий $\varepsilon \sim 1-3$ МэВ.

Рис. 30. Отношение средних энергий СМНД $\langle E(\theta)/E(\theta^1) \rangle$ для ²³⁵U(*n*, *F*). Кривые: сплошная — $\langle E(30^\circ) \rangle / \langle E(150^\circ) \rangle$, диапазон энергий $\varepsilon \sim 0.89-10$ МэВ; штриховая — $\langle E(30^\circ) \rangle / \langle E(150^\circ) \rangle$, диапазон энергий $\varepsilon \sim 0.89-10$ МэВ; штриховая — $\langle E(30^\circ) \rangle / \langle E(150^\circ) \rangle$, диапазон энергий $\varepsilon \sim 0.89-10$ МэВ; штриховая — $\langle E(30^\circ) \rangle / \langle E(150^\circ) \rangle$, диапазон энергий $\varepsilon \sim 0.01-10$ МэВ. Точки: $\blacktriangle = [12], \langle E(30^\circ) \rangle / \langle E(150^\circ) \rangle$, диапазон энергий $\varepsilon \sim 0.89-10$ МэВ; $\circ = [12], 0.99 \langle E(30^\circ) / E(150^\circ) \rangle$, диапазон энергий $\varepsilon \sim 0.89-10$ МэВ.

состояния $J^{\pi} = 0^+, 2^+, 4^+, 6^+, 8^+,$ а также уровней γ -ротационных полос $K^{\pi} = 0^{+}, 2^{+},$ уровней октупольной полосы $K^{\pi} = 0^{-}$ [40, 94]. При более высоких $E_n \sim 3.5 - 4.5$ МэВ прямое возбуждение этих групп уровней проявляется в виде ступенчатых структур. При $E_n \sim 6 \text{ M} \Rightarrow B$ ступенчатая структура слева от квазиупругого пика связана с прямым возбуждением уровней с $K^{\pi} =$ $= 0^+, 2^+$ и 0^- . При $E_n \sim 12-20$ МэВ возбуждение уровней с $K^{\pi} = 0^+, 2^+$ и 0^- приводит к уширению квазиупругого пика. Учет прямого возбуждения уровней с энергией возбуждения *U* ≤ 1 МэВ [40, 94-96] позволяет аппроксимировать угловую зависимость спектра эмиссии первого нейтрона, соответствующую энергии возбуждения ядер ²³⁸U, U = 1 - 6 M₃B [8, 9, 96]. На рис. 27 и рис. 28 представлено сравнение с данными [38, 92, 93] дважды дифференциальных эмиссионных спектров для $^{239}{\rm Pu}+n$ для $E_n\sim 14~{\rm M} {\rm sB},~\theta\sim 30^\circ$ и $\theta\sim$ $\sim 90^\circ$ соответственно. Эксклюзивные нейтронные спектры реакций 239 Pu $(n, nf)^1$ $(^{235}$ U $(n, nf)^1$),

 $\frac{d\sigma_{nnf}^{1}(\varepsilon, E_{n}, \theta)}{d\varepsilon}$, для различных углов эмиссии нейтрона $(n, nf)^{1}$, которые составляют только малую часть спектра нейтронов $(n, nX)^{1}$, определяют угловую зависимость относительно падающего пучка нейтронов, наблюдаемых спектров мгновенных нейтронов деления.

Угловая анизотропия мгновенных нейтронов деления относительно пучка падающих нейтронов была обнаружена в реакциях ²³⁹ Pu(n, F) [10, 11, 24] для энергий налетающих нейтронов $E_n \sim \sim 10-20$ МэВ (см. рис. 29) и ²³⁵U(n, F) [12] (см. рис. 30) для энергий налетающих нейтронов $E_n \sim 12-20$ МэВ. Отношение средних энергий экспериментальных СМНД $\langle E(\theta) \rangle / \langle E(\theta^1) \rangle$ для спектров мгновенных нейтронов деления, испущенных в переднюю ($\theta \sim 30^\circ$) и заднюю ($\theta \sim 150^\circ$) полусферы, резко растет начиная с энергии $E_n \sim 10-12$ МэВ. Причиной тому являются, главным образом, нейтронов (n, nf)¹ реакций связана с

Рис. 31. Средняя энергия СМНД $\langle E(E_n, \theta) \rangle$ для деления нейтронами ²³⁹Pu(*n*, *F*). Кривые: сплошная — $\langle E(30^\circ) \rangle$, $\varepsilon \sim 0-12$ МэВ; штриховая — $\langle E(150^\circ) \rangle$, $\varepsilon \sim 0-12$ МэВ; сплошная (1) — $\langle E(30^\circ) \rangle$, $\varepsilon \sim 0-20$ МэВ; штриховая — $\langle E(150^\circ) \rangle$, $\varepsilon \sim 0-20$ МэВ; триховая — $\langle E(150^\circ) \rangle$, $\varepsilon \sim 0-20$ МэВ. Точки: $\circ - \langle E(30^\circ) \rangle$ [10]; $\nabla - \langle E(90^\circ) \rangle$ [10]; $\Box - \langle E(150^\circ) \rangle$ [10].

предравновесным/полупрямым механизмом эмиссии первого нейтрона реакции $(n, nX)^1$ (уравнения (11)-(13)), при этом соответствующая энергия возбуждения остаточного ядра ²³⁹Pu(²³⁵U) будет иметь величину порядка 1-6 МэВ. Абсолютный выход $(n, nf)^1$ нейтронов определяется при согласованном описании сечений реакций (n, F) и (n, xn) и анизотропных эмиссионных нейтронных спектров. Отношение средних энергий эксклюзивных нейтронных спектров реакции ²³⁹ Pu $(n, nf)^1$, $\frac{d\sigma_{nnf}^1(\varepsilon, E_n, \theta \approx 30^\circ)}{d\varepsilon}$ и $\frac{d\sigma_{nnf}^1(\varepsilon, E_n, \theta \approx 150^\circ)}{d\varepsilon}$, намного выше по абсолютной величине, но повторяет форму отношения средних энергий экспериментальных СМНД $\langle E(\theta \approx 30^\circ) \rangle / \langle E(\theta^1 \approx 150^\circ) \rangle$ [24]. В отношении средних энергий эксклюзивных нейтронных спектров реакции ²³⁹Pu(n, 3nf)¹, $\frac{d\sigma_{n3nf}^{1}(\varepsilon, E_{n}, \theta \approx 30^{\circ})}{d\varepsilon}$ и $\frac{d\sigma_{n3nf}^{1}(\varepsilon, E_{n}, \theta \approx 150^{\circ})}{d\varepsilon}$, $d\varepsilon$ угловой зависимости нет.

Угловая зависимость энергии первого предделительного нейтрона в реакциях $(n, nf)^1$ и $(n, 2nf)^1$ позволяет интерпретировать экспериментальную зависимость отношения средних энергий СМНД для эмиссии ²³⁹Pu $(n, xnf)^{1,2,3}$ и ²³⁵U $(n, xnf)^{1,2,3}$ нейтронов и нейтронов из соответствующих осколков деления, для эмиссии "вперед" и "назад" [10, 11, 24] (см. рис. 29 и рис. 30).

Расчетное $\langle E(30^\circ) \rangle / \langle E(150^\circ) \rangle$ отношение для 235 U(n, F) несколько выше, чем в случае 239 Pu(*n*, *F*), что вполне согласуется с более высоким относительным вкладом реакции 235 U(n, nf)в наблюдаемое сечение деления 235 U(n, F). Для диапазонов регистрации мгновенных нейтронов $\varepsilon \sim$ $\sim 1-12$ МэВ и $\varepsilon \sim 0-20$ МэВ, как видно на рис. 29, расчетные величины $\langle E(30^\circ) \rangle / \langle E(150^\circ) \rangle$ вполне воспроизводят экспериментальную зависимость для 239 Pu(n, F) при $E_n < 17$ МэВ. Для диапазонов регистрации мгновенных нейтронов $\varepsilon \sim 1-$ 12 МэВ и $\varepsilon \sim 0-20$ МэВ, как видно на рис. 30, расчетная величина $\langle E(30^\circ) \rangle / \langle E(150^\circ) \rangle$ вполне воспроизводит экспериментальную зависимость для 235 U(n, F) при $E_n < 16$ МэВ. Данные [12] для реакции 235 U(*n*, *F*) показаны также умноженными

Рис. 32. Отношение средних энергий СМНД $\langle E(\theta) \rangle / \langle E(\theta^1) \rangle$ для ²³⁹ Рu(*n*, *F*). Кривые: сплошная — $\langle E(30^\circ) \rangle / \langle E(150^\circ) \rangle^{239}$ Рu(*n*, *F*), диапазон энергий $\varepsilon \sim 1-12$ МэВ; дважды штрихпунктирная — $\langle E(30^\circ) \rangle / \langle E(150^\circ) \rangle$, диапазон энергий $\varepsilon \sim 1-3$ МэВ; штриховая — $\langle E(30^\circ) \rangle / \langle E(150^\circ) \rangle$, диапазон энергий $\varepsilon \sim 0-20$ МэВ; точечная — $\langle E(30^\circ) \rangle / \langle E(150^\circ) \rangle$, диапазон энергий $\varepsilon \sim 0-12$ МэВ и $\varepsilon \sim 0-10$ МэВ соответственно. Точки: • [24] $\langle E(30^\circ) \rangle / \langle E(150^\circ) \rangle$, диапазон энергий $\varepsilon \sim 1-3$ МэВ; $\nabla - [24] \langle E(30^\circ) \rangle / \langle E(150^\circ) \rangle$, диапазон энергий $\varepsilon \sim 1-3$ МэВ; $\Box - [10] \langle E(30^\circ) / E(150^\circ) \rangle$, диапазон энергий $\varepsilon \sim 0-12$ МэВ.

на нормировочный фактор 0.99, в результате достигается согласие экспериментальных и расчетных величин как по форме, так и по абсолютной величине. Расчетные величины отношений $\langle E(30^\circ) \rangle / \langle E(150^\circ) \rangle$ практически не зависят от нижнего порога регистрации нейтронов, но критически зависят от углов регистрации мгновенных нейтронов деления и верхней границы диапазона регистрации нейтронов СМНД, что иллюстрируется на рис. 29 и рис. 30 для отношений средних энергий $\langle E(30^\circ) \rangle / \langle E(150^\circ) \rangle$ и $\langle E(60^\circ) \rangle / \langle E(90^\circ) \rangle$.

На рис. 31 и рис. 32 показаны и абсолютные значения $\langle E(\theta) \rangle$ для эмиссии МНД "вперед" и "назад" для реакции ²³⁹Pu(n, F). Следует отметить, что отношения СМНД $\langle S(\varepsilon, E_n, \theta) \rangle_{\Delta E_n} / \langle S(\varepsilon, E_n, \theta^1) \rangle_{\Delta E_n}$ в [24] определялись для широкого интервала энергий $\Delta E_n \sim 15-17.5$ МэВ, кроме того СМНД в [24], измеренные относительно падающего пучка нейтронов под различными углами θ , нормировались к одинаковому числу

делений. Отношения СМНД $\langle S(\varepsilon, E_n, \theta) \rangle_{\Delta E_n} /$ $\left\langle S(arepsilon,E_n, heta^1)
ight
angle_{\Delta E_n}$ для эмиссии нейтронов деления в переднюю и заднюю полусферы [24] в этом интервале энергий ΔE_n в нашей модели вполне воспроизводятся [9, 40, 94]. При *E_n* > 17 МэВ для расчетного отношения $\langle E(30^\circ) \rangle / \langle E(150^\circ) \rangle$ резкий рост для диапазона энергий $\varepsilon \sim 0-20$ МэВ сменяется спадом для $\varepsilon \sim 1 - 12$ МэВ. Для 235 U(n, F)(см. рис. 28) при $E_n > 16$ МэВ спад $\langle E(30^\circ) \rangle / \langle E(150^\circ) \rangle$ такой же природы имеет место как для диапазона $\varepsilon \sim 0.89 - 10$ МэВ, так и для диапазона $\varepsilon \sim 0.01 - 10$ 10 МэВ. Для диапазона $\varepsilon \sim 1-12$ МэВ исчезают признаки влияния нейтронов 239 Pu $(n, 2nf)^{1,2}$ на абсолютные значения $\langle E(30^\circ) \rangle$ и $\langle E(150^\circ) \rangle$. Признаки влияния нейтронов ${}^{235}\text{U}(n,2nf)^{1,2}$ для диапазона $\varepsilon \sim 0.89 - 10$ МэВ на абсолютные значения $\langle E(\theta) \rangle$ существенно подавлены, в $\langle E(30^\circ) \rangle$ и $\langle E(150^{\circ}) \rangle$ они проявляются много слабее, чем в $\langle E \rangle$ для диапазона $\varepsilon \sim 0.01 - 10$ МэВ (см. рис. 22).

В работе [10] средние энергии СМНД

Рис. 33. Средняя энергия СМНД $\langle E \rangle$ для деления нейтронами ²⁴⁰ Ри(*n*, *F*). Кривые: сплошная — диапазон энергий $\varepsilon \sim 1-10$ МэВ; штриховая — диапазон энергий $\varepsilon \sim 0.89-10$ МэВ; штрихпунктирная — ENDF/B-VIII.0 [48], диапазон энергий $\varepsilon \sim 1-10$ МэВ; дважды штрихпунктирная — JENDL-4.0 [67]; точечная — JEFF-3.3 [49], диапазон энергий $\varepsilon \sim 1-10$ МэВ. • — [97].

²³⁹Pu(n, F) $\langle E(\theta) \rangle$ и их отношения $\langle E(\theta) \rangle / \langle E(\theta^1) \rangle$ определялись для сравнительно широкого диапазона энергий $\varepsilon \sim 0-12(15)$ МэВ. На рис. 21 представлены расчетные значения $\langle E(30^{\circ}) \rangle$ и $(E(150^{\circ}))$ для $\varepsilon \sim 0.01 - 10$ МэВ. Угловая зависимость эмиссии предделительных нейтронов приводит к вариациям $\langle E(\theta) \rangle$ относительно $\langle E \rangle$, не превышающим $\Delta \langle E(\theta) \rangle / \langle E(\theta) \rangle \sim 5\%$. Очевидно, что отношение средних энергий СМНД $\langle E \rangle$, равно как и их абсолютные значения, зависит от интервала усреднения. На рис. 31 представлены величины $\langle E(30^\circ) \rangle$, $\langle E(90^\circ) \rangle$ и $\langle E(150^\circ) \rangle$ для диапазонов СМНД $\varepsilon \sim 0-12$ МэВ и $\varepsilon \sim$ $\sim 0.01 - 10 \text{ МэВ.}$ Расчетная величина $\langle E(30^\circ) \rangle$ для диапазона $\varepsilon \sim 0-12$ МэВ согласуется с данными [10]. Для диапазона $\varepsilon \sim 0-10$ МэВ расчетная величина $\langle E(150^\circ)
angle$ не согласуется с данными [10] в интервале $15 < E_n < 20$ МэВ. В этом заключается противоречие между данными [10] и [11, 24], что может быть связано с погрешностями эффективности регистрации нейтронов в детекторах, однако расчетная величина $\langle E(150^\circ) \rangle$ для диапазона $\varepsilon \sim$

ЯДЕРНАЯ ФИЗИКА том 86 № 5 2023

 $\sim 0-12$ МэВ согласуется с данными [10] для $\langle E(150^{\circ})\rangle$. Расчетное отношение средних энергий $\langle E(30^{\circ})/E(150^{\circ})\rangle$ зависит от диапазонов регистрации энергий нейтронов ε и может быть существенно выше измеренного отношения $\langle E(30^{\circ})/E(150^{\circ})\rangle$ [24] (см. рис. 32).

Измерения СМНД в корреляции с легким/тяжелым осколком деления в дважды времяпролетной методике [10–12] едва ли возможны. Для реакций ²³⁵U($n_{\rm th}$, f) и ²³⁹Pu($n_{\rm th}$, f) они были выполнены в работах [95, 96]. В таком эксперименте была получена оценка вклада "разрывных" нейтронов, испускаемых в течение эволюции делящегося ядра до момента разрыва. Оценки вкладов и средних энергий таких нейтронов в [68, 69] варьируются от ~1.8% и 0.47 МэВ (²³⁵U(n, F)) до ~3.6% и 0.91 МэВ (²³⁹Pu(n, F)). Для реакции ²³⁵U(n, F) при $E_n \sim 7$ МэВ средняя энергия предделительных нейтронов $\langle E_{nnf1} \rangle \sim 0.5$ МэВ, а их доля достигает ~10%. Для реакции ²³⁹Pu(n, F) средняя энергия предделительных (n, nf)¹ нейтронов $\langle E_{nnf1} \rangle \sim$ МАСЛОВ

Рис. 34. Средняя энергия СМНД $\langle E \rangle$ для деления нейтронами ²³⁸U(*n*, *F*). Кривые: штриховая — диапазон энергий $\varepsilon \sim 0.01-10$ МэВ; сплошная — [19], диапазон энергий $\varepsilon \sim 0-20$ МэВ; • — [97], диапазон энергий $\varepsilon \sim 0.01-10$ МэВ. Остальные обозначения экспериментальных данных см. на рис. 2 в [19].

 $\sim 0.5~{\rm M} \Rightarrow {\rm B}$, а их доля не превышает $\sim 6\%$. Полагая, что доля "разрывных" нейтронов не зависит от энергии возбуждения, можно учесть их вклад в СМНД простым суммированием с СМНД и последующей перенормировкой (см. рис. 13 и рис. 14). Подобный учет "разрывных" нейтронов, несколько улучшая описание СМНД в области относительного максимума вклада предделительных нейтронов, существенно ухудшает описание СМНД для реакции $^{239}{\rm Pu}(n,F)$ в области $\varepsilon > E_{nnf1}$. Очевидно, для реакций $^{235}{\rm U}(n,F)$ и $^{239}{\rm Pu}(n,F)$ при $E_n \sim ~7~{\rm M} \Rightarrow {\rm B}$ выделить "разрывные" нейтроны сравнением расчетных и измеренных дифференциальных СМНД едва ли возможно.

Влияние угловой анизотропии осколков деления для делящихся ядер (A + 1 - x) на анизотропию мгновенных нейтронов деления для рассматриваемых энергий возбуждения вполне возможно. Максимальной угловая анизотропия осколков деления будет для четно-четных делящихся ядер ²³⁶U и ²⁴⁰Pu при минимальной энергии возбуждения, поэтому влияние анизотропии осколков деления на угловую зависимость выхода мгновенных нейтронов деления относительно падающего пучка для рассматриваемых реакций и энергий возбуждения невелико, либо усредняется.

5. ЗАКЛЮЧЕНИЕ

Анализ наблюдаемых спектров мгновенных нейтронов деления для реакций 235 U(n, F) и 239 Pu(*n*, *F*) показал, что для целого ряда структур можно установить корреляцию с влиянием предделительных $(n, xnf)^{1,...x}$ нейтронных спектров. Установлена корреляция между формой спектра МНД при различных Е_n и вкладами эмиссионного деления в наблюдаемые сечения деления для реакций 239 Pu(n, F) и 235 U(n, F). Выделены парциальные компоненты наблюдаемых СМНД, обусловленные реакциями (n, f) и (n, xnf). Спектры предделительных нейтронов оказались довольно мягкими, по сравнению с нейтронами, испускаемыми возбужденными осколками деления. Это приводит к тому, что средняя энергия СМНД уменьшается вблизи порогов реакций (n, xnf), для реакций 239 Pu(n, F) и 235 U(n, F) теоретические расчеты и экспериментальные данные хорошо согласуются.

Рис. 35. Парциальные составляющие спектра мгновенных нейтронов деления ²³⁸ U(n, F) при $E_n \sim 7.5$ МэВ относительно спектра Максвелла с T = 1.34933 МэВ. Кривые: сплошная — [19, 95], $E_n = 7.0$ МэВ; дважды штрихпунктирная — [19, 95], $E_n = 7.5$ МэВ. Точки: • — [97]; • — (n, nf) [97]; • — [74]; численные данные для расчетных СМНД и сечения деления ²³⁸ U(n, F) — [95]. Остальные обозначения экспериментальных данных см. на рис. 2 в [19].

Амплитуда вариаций $\langle E \rangle$ СМНД для ²³⁹ Pu(n, F) намного ниже, чем в случае реакции ²³⁵U(n, F). Это обстоятельство связано с различием вкладов эмиссионного деления в наблюдаемые сечения деления для реакций ²³⁹Pu(n, F) и ²³⁵U(n, F). Показано, что угловая анизотропия эксклюзивных спектров нейтронов реакций $(n, nf)^1$ и $(n, 2nf)^1$ существенно влияет на наблюдаемые СМНД и их средние энергии. Отношение средних энергий СМНД $\langle E \rangle$ для эмиссии предделительных нейтронов в реакциях ²³⁵U(n, xnf) и ²³⁹Pu(n, xnf) "вперед" и "назад" хорошо согласуется с экспериментальными данными.

Применение аналогичного подхода для предсказания спектров и средних энергий СМНД $\langle E \rangle$ для, например, ²⁴⁰Pu(n, F), оказывается весьма эффективным. Очевидно, требуется только фиксация параметров для СМНД реакции ²⁴⁰Pu(n, f), остальные параметры определены при описании наблюдаемых СМНД для реакции ²³⁹Pu(n, F). Измерения СМНД для реакции ²⁴⁰Pu(n, F) были анонсированы в [13], и уже в [97] были представ-

ЯДЕРНАЯ ФИЗИКА том 86 № 5 2023

лены предварительные значения средних энергий $\langle E \rangle$ для диапазона энергий СМНД $\varepsilon \sim 1-10$ МэВ. Как известно, индикаторы влияния предделительных нейтронов на $\langle E
angle$ при таком ограничении диапазона энергий є сохраняются. Детальный анализ имеющихся данных по СМНД для 240 Pu(sf) и ТКЕ ²⁴⁰Ри(n, F) для $E_n \sim 1-20$ МэВ и $\varepsilon \sim 0-20$ МэВ представлен в [98]. Абсолютная величина $\langle E \rangle$ чувствительна к нижней границе диапазона энергий СМНД є, а энергетическая зависимость $\langle E \rangle (E_n)$ от нее практически не зависит. Средние энергии $\langle E \rangle^{240}$ Ри(n,F) для диапазона $\varepsilon \sim 1-$ 10 МэВ (они определены для $\varepsilon \sim 0-20$ МэВ в [98]), показанные на рис. 33, согласуются с измеренными данными [97]. Амплитуда вариаций (Е) СМНД для 240 Pu(*n*, *F*) намного выше, чем в случае реакции 239 Pu(n, F), она, очевидно, сравнима с наблюдающейся амплитудой вариаций $\langle E \rangle$ для реакций 235 U(n, F) и 238 U(n, F).

Для 238 U(n, F) средние энергии $\langle E \rangle$ в диапазоне $\varepsilon \sim 0.01-10$ МэВ [97] (см. рис. 32), за исключением интервала $E_n \sim 8-11$ МэВ, согласуются с

Рис. 36. Парциальные составляющие спектра мгновенных нейтронов деления ²³⁸ U(*n*, *F*) при $E_n \sim 7.5$ МэВ относительно спектра Максвелла с T = 1.34933 МэВ. Кривые: сплошная — [19, 95], $E_n = 7.0$ МэВ; дважды штрихпунктирная — [19, 95], $E_n = 7.5$ МэВ. Точки: ○ — [74]; ⊽ — [99]; ▼ — (*n*, *nf*) [99]; • — [97]; ◦ — (*n*, *nf*) [97]; численные данные для расчетных СМНД и сечения деления ²³⁸ U(*n*, *F*) — [95].

оценкой $\langle E \rangle$ [15, 19, 72, 95], опубликованной в 2001–2008 гг. Рисунок 34 — это рис. 2 из работы [19] 2008 г. с добавленными данными [97] 2022 г. Устранить разногласия между расчетами и измеренными данными в интервале $E_n \sim 8-11$ МэВ удается с помощью описанной выше процедуры уменьшения кинетической энергии осколков $E_F^{\rm pre}$ [8, 9]. Сравнение рис. 33 и рис. 34 показывает, что влияние спектров нейтронов $(n, 2nf)^{1,2}$ на $\langle E \rangle$ СМНД для ²⁴⁰Pu(n, F) проявляется слабее, чем в случае реакции ²³⁸U(n, F).

Сравнение СМНД ²³⁸ U(n, F) для $E_n \sim 7.5$ МэВ с данными [74, 97] представлено на рис. 35. Это дополненная версия рис. 8 из [19] с СМНД ²³⁸ U(n, F) для $E_n \sim 7$ МэВ с добавленными расчетами и измеренными данными [97] для $E_n \sim 7.5$ МэВ и расчетами [19, 72, 95]. Числовые данные для СМНД были представлены в файле оцененных нейтронных данных ²³⁸U [72] для $E_n \sim E_{\rm th} - 20$ МэВ в 2005 г. Очевидно, что и для $E_n \sim 7.5$ МэВ расчетный СМНД воспроизводит форму спектра вблизи граничной энергии $(n, nf)^1$ нейтрона E_{nnf1} . Гра-

ничные энергии E_{nnf1} в [97] и [74] согласуются с расчетом [19, 72, 95]. В данных [99] величина E_{nnf1} завышена относительно данных [97, 74] и расчетов на ~0.5 МэВ. Интегральный вклад эксклюзивных предделительных нейтронов в спектр СМНД равен ${\sim}13\%$ для $E_n {\sim}7$ МэВ и ${\sim}14\%$ для $E_n\sim 7.5$ МэВ. Вклады реакций $^{238}{\rm U}(n,nf)$ в наблюдаемые СМНД при $E_n\sim 7.5$ МэВ и $E_n\sim$ $\sim 7~{
m M}$ эВ существенно различаются ввиду различий форм спектров эксклюзивных нейтронов 238 U $(n, nf)^{1}$, это следствие вариаций конкуренции реакций $(n, nf)^1$, $(n, n\gamma)^1$, $(n, 2n)^1$ и $(n, 2n)^2$, существенно влияющих на форму СМНД. Влияние предделительных нейтронов на спектры мгновенных нейтронов из осколков деления ядер ²³⁸U намного сильнее, чем в случае ядер-мишеней $^{235}{
m U}$ и ²³⁹Ри, на рис. 36 видно, также, что СМНД из осколков деления ²³⁹U много жестче, чем СМНД из осколков деления ²³⁸U.

Таким образом, можно утверждать, что корректная оценка предделительных $(n, xnf)^{1,\dots x}$ нейтронных спектров, эксклюзивных нейтрон-

599

ных спектров реакций $(n, uxn)^{1,...x}$, парциальных вкладов эмиссионного деления в сечение деления, СМНД и ТКЕ для осколков и продуктов деления, моделирование спектров нейтронов из осколков деления позволяет предсказать СМНД 239 Ри(n, uF) и 235 U(n, uF) и выделить вклады реакций ²³⁹Pu(n, uxnf) и ²³⁵U(n, xnf) в СМНД для любых энергий возбуждения в интервале энергий $E_n \sim E_{\rm th} - 20$ МэВ. Интерпретация и предсказание результатов измерений СМНД и средних энергий $\langle E \rangle$ 2022 г. [97] для реакций 238 U(n,F) (в 2005 г.) и 240 Pu(n,F), а также СМНД для 238 U(n, F) при $E_n \sim 7.5$ МэВ — это свидетельство адекватности представленного в данной работе подхода. Предсказание СМНД для $E_n \sim E_{\rm th} - 20$ МэВ для ²³⁸U(n, F) и ²⁴⁰Pu(n, F) выглядит вполне реалистичным, в отличие от мето-дов анализа СМНД для ²³⁹Pu(n, F), изложенных в [100, 101], где явно не выделены парциальные вклады эмиссионного деления в наблюдаемые спектры мгновенных нейтронов деления, сечения деления и сопутствующие функционалы.

СПИСОК ЛИТЕРАТУРЫ

- R. Capote, V. Maslov, E. Bauge, T. Ohsawa, A. Vorobyev, M. B. Chadwick, and S. Oberstedt, INDC(NDS)-0541 (Vienna, 2009); https://www-nds.iaea.org/publications/indc/indcnds-0541.pdf
- В. М. Маслов, Н. А. Тетерева, В. Г. Проняев, А. Б. Кагаленко, К. И. Золотарев, Р. Капоте, Т. Гранье, Б. Мориллон, Ф.-Й. Хамбш, Ж.-К. Сабле, Ат. энергия 108, 352 (2010); https://j-atomicenergy.ru/index.php/ae/article/ download/1435/1416; https://link.springer.com/article/10.1007/s10512-010-9313-0
- V. M. Maslov, N. A. Tetereva, V. G. Pronyaev, A. B. Kagalenko, R. Capote, T. Granier, B. Morillon, and J.-C. Sublet, J. Korean Phys. Soc. 59, 1337 (2011); https://www.jkps.or.kr/journal/download

pdf.php?doi=10.3938/jkps.59.1337

4. В. М. Маслов, Г. Н. Мантуров, В. Н. Кощеев, В. Г. Проняев, Н. А. Тетерева, в Сборнике тезисов докладов "61-я Международная конференция "Ядро-2011" по проблемам ядерной спектроскопии и структуре атомного ядра, 10–14 октября 2011, Саров, Россия; https://inis.iaea.org/collection/NCLCollec-

tionStore/Public/44/118/44118032.pdf

5. International Co-operation in Nuclear Data Evaluation: An Extended Summary of the Collaborative International Evaluated Library Organization (CIELO) Pilot Project, Nuclear

ЯДЕРНАЯ ФИЗИКА том 86 № 5 2023

Science, NEA No. 7498, 2019; https://www.oecd-nea.org/upload/docs/ application/pdf/2019-12/7498-cielo.pdf

- K. J. Kelly, J. A. Gomez, J. M. O'Donnell, M. Devlin, R. C. Haight, T. N. Taddeucci, S. M. Mosby, H. Y. Lee, D. Neudecker, T. Kawano, A. E. Lovell, P. Talou, M. C. White, C. Y. Wu, R. Henderson, J. Henderson, and M. Q. Buckner, EPJ Web Conf. 239, 05010 (2020); https://doi.org/10.1051/epjconf/202023905010
- M. Devlin, J. A. Gomez, K. J. Kelly, J. M. O'Donnell, R. C. Haight, T. N. Taddeucci, D. Neudecker, C. Y. Wu, J. Henderson, M. C. White, B. Bucher, Q. Buckner, H. Y. Lee, S. M. Mosby, J. L. Ullmann, R. A. Henderson, and N. Fotiades, EPJ Web Conf. 239, 01003 (2020);

https://doi.org/10.1051/epjconf/202023901003

- V. М. Maslov, в Сборнике тезисов докладов LXXII Международной конференции "Ядро-2022, Фундаментальные вопросы и приложения", 11–16 июля 2022, Москва, Россия; р. 111; https://events.sinp.msu.ru/event/8/attachments/ 181/875nucleus-2022-book-of-abstracts-www.pdf
- V. M. Maslov, https://events.sinp.msu.ru/event/8/ contributions/586/attachments/568/881/ mvmNucl2022%2B.pdf
- P. Marini, J. Taieb, B. Laurent, G. Belier, A. Chatillon, D. Etasse, P. Morfouace, M. Devlin, J. A. Gomez, R. C. Haight, K. J. Kelly, J. M. O'Donnell, and K. T. Schmitt, Phys. Rev. C 101, 044614 (2020); https://doi.org/10.1103/PhysRevC.101.044614; http://www-nds.iaea.org/EXFOR/14684.005
- K. J. Kelly, M. Devlin, J. M. O'Donnell, J. A. Gomez, D. Neudecker, R. C. Haight, T. N. Taddeucci, S. M. Mosby, H. Y. Lee, C. Y. Wu, R. Henderson, P. Talou, T. Kawano, A. E. Lovell, M. C. White, J. L. Ullmann, *et al.*, Phys. Rev. C **102**, 034615 (2020); https://doi.org/10.1103/PhysRevC.102.034615;

http://www-nds.iaea.org/EXFOR/14682.004

- K. J. Kelly, J. A. Gomez, M. Devlin, J. M. O'Donnell, D. Neudecker, A. E. Lovell, R. C. Haight, C. Y. Wu, R. Henderson, T. Kawano, E. A. Bennett, S. M. Mosby, J. L. Ullmann, N. Fotiades, J. Henderson, T. N. Taddeucci, H. Y. Lee, *et al.*, Phys. Rev. C **105**, 044615 (2022); https://journals.aps.org/prc/abstract/10.1103/ PhysRevC.105.044615
- M. Devlin, E. A. Bennett, M. Q. Buckner, N. Fotiades, J. A. Gomez, R. C. Haight, R. Henderson, K. J. Kelly, D. Neudecker, J. M. O'Donnell, and J. L. Ullmann, in Proceedings of the International Conference Nuclear Data for Science and Technology, 24–29 July 2022, Sacramento, USA;

https://indico.frib.msu.edu/event/52/contributions/616/attachments/491/2023/Devlin-ND2022.pdf

- V. M. Maslov, Yu. V. Porodzinskij, M. Baba, A. Hasegawa, N. V. Kornilov, A. B. Kagalenko, and N. A. Tetereva, Eur. Phys. J. A 18, 93 (2003); https://epja.epj.org/articles/epja/abs/2003/09/ 10050_2003_Article_1004110050_2003_Article _10041.html
- V. M. Maslov, Yu. V. Porodzinskij, M. Baba, A. Hasegawa, N. V. Kornilov, A. B. Kagalenko, and N. A. Tetereva, Phys. Rev. C 69, 034607 (2004); https://journals.aps.org/prc/abstract/ 10.1103/PhysRevC.69.034607
- 16. V. M. Maslov, N. V. Kornilov, A. B. Kagalenko, and N. A. Tetereva, Nucl. Phys. A 760, 274 (2005); https://www.sciencedirect.com/science/article/ abs/pii/S0375947405009334; https://www-nds.iaea.org/minskact/ data/92235f18.txt
- В. М. Маслов, ВАНТ. Сер. Физика ядерных реакторов, вып. 2, 33 (2006); http://vniief.ru/wps/wcm/connect/vniief/site/ publishing/publications/nuclearreactor/ y2006/y2-2006/vipusk2_2006
- В. М. Маслов, Ат. энергия 103, 119 (2007); http://elib.biblioatom.ru/text/atomnaya-energiya t103-2_2007/go,39/; https://link.springer.com/article/10.1007/s10512-007-0101-4
- В. М. Маслов, ЯФ 71, 11 (2008); https://www.elibrary.ru/item.asp?id=9591067, https://www.elibrary.ru/download/elibrary _9591067_50309884.pdf; https://link.springer.com/article/10.1134/ S106377880801002X?
- K. Meierbachtol, F. Tovesson, D. L. Duke, V. Geppert-Kleinrath, B. Manning, R. Meharchand, S. Mosby, and D. Shields, Phys. Rev. C 94, 034611(2016); https://journals.aps.org/prc/abstract/10.1103/ PhysRevC.94.034611
- A. Chemey, A. Pica, Liangyu Yao, W. Loveland, Hye Young Lee, and S. A. Kuvin, Eur. Phys. J. A 56, 297 (2020); https://epja.epj.org/articles/epja/abs/2020/11/ 100502020_Article_295/10050_2020_Article_295. html
- D. L. Duke, F. Tovesson, T. Brys, V. Geppert-Kleinrath, F.-J. Hambsch, A. Laptev, R. Meharchand, B. Manning, D. Mayorov, K. Meierbachtol, S. Mosby, B. Perdue, D. Richman, D. Shields, and M. Vidali, in *Proceedings of the International Conference Nuclear Data for Science and Technology (ND2016)*, 11–16 September 2016, Bruges, Belgium, Ed. by

A. Plompen, F.-J. Hambsch, P. Schillebeeckx, W. Mondelaers, J. Heyse, S. Kopecky, P. Siegler, and S. Oberstedt (2017), p. 04042; EPJ Web Conf. **146**, 04042 (2017);

https://www.epj-conferences.org/articles/epjconf/abs/2017/15/epjconf-nd2016_04042/epjconf-nd2016_04042.html

- 23. F. Tovesson, D. Duke, V. Geppert-Kleinrath, B. Manning, D. Mayorov, S. Mosby, and K. Schmitt, EPJ Web Conf. 169, 00024 (2018); https://www.epjconferences.org/ articles/epjconf/abs/2018/04/epjconf_theory 42018 00024/epjconf theory42018 00024.html
- 24. K. J. Kelly, T. Kawano, J. M. O'Donnell, J. A. Gomez, M. Devlin, D. Neudecker, P. Talou, A. E. Lovell, M. C. White, R. C. Haight, T. N. Taddeucci, S. M. Mosby, H. Y. Lee, C. Y. Wu, R. Henderson, J. Henderson, and M. Q. Buckner, Phys. Rev. Lett. **122**, 072503 (2019); https://journals.aps.org/prl/abstract/10.1103/ PhysRevLett.122.072503
- 25. K. J. Kelly, M. Devlin, J. A. Gomez, J. M. O'Donnell, T. N. Taddeucci, R. C. Haight, D. Neudecker, M. C. White, P. Talou, S. M. Mosby, H. Y. Lee, T. Kawano, C. Y. Wu, J. Henderson, and R. A. Henderson, LA-UR-18-30526 (2018); https://indico.bnl.gov/event/5067/contributions/ 24813/attachments/20664/27761/FINAL_ CSEWG_2018_KJKelly-Devlin.pdf
- 26. Б. И. Старостов, В. Н. Нефедов, А. А. Бойцов, ВАНТ. Сер. Ядерные константы, вып. 3, 16 (1985); INDC(CCP)-0252; https://www-nds.iaea.org/publications/indc/indcccp-0252.pdf; https://www-nds.iaea.org/EXFOR/40930.001
- 27. В. Н. Нефедов, Б. И. Старостов, А. А. Бойцов, в сб. Нейтронная физика, 6-я Всесоюзная конференция по нейтронной физике, 2–16 октября 1983, Киев, т. 2, с. 285; INDC(CCP)-0457; https://www-nds.iaea.org/publications/indc/indcccp-0457.pdf; https://www-nds.iaea.org/EXFOR/40930.001
- Б. И. Старостов, В. Н. Нефедов, А. А. Бойцов, в сб. Нейтронная физика, 6-я Всесоюзная конференция по нейтронной физике, 2–16 октября 1983, Киев, т. 2, с. 290; INDC(CCP)-0458; https://www-nds.iaea.org/publications/indc/indcccp-0458.pdf; https://www-nds.iaea.org/EXFOR/40930.001
- 29. А. А. Бойцов, А. Ф. Семенов, Б. И Старостов, в сб. Нейтронная физика, 6-я Всесоюзная конференция по нейтронной физике, 2–16 октября 1983, Киев, т. 2, с. 294; INDC(ССР)-0458;

ЯДЕРНАЯ ФИЗИКА том 86 № 5 2023

600

https://www-nds.iaea.org/publications/indc/indcccp-0459.pdf; https://www-nds.iaea.org/EXFOR/40930.001

- А. С. Воробьев, О. А. Щербаков, ВАНТ. Сер. Ядерные константы, вып. 2, 52 (2016); https://vant.ippe.ru/year2016/2/neutronconstants/1158-4.html; https://www-nds.iaea.org/EXFOR/41611.001
- А. С. Воробьев, О. А. Щербаков, ВАНТ. Сер. Ядерные константы, вып. 1–2, 37 (2011–2012); https://vant.ippe.ru/year2011-2012/neutronconstants/522-4.html; https://www-nds.iaea.org/EXFOR/41597.001
- H. B. Корнилов, А. Б. Кагаленко, F.-J. Hambsch, ЯФ 62, 173 (1999); https://inis.iaea.org/search/searchsinglerecord. aspx?recordsFor=SingleRecord&RN=31015802
- 33. B. E. Watt, Phys. Rev. 87, 1037 (1952); https://journals.aps.org/pr/abstract/10.1103/ PhysRev.87.1037
- 34. Fission neutron Spectra of Uranium-235, NEA, NEA/WEC-9, OECD, 2003.
- D. G. Madland and A. C. Kahler, Nucl. Phys. A 957, 289 (2017); https://www.sciencedirect.com/science/article/pii/ S037594741630238X
- 36. D. Hilscher and H. Rossner, Ann. Phys. (France) 17, 471 (1992); https://www.annphys.org/articles/anphys/abs/ 1992/06/anphys_1992__17_6_471_0/anphys 1992 17 6 471 0.html
- 37. M. Uhl and B. Strohmaier, IRK-76/01, IRK (Vienna, 1976).
- 38. J. L. Kammerdiener, Neutron Spectra Emitted by ²³⁹Pu, ²³⁸U, ²³⁵U, Fe, Nb, Ni, Al, and C Irradiated by 14 MeV Neutrons, UCRL-51232 (1972); https://inis.iaea.org/collection/NCLCollection-Store/_Public/04/042/4042186.pdf; https://www-nds.iaea.org/EXFOR/14329.001
- 39. M. Baba, H. Wakabayashi, N. Ito, K. Maeda, and N. Hirakawa, J. Nucl. Sci. Technol. 27, 601 (1990); https://www.tandfonline.com/doi/abs/ 10.1080/18811248.1990.9731229
- V. M. Maslov, Yu.V. Porodzinskij, N. A. Tetereva, M. Baba, and A. Hasegawa, Nucl. Phys. A 764, 212 (2006); https://www.sciencedirect.com/science/article/ abs/pii/S0375947405011371
- 41. M. Dupuis, S. Hilaire, S. Péru, E. Bauge, M. Kerveno, P. Dessagne, and G. Henning, EPJ Web Conf. 146, 12002 (2017); https://www.epj-conferences.org/articles/epjconf/ abs/2017/15/epjconf-nd2016_12002/epjconfnd2016_12002.html

- 42. V. M. Maslov, in Book of Abstracts of 28th International Seminar on Interactions of Neutrons with Nuclei, 24–28 May 2021, Dubna, Russia, p. 113; http://isinn.jinr.ru/past-isinns/isinn28/ ISINN28%20 Abstract%20 Book.pdf
- 43. D. Madland, Nucl. Phys. A **772**, 113 (2006); https://www.sciencedirect.com/science/article/ abs/pii/S0375947406001503
- 44. J. Frehaut, G. Mosinski, and M. Soleilhac, *Recent Results on nu-Prompt Measurements between 1.5 and 15 MeV*; https://www-nds.iaea.org/EXFOR/20490; https://www-nds.iaea.org/EXFOR/21685
- 45. B. S. Wang, J. T. Harke, O. A. Akindele, R. J. Casperson, R. O. Hughes, J. D. Koglin, K. Kolos, E. B. Norman, S. Ota, and A. Saastamoinen, Phys. Rev. C 100, 064609 (2019); https://journals.aps.org/prc/abstract/10.1103/ PhysRevC.100.064609; https://www-nds.iaea.org/EXFOR/14601.002
- 46. P. Marini, J. Taieb, D. Neudecker, G. Belier, A. Chatillon, D. Etasse, B. Laurent, P. Morfouace, B. Morillon, M. Devlin, J. A. Gomez, R. C. Haight, K. J. Kelly, and J. M. O'Donnell, Phys. Lett. B 835, 137513 (2022); https://www.sciencedirect.com/science/article/ pii/S0370269322006475
- N. V. Kornilov, F.-J. Hambsch, I. Fabry, S. Oberstedt, T. Belgya, Z. Kis, L. Szentmiklosi, and S. Simakov, Nucl. Sci. Eng. 165, 117 (2010); https://www.ans.org/pubs/journals/nse/article-9479/;
 - https://www-nds.iaea.org/EXFOR/31692.001
- 48. D. A. Brown, M. B. Chadwick, R. Capote, D. A. A. C. Kahler, A. Trkov, M. W. Herman, A. A. Sonzogni, Y. Danon, A. D. Carlson, M. Dunn, D. L. Smith, G. M. Hale, G. Arbanas, R. Arcilla, C. R. Bates, B. Beck, *et al.*, Nucl. Data Sheets 148, 1 (2018); https://www.sciencedirect.com/science/article/ pii/S0090375218300206
- 49. OECD/NEA, JEFF-3.3 Evaluated Data Library. Neutron data, Technical Report (2018); https://www.oecd-nea.org/dbdata/JEFF33/
- 50. M. Sugimoto, A. B. Smith, and P. Guenther, Nucl. Sci. Eng. 97, 235 (1987); https://www.ans.org/pubs/journals/nse/a_23505; https://www-nds.iaea.org/EXFOR/14418.001
- 51. J. P. Lestone and E. F. Shores, Nucl. Data Sheets 119, 213 (2014); https://www.sciencedirect.com/science/article/ pii/S0090375214000684

- 52. С. Е. Сухих, Г. Н. Ловчикова, В. А. Виноградов, Б. В. Журавлев, А. В. Поляков, О. А. Сальников, Х. Мертен, А. Рубен, ВАНТ. Сер. Ядерные константы, вып. 3, 106 (1989); https://www-nds.iaea.org/publications/indc/indcccp-0306/
- 53. P. Staples, J. J. Egan, G. H. R. Kegel, A. Mittler, and M. L. Woodring, Nucl. Phys. A 591, 4 (1995); https://www.sciencedirect.com/science/article/ abs/pii/037594749500119L; https://www-nds.iaea.org/EXFOR/13982.003
- 54. Г. Н. Ловчикова, Г. Н. Смиренкин, А. М. Труфанов и др., ЯФ **62**, 1551 (1999).
- 55. А. В. Поляков, Г. Н. Ловчикова, Б. Д. Журавлев и др., Деление ядер — 50 лет, Международная конференция, 16—20 октября 1989, Ленинград, т. 2, с. 150.
- 56. A. Chatillon, G. Bélier, T. Granier, B. Laurent, B. Morillon, J. Taieb, R. C. Haight, M. Devlin, R. O. Nelson, S. Noda, and J. M. O'Donnell, Phys. Rev. C 89, 014611 (2014); https://journals.aps.org/prc/abstract/10.1103/ PhysRevC.89.014611; https://www-nds.iaea.org/EXFOR/14379.001
- 57. Ю. А. Васильев, Ю. С. Замятнин, Ю. И. Ильин, Е. И. Сиротинин, П. В. Торопов, Э. Ф. Фомушкин, ЖЭТФ 38, 671 (1960); http://jetp.ras.ru/cgibin/dn/e_011_03_0483.pdf
- Ю. С. Замятнин, Е. К. Гутникова, Н. И. Иванова, И. Н. Сафина, Ат. энергия 3, 540 (1957); http://elib.biblioatom.ru/text/atomnayaenergiya_t4-4_1958/go,4/
- 59. J. Frehaut, A. Bertin, and R. Bois, в сб.: Нейтронная физика, 3-я Всесоюзная конференция по нейтронной физике, 9–13 июня 1975, Киев, т. 5, с. 349; https://www-nds.iaea.org/publications/indc/indc-0805-2/
- 60. J. Frehaut, A. Bertin, and R. Bois, Trans. Am. Nucl. Soc. **32**, 732 (1979).
- Г. С. Бойков, В. Д. Дмитриев, Г. А. Кудяев, М. И. Свирин, Г. Н. Смиренкин, Ат. энергия **69**, 23 (1990); http://elib.biblioatom.ru/text/atomnayaenergiya_t69-1_1990/go,24/; https://www-nds.iaea.org/EXFOR/41110.001
- 62. Г. С. Бойков, В. Д. Дмитриев, Г. А. Кудяев, М. И. Свирин, Г. Н. Смиренкин, ЯФ 53, 628 (1991); https://inis.iaea.org/search/search.aspx?orig_q= RN:23069177; https://www-nds.iaea.org/EXFOR/41110.001
- T. Ethvignot, M. Devlin, H. Duarte, T. Granier, R. C. Haight, B. Morillon, R. O. Nelson, J. M. O'Donnel, and D. Rochman, Phys. Rev. Lett. 94, 052701 (2005); https://journals.aps.org/prl/abstract/10.1103/

PhysRevLett.94.052701; https://www-nds.iaea.org/EXFOR/13964.003

- 64. Ю. С. Замятнин, И. Н. Сафина, Е. К. Гутникова, Ат. энергия 4, 337 (1958); http://elib.biblioatom.ru/text/atomnayaenergiya_t4-4_1958/go,4/
- V. M. Maslov, EPJ Web Conf. 8, 02002 (2010); https://epjwocepjorg/articles/ epjconf/abs/2010/07/epjconf_efnudat2010_02002/ epjconf_efnudat2010_02002.html
- 66. D. Neudecker, P. Talou, T. Kawano, A. C. Kahler, M. C. White, T. N. Taddeucci, R. C. Haight, B. Kiedrow-ski, J. M. O'Donnell, J. A. Gomez, K. J. Kelly, M. Devlin, and M. E. Rising, Nucl. Data Sheets 148, 293 (2018); https://www.sciencedirect.com/science/article/ pii/S0090375218300255
- K. Shibata, O. Iwamoto, T. Nakagawa, N. Iwamoto, A. Ichihara, S. Kunieda, S. Chiba, K. Furutaka, N. Otuka, T. Ohsawa, T. Murata, H. Matsunobu, A. Zukeran, S. Kamada, and J. Katakura, J. Nucl. Sci. Technol. 48, 1 (2011); https://www.tandfonline.com/doi/abs/10.1080/ 18811248.2011.9711675
- A. S. Vorobyev and O. A. Shcherbakov, INDC-NDS-0808, IAEA (Vienna, 2020); https://www-nds.iaea.org/publications/indc/indcnds-0808/
- A. S. Vorobyev and O. A. Shcherbakov, INDC-NDS-0809, IAEA (Vienna, 2020); https://www-nds.iaea.org/publications/indc/indcnds-0809/
- D. C. Madland and J. R. Nix, Nucl. Sci. Eng. 81, 213 (1982); https://www.tandfonline.com/doi/abs/10.13182/ NSE82-5
- 71. V. M. Maslov, M. Baba, A. Hasegawa, A. B. Kagalenko, N. V. Kornilov, and N. A. Tetereva, INDC(BLR)-18, IAEA (Vienna, 2003), https://www-nds.iaea.org/publications/indc/indcblr-0018/
- 72. V. M. Maslov, M. Baba, A. Hasegawa, A. B. Kagalenko, N. V. Kornilov, and N. A. Tetereva, https://www-nds.iaea.org/minskact
- 73. Н. В. Корнилов, Б. В. Журавлев, О. А. Сальников, В. И. Трыкова, в сб.: Нейтронная физика, 5-я Всесоюзная конференция по нейтронной физике, 15–19 сентября 1980, Киев (ЦНИИатоминформ, 1980), т. 2, с. 44; https://www-nds.iaea.org/publications/indc/indcccp-0169 vol ii/
- 74. Н. В. Корнилов, ВАНТ. Сер. Ядерные константы, вып. 4, 46 (1985);

https://www-nds.iaea.org/publications/indc/indcccp-0255/; INDC(CCP)-336, 1985; https://www-nds.iaea.org/EXFOR/40631.001

- 75. Н. И. Акимов, В. Г. Воробьева, В. Н. Кабенин, Н. П. Колосов, Б. Д. Кузьминов, А. И. Сергачев, Л. Д. Смиренкина, М. З. Тараско, ЯФ 13, 484 (1971);
 - https://www-nds.iaea.org/EXFOR/41110.001
- В. М. Сурин, А. И. Сергачев, Н. И. Резчиков, Б. Д. Кузьминов, ЯФ 14, 935 (1971); https://www-nds.iaea.org/EXFOR/40112.001
- 77. J. W. Meadows and C. Budtz-Jorgensen, in Proceedings of the International Conference on Nuclear Data for Science and Technology, 1982, Antwerpen, Belgium, p. 740; https://www-nds.iaea.org/EXFOR/12798.001
- П. П. Дьяченко, Б. Д. Кузьминов, М. З. Тараско, ЯФ 8, 286 (1968); https://www-nds.iaea.org/EXFOR/40235.001
- 79. R. Yanez, J. King, J. S. Barrett, W. Loveland, N. Fotiades, and H. Y. Lee, Nucl. Phys. A 970, 65 (2018);
 - https://www-nds.iaea.org/EXFOR/14513.001
- 80. K. Shimada, Ch. Ishizuka, F. A. Ivanyuk, and S. Chiba, Phys. Rev. C 104, 054609 (2022); https://journals.aps.org/prc/abstract/10.1103/ PhysRevC.104.054609
- 81. V. M. Maslov, in Book of Abstracts of 27th International Seminar on Interaction of Neutrons with Nuclei: Fundamental Interactions & Neutrons, Nuclear Structure, Ultracold Neutrons, Related Topics; http://isinn.jinr.ru/past-isinns/isinn-27/abstracts/Maslov.pdf/
- V. M. Maslov, Phys. Lett. B 649, 376 (2007); https://www.sciencedirect.com/science/article/ pii/S0370269307005096
- V. M. Maslov, Phys. Lett. B 581, 56 (2004); https://www.sciencedirect.com/science/article/ pii/S0370269303018604
- R. Yanez, L. Yao, J. King, W. Loveland, F. Tovesson, and N. Fotiades, Phys. Rev. C 89, 051604(R) (2014); https://journals.aps.org/prc/abstract/10.1103/ PhysRevC.89.051604; https://www-nds.iaea.org/EXFOR/14394.001
- 85. C. Zoller, PhD Thesis (Technische Hochschule Darmstadt, 1995); http://wwwwin.gsi.de/charms/data.htm; https://www-nds.iaea.org/EXFOR/22799001
- D. L. Duke, F. Tovesson, A. B. Laptev, S. Mosby, F.-J. Hambsch, T. Bryś, and M. Vidali, Phys. Rev. C 94, 054604 (2016); https://journals.aps.org/prc/abstract/10.1103/

ЯДЕРНАЯ ФИЗИКА том 86 № 5 2023

PhysRevC.94.054604;

https://www-nds.iaea.org/EXFOR/14463.001

- J. Frehaut, A. Bertin, and R. Bois, in *Proceedings* of the International Conference Nuclear Data for Science and Technology, Antwerp, 1982, p. 78; https://www-nds.iaea.org/EXFOR/21785.001
- R. E. Howe, Nucl. Sci. Eng. 86, 157 (1984); https://www-nds.iaea.org/EXFOR/12870.001
- 89. J. Frehaut, M. Soleilhac, G. Mosinski, в сб.: Нейтронная физика, 2-я Всесоюзная конференция по нейтронной физике, 1973, Киев, т. 3, с. 155; https://www-nds.iaea.org/publications/indc/indcccp-0099vol.iii/; https://www-nds.iaea.org/EXFOR/21568.001
- 90. R. Gwin, R. R. Spencer, and R. W. Ingle, Nucl. Sci. Eng. 94, 365 (1986); https://www.ans.org/pubs/journals/nse/a_18347; https://www-nds.iaea.org/EXFOR/13101.001.
- 91. Yu. A. Khokhlov, I. A. Ivanin, V. I. In'kov, Yu. I. Vinogradov, L. D. Danilin, and B. N. Polynov, in Proceedings of the International Conference on Nuclear Data for Science and Technology, Gatlinburg, TN (1994), Vol. 1, 272 (1994); https://inis.iaea.org/search/search.aspx?orig_q= RN:26045946; https://www-nds.iaea.org/EXFOR/41378.001
- 92. В. Б. Ануфриенко, Б. В. Девкин, Ю. С. Кулабухов, С. Э. Сухих, М. З. Тараско, Л. А. Тимохин, в сб.: Нейтронная физика, 4-я Всесоюзная конференция по нейтронной физике, 1977, Киев, т. 3, с. 210; https://www-nds.iaea.org/publications/indc/indcccp-0118-1/; https://www-nds.iaea.org/EXFOR/40590.001
- 93. J. Voignier, R. G. Clayeux, and F. Bertrand, CEA-R-3936, 1970; https://www-nds.iaea.org/EXFOR/20578.001
- 94. В. М. Маслов, Ю. В. Породзинский, М. Баба, А. Хасегава, Изв. РАН. Сер. физ. **67**, 1597 (2003).
- 95. V. M. Maslov, M. Baba, A. Hasegawa, A. B. Kagalenko, N. V. Kornilov, and N. A. Tetereva, INDC(BLR)-14, IAEA (Vienna, 2003), https://www-nds.iaea.org/publications/indc/indcblr-0014/
- 96. V. M. Maslov, in Book of Abstracts of LXXII International Conference "Nucleus-2022: Fundamental Problems and Applications", 11–16 July 2022, Moscow, Russia, p.168; https://events.sinp.msu.ru/event/8/attachments/ 181/875nucleus-2022-book-of-abstracts-www.pdf
- 97. K. J. Kelly, J. A. Gomez, M. Devlin, J. M. O'Donnell, D. Neudecker, A. E. Lovell, R. C. Haight, C. Y. Wu, R. Henderson, T. Kawano, E. A. Bennett, S. M. Mosby, J. L. Ullmann, N. Fotiades, J. Henderson, T. N. Taddeucci, *et al*, *Nuclear Data Week(s) 2022*

(CSEWG-USNDP-NDAG); https://indico.bnl.gov/event/15497/contributions /69818/

- 98. В. М. Маслов, Письма в ЭЧАЯ (2023) (в печати).
- 99. Г. Н. Ловчикова, А. М. Труфанов, М. И. Свирин,
 В. А. Виноградов, А. В. Поляков, ЯФ 67, 1270 (2004);

https://link.springer.com/article/10.1134/1.1777281; https://www-nds.iaea.org/EXFOR/41447.003

- 100. D. Neudecker, K. J. Kelly, and P. Marini, LA-UR-22-23754 (2022); https://hal.archives-ouvertes.fr/hal-03823245/document
- 101. D. Neudecker, A. Lovell, K. Kelly, P. Marini, L. Snyder, M. White, P. Talou, M. Devlin, J. Taieb, and M. Chadwick, https://doi.org/10.3389/fphy.2022.1056324

PROMPT FISSION NEUTRON SPECTRA OF 235 U(n, F) AND 239 Pu(n, F)

V. M. Maslov

The influence of exclusive pre-fission neutron spectra $(n, xnf)^{1,...x}$ on the observed prompt fission neutron spectra (PFNS), total kinetic energy TKE of fission fragments (products), average prompt fission neutron number is revealed. Exclusive pre-fission neutron spectra $(n, xnf)^{1,...x}$ are calculated along with fission cross section (neutron emission) of 235 U(n, F) (235 U(n, xn)) and 239 Pu(n, F) (239 Pu(n, xn)) up to 20 MeV. The measured data base was used to investigate intricate dependence of the observed PFNS on the fission probability of the composite nuclides 236 U and 240 Pu. The correlation of the PFNS shape with (n, xnf) partial contributions to the observed fission cross section and $(n, n\gamma)$ and (n, xn) reaction competition are ivestigated. Exclusive pre-fission neutron spectra $(n, xnf)^{1,...x}$ as well as exclusive neutron spectra of $(n, n\gamma)$ and $(n, xn)^{1,...x}$, were calculated within Hauser–Feshbach formalism. Angular anisotropy of exclusive (n, xnf) pre-fission neutron spectra exerts strong influence on observed PFNS and its average energies. The calculated ratio of average energies of PFNS for forward and backward emission of pre-fission neutron spectra are reproduced. The observed PFNS are partitioned into (n, f) and (n, xnf) contributions. The initial parameter values were fixed by fits of PFNS for thermal neutron-induced fission. The possibilities of predictions of PFNS and $\langle E \rangle$ of 238 U(n, F) and 240 Pu(n, F) are envisaged.