= ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ И ПОЛЯ =

ИЗУЧЕНИЕ ПРОЦЕССА $e^+e^- \rightarrow \eta\gamma \rightarrow 7\gamma$ В ДИАПАЗОНЕ ЭНЕРГИИ $\sqrt{s} = 1.07-2$ ГэВ

© 2023 г. М. Н. Ачасов^{1),2)}, А. Ю. Барняков¹⁾, К. И. Белобородов^{1),2)}, А. В. Бердюгин^{1),2)*}, А. Г. Богданчиков¹⁾, А. А. Ботов¹⁾, В. С. Денисов¹⁾, Т. В. Димова^{1),2)}, В. П. Дружинин^{1),2)}, Л. Б. Фомин¹⁾, А. Г. Харламов^{1),2)}, Л. В. Кардапольцев^{1),2)}, А. Н. Кирпотин¹⁾, И. А. Кооп^{1),2)}, А. А. Король^{1),2)}, Д. П. Коврижин¹⁾, А. П. Крюков¹⁾, А. С. Купич^{1),2)}, Н. А. Мельникова^{1),2)},
Н. Ю. Мучной^{1),2)}, А. Е. Образовский¹⁾, Е. В. Пахтусова¹⁾, Е. А. Переведенцев^{1),2)},
К. В. Пугачев^{1),2)}, Ю. А. Роговский^{1),2)}, С. И. Середняков^{1),2)}, З. К. Силагадзе^{1),2)},
И. К. Сурин¹⁾, М. В. Тимошенко¹⁾, Ю. В. Усов¹⁾, В. Н. Жабин^{1),2)}, В. В. Жуланов¹⁾,
И. М. Землянский¹⁾, Ю. М. Шатунов¹⁾, Д. А. Штоль¹⁾, Э. А. Эминов¹⁾

Поступила в редакцию 19.06.2023 г.; после доработки 06.07.2023 г.; принята к публикации 06.07.2023 г.

Сечение процесса $e^+e^- \to \eta\gamma$ измерено в интервале энергии в системе центра масс от 1.07 до 2.00 ГэВ в канале распада $\eta \to 3\pi^0, \pi^0 \to \gamma\gamma$. Анализировались данные с интегральной светимостью 242 пбн⁻¹, накопленные в эксперименте с детектором СНД на e^+e^- -коллайдере ВЭПП-2000.

DOI: 10.31857/S0044002723060065, EDN: OVDHPR

1. ВВЕДЕНИЕ

Радиационные распады являются одним из лучших инструментов для исследования внутренней структуры адронов. Для легких векторных мезонов изучение этих распадов проводится уже более 50 лет. Вероятности распадов резонансов ρ , ω и ϕ в конечное состояние $\eta\gamma$ в настоящее время измерены с точностью 7%, 9% и 2% соответственно. Причем в случае ρ - и ω -мезонов величина ошибки до сих пор определяется статистикой. Наиболее точные измерения распадов ρ , ω , $\phi \to \eta\gamma$ были сделаны в экспериментах СНД [1] и КМД-2 [2] на e^+e^- -коллайдере ВЭПП-2М.

В e^+e^- -экспериментах непосредственно измеряемой величиной является сечение процесса $e^+e^- \to \eta \gamma$. Вероятности распадов можно определить при аппроксимации сечения суммой вкладов векторных резонансов. При анализе данных с ВЭПП-2М было выяснено, что модельные ошибки вероятностей распадов ρ , ω , $\phi \to \eta \gamma$, связанные с неопределенностью вкладов возбужденных векторных состояний, достигают нескольких процентов [1]. Для устранения этой неопределенности требуется, в частности, измерение сечения $e^+e^- \rightarrow \eta \gamma$ при энергиях в системе центра масс \sqrt{s} по крайней мере до 2 ГэВ.

Измерение при $\sqrt{s} = 1.05 - 2$ ГэВ важно и само по себе. Из него можно извлечь вероятности радиационных распадов возбужденных векторных мезонов $\rho(1450), \rho(1700)$ и $\phi(1680)$. В этой энергетической области, кроме обычных векторных $q\bar{q}$ состояний, возможно рождение экзотических гибридных (кварк-антикварк-глюон) мезонов. Поскольку гибридные состояния могут смешиваться с обычными двухкварковыми состояниями, их идентификация является сложной экспериментальной задачей, требующей детального анализа всех имеющихся мод распада. Радиационные распады, вероятности которых относительно неплохо предсказываются в рамках кварковой модели, могут оказаться ключевыми для идентификации векторных гибридных состояний [3].

В настоящей работе мы представляем измерение сечения $e^+e^- \rightarrow \eta\gamma$ в диапазоне энергии $\sqrt{s} = 1.07 - 2.00$ ГэВ в эксперименте с детектором СНД на e^+e^- -коллайдере ВЭПП-2000 [4]. Используется статистика с интегральной светимостью около 242 пбн⁻¹, накопленная с 2010 по 2021 г. Результаты измерения процесса $e^+e^- \rightarrow \eta\gamma$ в этом диапазоне энергии, полученные СНД по данным 2010–2012 гг. с интегральной светимостью

¹⁾Институт ядерной физики им. Г.И. Будкера СО РАН, Новосибирск, Россия.

²⁾Новосибирский государственный университет, Новосибирск, Россия.

^{*}E-mail: A.V.Berdyugin@inp.nsk.su

около 36 пбн $^{-1}$, были опубликованы в работе [5]. За прошедшее с этой публикации время в экспериментах СНД, КМД-З и BABAR были уточнены сечения фоновых процессов $e^+e^- \to K_S K_L \pi^0$ [6, 7] и $e^+e^- \to K_S K_L \pi^0 \pi^0$ [6] и впервые измерены сечения процессов $e^+e^- \rightarrow \eta \pi^0 \gamma$ [8, 9], $e^+e^- \rightarrow$ $\rightarrow \eta\eta\gamma$ [8, 10], $e^+e^- \rightarrow \omega\eta\pi^0$ [11-13] и $e^+e^- \rightarrow$ $\rightarrow K_S K_L \eta$ [6]. Эти данные используются в новом анализе

2. ЛЕТЕКТОР И ЭКСПЕРИМЕНТ

Во время экспериментов энергетический интервал 1.05-2.00 ГэВ сканировался несколько раз с шагом 20-25 МэВ. В данном анализе из-за малости статистики мы в качестве результата приводим значения сечения, усредненные по 14 энергетическим интервалам, перечисленным в табл. 1.

Детальное описание детектора СНД дано в работах [14]. Это немагнитный детектор, основной частью которого является трехслойный сферический электромагнитный калориметр на основе кристаллов NaI(Tl). Телесный угол калориметра составляет 95% от 4π . Его энергетическое разрешение для фотонов равно $\sigma_E/E = 4.2\%/\sqrt[4]{E(\Gamma
ightarrow B)},$ а угловое — около 1.5°. Углы и точка вылета заряженных частиц измеряются в трековой системе, состоящей из девятислойной дрейфовой камеры и пропорциональной камеры со съемом сигналов с катодных полосок. Телесный угол трековой системы составляет 94% от 4π .

Основными модами распада *п*-мезона являются 2γ (39%), $3\pi^0$ (33%) и $\pi^+\pi^-\pi^0$ (23%). Фон от процессов $e^+e^- \rightarrow 3\gamma$ и $e^+e^- \rightarrow \pi^+\pi^-2\pi^0$, существенно превышающий эффект в энергетическом диапазоне 1.07-2.00 ГэВ, затрудняет использование мод распада $\eta \to 2\gamma$ и $\eta \to \pi^+\pi^-\pi^0$. В данной работе процесс $e^+e^- \rightarrow \eta \gamma$ изучается в канале распада $\eta \to 3\pi^0$, $\pi^0 \to 2\gamma$, имеющем семь фотонов в конечном состоянии. Поскольку конечное состояние для изучаемого процесса не содержит заряженных частиц, для нормировки также был выбран процесс без заряженных частиц $e^+e^- \rightarrow$ $\rightarrow \gamma \gamma$. В результате такой нормировки сокращаются систематические неопределенности, связанные с аппаратным отбором событий в системе первичного триггера, а также неопределенности, возникающие из-за наложений на изучаемые события фоновых пучковых заряженных треков. Точность измерения светимости по процессу $e^+e^- \rightarrow \gamma\gamma$ равна 2.2% [15].

Фоновыми процессами являются $e^+e^- \rightarrow$ $\rightarrow \pi^0 \pi^0 \gamma, e^+ e^- \rightarrow \eta \pi^0 \gamma, e^+ e^- \rightarrow \eta \eta \gamma, e^+ e^- \rightarrow \eta \eta \gamma$ $\rightarrow \omega \pi^0 \pi^0$ и $e^+ e^- \rightarrow \omega \eta \pi^0$ с распадами $\omega \rightarrow$ $\rightarrow \pi^0 \gamma$, $\eta \rightarrow 3\pi^0$ и $\eta \rightarrow \gamma \gamma$. Также вклад в фон дают процессы с рождением нейтральных каонов $e^+e^- \rightarrow K_S K_L(\gamma), e^+e^- \rightarrow K_S K_L \pi^0, e^+e^- \rightarrow K_S K_L \pi^0 \pi^0 \text{ M} e^+e^- \rightarrow K_S K_L \eta \text{ с распадом } K_S \rightarrow K_S K_L \eta$ $\rightarrow 2\pi^0$

3. УСЛОВИЯ ОТБОРА

Из вышеперечисленных процессов только $e^+e^-
ightarrow \omega \pi^0 \pi^0$ и $\omega \eta \pi^0$ имеют семь фотонов в конечном состоянии. В процессах с К_L-мезоном дополнительные фотоны могут реконструироваться при ядерном взаимодействии К_L с веществом калориметра или его распаде. Также дополнительные фотоны образуются из-за расщепления электромагнитного ливня в калориметре, излучения фотонов на большой угол начальными частицами и наложения пучкового фона.

Отбор событий осуществлялся в две стадии. Вначале отбираются события, в которых зарегистрировано семь или более фотонов и нет заряженных частиц, со следующими условиями на полное энерговыделение в калориметре $E_{\rm tot}$ и суммарный импульс события P_{tot}, вычисленный по энерговыделениям в кристаллах калориметра

$$0.7 < E_{\text{tot}}/\sqrt{s} < 1.2,$$
 (1)
 $P_{\text{tot}}/\sqrt{s} < 0.3, \quad E_{\text{tot}}/\sqrt{s} - P_{\text{tot}}/\sqrt{s} > 0.7.$

Для отобранных событий проводится кинематическая реконструкция, использующая измеренные углы, энергии фотонов, законы сохранения энергии-импульса и предположения о наличии промежуточных π^0 -мезонов. В результате реконструкции уточняются энергии фотонов и вычисляется χ^2 для используемой кинематической гипотезы. Проверяются две гипотезы:

$$e^+e^- \to 3\pi^0 \gamma(\chi^2_{3\pi^0\gamma}),$$

$$e^+e^- \to \pi^0\pi^0 \gamma(\chi^2_{\pi^0\pi^0\gamma}).$$

В гипотезе $e^+e^- \rightarrow 3\pi^0\gamma$ в качестве фотона отдачи выбирается фотон с максимальной энергией. Из остальных шести фотонов строятся π^0 -мезоны. При наличии в событии большего числа фотонов по сравнению с требованием гипотезы перебираются все возможные пяти(семи)-фотонные комбинации и выбирается комбинация с минимальным значением $\chi^2_{\pi^0\pi^0\gamma}(\chi^2_{3\pi^0\gamma}).$

Дальнейший отбор событий проводится по следующим условиям:

$$\chi^2_{3\pi^0\gamma} < 50, \chi^2_{\pi^0\pi^0\gamma} > 20.$$
 (2)

Таблица 1. Энергетический интервал (\sqrt{s}), интегральная светимость (*IL*), число событий процесса $e^+e^- \to \phi\gamma \to \eta\gamma\gamma$ ($N_{\phi\gamma}$) в диапазоне 400 $< M_{\rm rec} < 700$ МэВ, число событий других фоновых процессов ($N_{\rm bkg}$) в диапазоне 400 $< M_{\rm rec} < 700$ МэВ, множитель к фону ($\alpha_{\rm bkg}$), эффективность регистрации (ε_0), число событий процесса $e^+e^- \to \eta\gamma$ ($N_{\eta\gamma}$), радиационная поправка ($1 + \delta$), борновское сечение процесса $e^+e^- \to \eta\gamma$ (σ), первая ошибка в сечении — статистическая, вторая — систематическая

\sqrt{s} , ГэВ	L , пбн $^{-1}$	$N_{\phi\gamma}$	$N_{ m bkg}(lpha_{ m bkg})$	$arepsilon_0,\%$	$N_{\eta\gamma}$	$\delta + 1$	σ , пбн
1.075	1.10	28	$2.9(1.36\pm 0.27)$	8.1	$2.0^{+7.0}_{-2.0}$	1.26 ± 0.04	$18^{+63}_{-18}\pm 1$
1.100	3.38	51	$6.4(1.36\pm 0.27)$	8.0	$7.0^{+8.1}_{-6.5}$	1.43 ± 0.12	$18^{+21}_{-17} \pm 1$
1.125	1.32	11	$1.4(1.36\pm 0.27)$	8.2	$1.5^{+3.7}_{-1.5}$	1.48 ± 0.19	$9^{+23}_{-9}\pm 1$
1.150	3.21	15	$2.8(1.36\pm 0.27)$	8.1	$0.0^{+3.8}$	1.44 ± 0.22	$0^{+10} \pm 0.1$
1.175	1.73	4	$1.1(1.36\pm 0.27)$	7.9	$3.6^{+3.5}_{-2.2}$	1.35 ± 0.20	$20^{+19}_{-12} \pm 2$
1.200	4.30	4	$2.2(1.36\pm 0.27)$	7.7	$5.3^{+4.2}_{-2.9}$	1.25 ± 0.16	$13^{+10}_{-7} \pm 1$
1.225-1.300	21.0	5	$20(1.35\pm 0.15)$	7.0	$5.9^{+5.4}_{-3.9}$	1.01 ± 0.01	$4^{+4}_{-3} \pm 0.2$
1.325-1.400	10.0	1	$16(1.35\pm 0.15)$	6.6	$6.9^{+5.1}_{-3.7}$	0.90 ± 0.08	$12^{+9}_{-6} \pm 1$
1.425 - 1.500	11.0	0	$22(1.01\pm0.11)$	6.3	$13.0^{+6.6}_{-5.2}$	0.91 ± 0.07	$21^{+10}_{-8}\pm 2$
1.520 - 1.600	11.3	0	$34(1.12\pm0.08)$	6.0	$6.8^{+5.9}_{-4.4}$	0.95 ± 0.03	$11^{+9}_{-7} \pm 0.4$
1.625 - 1.700	12.4	0	$58(1.28\pm0.07)$	5.6	$0.0^{+4.9}$	1.18 ± 0.20	$0^{+6}\pm0.3$
1.720-1.800	15.0	0	$25(1.13\pm0.08)$	5.4	$0.0^{+3.8}$	2.94 ± 1.94	$0^{+1.5} \pm 0.2$
1.820-1.902	63.5	0	$43(1.01\pm 0.05)$	4.9	$1.9^{+4.6}_{-1.9}$	0.92 ± 0.06	$0.7^{+1.6}_{-0.7} \pm 0.1$
1.910-2.000	83.2	0	$38(0.97\pm0.05)$	4.6	$6.7^{+6.3}_{-4.7}$	0.94 ± 0.05	$1.9^{+1.8}_{-1.3} \pm 0.1$

Для событий, прошедших отбор, анализируется распределение по инвариантной массе отдачи фотона $M_{\rm rec}$, вычисленной после кинематической реконструкции в гипотезе $e^+e^- \rightarrow 3\pi^0\gamma$. Эти распределения в диапазоне $400 < M_{\rm rec} < 700$ МэВ для шести энергетических интервалов приведены на рис. 1.

При энергиях ниже 1.3 ГэВ существенный вклад в распределение по $M_{\rm rec}$ дает процесс "радиационного сброса" на ϕ -мезонный резонанс $e^+e^- \rightarrow \phi \gamma_{\rm ISR} \rightarrow \eta \gamma \gamma_{\rm ISR}$, в котором дополнительный фотон $\gamma_{\rm ISR}$ излучается из начального состояния преимущественно под малым углом к оси пучков. Мы рассматриваем этот процесс как фоновый. Его вклад при ограничении на массу отдачи $\gamma_{\rm ISR}$ $\sqrt{s'} < 1.03$ ГэВ рассчитывается по моделированию с использованием данных по сечению $e^+e^- \rightarrow \eta \gamma$ при энергии ниже 1.03 ГэВ [1]. Расчетный спектр по $M_{\rm rec}$ для процесса $e^+e^- \rightarrow \phi \gamma_{\rm ISR}$ показан на рис. 1, а ожидаемое число событий в интервале $400 < M_{\rm rec} < 700$ МэВ приведено в табл. 1.

Вклад других фоновых процессов рассчитывался на основе экспериментальных данных по сечениям для $e^+e^- \to \pi^0\pi^0\gamma$ [16], $e^+e^- \to \eta\pi^0\gamma$ [8, 9], $e^+e^- \to \eta\eta\gamma$ [8, 10], $e^+e^- \to \omega\pi^+\pi^-$ [17, 18], $e^+e^- \to \omega\eta\pi^0$ [11–13], $e^+e^- \to K_S K_L(\gamma)$ [19], $e^+e^- \to K_S K_L \pi^0$ [6, 7], $e^+e^- \to K_S K_L \pi^0 \pi^0$ [6] и $e^+e^- \to K_S K_L \eta$ [6]. Для процесса $e^+e^- \to \omega \pi^0 \pi^0$ использовалось изотопическое соотношение $\sigma(\omega \pi^+ \pi^-) = 2\sigma(\omega \pi^0 \pi^0)$. При расчете фона учитывались радиационные поправки [20]. Это особенно важно для процесса $e^+e^- \to K_S K_L(\gamma)$, в котором доминирует "радиационный сброс" на ϕ -мезон: $e^+e^- \to \phi\gamma \to K_S K_L \gamma$.

Для диапазона энергии выше 1.6 ГэВ сечения многих фоновых процессов известны с точностью около 25%. Величина сечения процесса $e^+e^- \rightarrow \omega\eta\pi^0$, измеренная в экспериментах СНД и BABAR, различается в 2 раза. Ниже 1.2 ГэВ доминирующим источником фона является процесс $e^+e^- \rightarrow K_S K_L(\gamma)$. Точность его оценки определяется качеством моделирования ядерного взаимодействия K_L -мезона в калориметре детектора. Поэтому анализируется также интервал масс 700 $< M_{\rm rec} < 1100$ МэВ, где ожидается вклад только от фоновых процессов.

Распределения по инвариантной массе отдачи фотона $M_{\rm rec}$ в диапазоне $400 < M_{\rm rec} < 1100$ МэВ аппроксимировались суммой вкладов изучаемого процесса $e^+e^- \rightarrow \eta\gamma$ и фоновых процессов:

$$P(M_{\rm rec}) = N_{\eta\gamma} P_{\eta\gamma}(M_{\rm rec}) +$$

$$+ \alpha_{\rm bkg} P_{\rm bkg}(M_{\rm rec}) + P_{\phi\gamma}(M_{\rm rec}).$$
(3)

ЯДЕРНАЯ ФИЗИКА том 86 № 6 2023

ИЗУЧЕНИЕ ПРОЦЕССА $e^+e^- \rightarrow \eta\gamma \rightarrow 7\gamma$

Рис. 1. Распределения по инвариантной массе отдачи фотона $M_{\rm rec}$ для шести энергетических интервалов. Точки с ошибками — данные, гистограмма, изображенная сплошной линией — результат аппроксимации, описанной в тексте. Гистограмма, изображенная линией из точек — вклад процесса $e^+e^- \rightarrow \eta\gamma$, определенный при аппроксимации, гистограмма, изображенная штрихпунктирной линией — расчетный вклад процесса $e^+e^- \rightarrow \phi\gamma \rightarrow \eta\gamma\gamma$, гистограмма, изображенная штрихпунктирной линией — расчетный вклад процесса $e^+e^- \rightarrow \phi\gamma \rightarrow \eta\gamma\gamma$, гистограмма, изображенная штриховой линией — сумма всех остальных фоновых процессов.

ЯДЕРНАЯ ФИЗИКА том 86 № 6 2023

Здесь $P_{\eta\gamma}$ — нормированное на единицу распределение сигнала, $P_{\phi\gamma}$ — расчетный спектр для процесса $e^+e^- \rightarrow \phi\gamma_{\rm ISR} \rightarrow \eta\gamma\gamma_{\rm ISR}$ и $P_{\rm bkg}$ — суммарный расчетный спектр для остальных фоновых процессов. Свободными параметрами аппроксимации были число событий ожидаемого процесса $N_{\eta\gamma}$ и множитель для суммарного фона $\alpha_{\rm bkg}$. Ниже 1.4 ГэВ статистика не позволяет определить множитель $\alpha_{\rm bkg}$ с требуемой точностью по одному интервалу. Поэтому для определения фона аппроксимировались суммарные распределения по $M_{\rm rec}$ для диапазонов $\sqrt{s} < 1.225$ ГэВ и $1.225 < \sqrt{s} < 1.4$ ГэВ. Полученные значения $\alpha_{\rm bkg}$ с их ошибкой использовались затем для аппроксимации отдельных интервалов.

Форма распределения для $M_{\rm rec}$ проверялась по данным, набранным вблизи ϕ -резонанса. Моделирование согласуется с экспериментом. В рамках данной статистики форма $M_{\rm rec}$ не требует введения поправок.

Полученные числа событий искомого и фоновых процессов, а также значения коэффициента $\alpha_{\rm bkg}$ для разных энергетических интервалов приведены в табл. 1.

4. ЭФФЕКТИВНОСТЬ РЕГИСТРАЦИИ

Эффективность регистрации событий искомого процесса определялась по моделированию методом Монте-Карло, которое учитывало радиационные поправки к начальному состоянию [20], в частности, излучение дополнительных фотонов. Угловое распределение этих фотонов моделировалось согласно работе [21]. На рис. 2 приведены зависимости эффективности регистрации $\varepsilon(\sqrt{s}, E_{\gamma_{\rm ISR}})$ от энергии фотона $E_{\gamma_{\rm ISR}}$, излученного из начального состояния для трех значений энергии в системе центра масс.

Значения эффективности регистрации при $E_{\gamma_{\rm ISR}} = 0$, усредненные по энергетическим интервалам, приведены в табл. 1.

5. ПАРАМЕТРИЗАЦИЯ СЕЧЕНИЯ

В рамках модели доминантности векторных мезонов сечение процесса $e^+e^- \rightarrow \eta\gamma$ может быть записано в виде

$$\sigma_{\eta\gamma}(\sqrt{s}) = \left(\frac{k_{\gamma}(\sqrt{s})}{\sqrt{s}}\right)^{3} \left|\sum_{V=\rho,\omega,\phi,\dots} A_{V}(\sqrt{s})\right|^{2}, \quad (4)$$
$$A_{V}(\sqrt{s}) = \frac{m_{V}\Gamma_{V}(m_{V})e^{i\varphi_{V}}}{D_{V}(\sqrt{s})} \sqrt{\frac{m_{V}^{3}}{k_{\gamma}(m_{V})^{3}}} \sigma_{V\eta\gamma},$$
$$D_{V}(\sqrt{s}) = m_{V}^{2} - s - i\sqrt{s}\Gamma_{V}(\sqrt{s}), \quad (5)$$

$$k_{\gamma}(\sqrt{s}) = \frac{\sqrt{s}}{2} \left(1 - \frac{m_{\eta}^2}{s}\right).$$

где суммирование ведется по всем векторным резонансам V, дающим вклад в сечение, m_V и $\Gamma_V(\sqrt{s})$ — масса резонанса и его полная ширина, $\sigma_{V\eta\gamma} = (12\pi/m_V^2)B(V \to e^+e^-)B(V \to \eta\gamma)$ — сечение процесса $e^+e^- \to V \to \eta\gamma$ при $\sqrt{s} = m_V$, $B(V \to e^+e^-)$ и $B(V \to \eta\gamma)$ — вероятности соответствующих распадов, φ_V — фазы амплитуд векторных резонансов ($\varphi_\rho \equiv 0$). Кроме резонансов ρ , ω и ϕ , в сумму в выражении (4) входят все их возбужденные состояния. Для ρ , ω и ϕ при расчете зависимости ширин от энергии учитываются основные моды их распадов. Для возбужденных резонансов ширины считались не зависящими от энергии.

6. АППРОКСИМАЦИЯ ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ И ПОЛУЧЕНИЕ БОРНОВСКОГО СЕЧЕНИЯ

Видимое сечение процесса $e^+e^- \to \eta\gamma$ связано с борновским сечением ($\sigma(\sqrt{s})$), которое требуется определить из эксперимента, следующей формулой:

$$\sigma_{\rm vis}(\sqrt{s}) = \int_{0}^{x_{\rm max}} \varepsilon\left(\sqrt{s}, \frac{x\sqrt{s}}{2}\right) \times$$
(6)

$$\times F\left(x, \sqrt{s}\right) \sigma\left(\sqrt{s(1-x)}\right) dx ,$$

где $F(x,\sqrt{s})$ — функция, описывающая распределение доли энергии $x = 2E_{\gamma_{\rm ISR}}/\sqrt{s}$ [20], унесенной фотонами, излученными из начального состояния. Значение $x_{\rm max}$ определяется условием $\sqrt{s'} = \sqrt{s(1-x_{\rm max})} < 1.03$ ГэВ, которое используется для разделения процессов $e^+e^- \rightarrow \eta\gamma(\gamma)$ и $e^+e^- \rightarrow \phi\gamma$. Выражение (6) можно переписать в виде

$$\sigma_{\rm vis}(\sqrt{s}) = \varepsilon_0(\sqrt{s})\,\sigma(\sqrt{s})\,(1+\delta(\sqrt{s}))\,,\qquad(7)$$

где эффективность регистрации $\varepsilon_0(\sqrt{s})$ и радиационная поправка $\delta(\sqrt{s})$ определяются следующим образом:

$$\varepsilon_0(\sqrt{s}) \equiv \varepsilon(\sqrt{s}, 0),$$
 (8)

$$\delta(\sqrt{s}) = \tag{9}$$

$$=\frac{\int\limits_{0}^{x_{\max}}\varepsilon(\sqrt{s},\frac{x\sqrt{s}}{2})F(x,\sqrt{s})\sigma(\sqrt{(1-x)s})dx}{\varepsilon_{r}(\sqrt{s},0)\sigma(\sqrt{s})}-1.$$

Рис. 2. Зависимость эффективности регистрации для процесса $e^+e^- \rightarrow \eta\gamma(\gamma)$ от энергии дополнительного фотона, излученного начальными частицами, при $\sqrt{s} = 1.15$ ГэВ (a), 1.6 ГэВ (b) и 1.9 ГэВ (b). Точки с ошибками получены по моделированию, кривая показывает результат аппроксимации зависимости $\varepsilon(E_{\gamma_{\rm ISR}})$ гладкой функцией.

Технически нахождение борновского сечения осуществляется следующим образом: с использованием формулы (6) проводится аппроксимация энергетической зависимости измеренного видимого сечения $\sigma_{\text{vis}}(\sqrt{s_i}) = N_{\eta\gamma,i}/IL_i$, где i — номер интервала по энергии. При этом для параметризации борновского сечения используется какаялибо теоретическая модель, хорошо описывающая

Рис. 3. Измеренное в данной работе сечение процесса $e^+e^- \rightarrow \eta\gamma$ в сравнении с сечением, полученным ранее в работе [5]. Штриховая кривая — результат аппроксимации с учетом вкладов только ρ -, ω - и ϕ -мезонов, сплошная кривая — результат аппроксимации с дополнительным вкладом двух возбужденных векторных резонансов.

ЯДЕРНАЯ ФИЗИКА том 86 № 6 2023

экспериментальные данные. С использованием полученных параметров теоретической модели определяется радиационная поправка $\delta(\sqrt{s_i})$, и далее по формуле (7) вычисляется экспериментальное борновское сечение $\sigma(\sqrt{s_i})$.

При аппроксимации сечения использовались табличные значения параметров ρ , ω и ϕ [22]. Φ азы ho, ω и ϕ были выбраны согласно предсказанию кварковой модели: $\varphi_{\omega} = \varphi_{\rho}, \ \varphi_{\phi} = \varphi_{\rho} +$ + 180°. Как уже упоминалось, при энергии выше 1 ГэВ вклад в сечение $e^+e^- \rightarrow \eta\gamma$ дают все пять известных возбужденных векторных резонансов $\omega(1420), \rho(1450), \omega(1650), \phi(1680)$ и $\rho(1700).$ Разделение вкладов этих резонансов при аппроксимации сечения $e^+e^-
ightarrow \eta\gamma$ невозможно. Однако можно существенно упростить задачу, используя факт, что резонансы разделяются на две группы с близкими массами ($\omega(1420), \rho(1450)$) и ($\omega(1650),$ $\phi(1680)$ и $\rho(1700)$). При имеющейся небольшой статистике для аппроксимации можно использовать модель с двумя эффективными резонансами ρ' и ϕ' с массами и ширинами, равными табличным значениям для $\rho(1450)$ и $\phi(1680)$. Такой выбор резонансов согласуется с предсказаниями кварковой модели [23], в которой ширины распадов $\rho(1450) \rightarrow \eta \gamma$ и $\phi(1680) \rightarrow \eta \gamma$, по крайней мере, на порядок превосходят ширины для трех остальных возбужденных состояний.

Свободными параметрами аппроксимации являлись сечения $\sigma_{\rho'\eta\gamma}$ и $\sigma_{\phi'\eta\gamma}$ и фазы $\varphi_{\rho'}$ и $\varphi_{\phi'}$. Полученная аппроксимирующая кривая приведена на рис. З вместе с вычисленными по формуле (7) значениями для борновского сечения. Численные значения борновского сечения и радиационной поправки приведены в табл. 1. Для сечений в максимуме резонансов были получены следующие значения:

$$\sigma_{\rho'\eta\gamma} = 16^{+15}_{-10} \pm 2$$
 пбн, (10)
 $\sigma_{\phi'\eta\gamma} = 14^{+14}_{-10} \pm 2$ пбн.

Первая из приведенных ошибок статистическая, вторая — систематическая.

Следует отметить, что небольшая статистика не позволяет отбросить вариант аппроксимации сечения без использования возбужденных резонансов. Результат аппроксимации в этой гипотезе также приведен на рис. З. Для нее $\chi^2/\nu = 11.4/14$, где ν — число степеней свободы, против $\chi^2/\nu =$ = 4.7/10 в варианте с включением вклада двух возбужденных резонансов. Стоит отметить, что вариант только с одним возбужденным резонансом не может описать провал сечения при $\sqrt{s} = 1.75$ ГэВ.

7. СИСТЕМАТИЧЕСКИЕ ПОГРЕШНОСТИ ИЗМЕРЕНИЯ

Систематическая погрешность в измерении сечения включает в себя неточности в определении эффективности регистрации, измерении светимости, а также модельную ошибку вычисления радиационной поправки. Для оценки систематической ошибки эффективности регистрации была исследована устойчивость результата по сечению при изменении в широких пределах условий отбора событий, в частности, ограничений на χ^2 кинематической реконструкции. Так же проводился анализ с требованием регистрации в событии ровно семи фотонов, как и в работе [5]. На имеющемся уровне статистической точности изменения результата по сечению обнаружено не было. Кроме того, для численной оценки ошибки эффективности можно использовать результаты проведенного в работе [15] изучения разницы в отклике детектора между экспериментом и моделированием для пятифотонного конечного состояния. Для текущего анализа мы в качестве оценки систематики, связанной с условиями отбора, используем сумму поправки из [15] и ее ошибки 3%. Систематическая неопределенность из-за разницы между экспериментом и моделированием в вероятности конверсии фотона перед трековой системой составляет 1.3%.

Систематическая неопределенность, связанная с нормировкой на светимость, равна 2.2%. Модельная ошибка в вычислении радиационной поправки определялась из разницы значений для вариантов аппроксимации с и без использования в модели возбужденных состояний ρ' и ϕ' . Суммарная систематическая ошибка сечения приведена в табл. 1.

8. ЗАКЛЮЧЕНИЕ

В эксперименте на e^+e^- -коллайдере ВЭПП-2000 с детектором СНД в диапазоне энергии 1.05– 2.00 ГэВ измерялось сечение процесса $e^+e^- \rightarrow \eta\gamma$. События $\eta\gamma$ выделялись в моде распада $\eta \rightarrow 3\pi^0 \rightarrow$ $\rightarrow 6\gamma$. Измеренное сечение этого процесса приведено на рис. З в сравнении с предыдущим результатом СНД [5], полученным по приблизительно в 7 раз меньшей статистике. Новые результаты лежат значительно ниже предыдущих при $\sqrt{s} > 1.25$ ГэВ. Отличие объясняется существенной недооценкой фона в работе [5]. Новое измерение замещает сечение, приведенное в статье [5].

В результате аппроксимации сечения в модели векторной доминантности получены значения сечений в максимумах резонансов:

$$\sigma_{
ho' o \eta \gamma} = 16^{+15}_{-10} \pm 2$$
 пбн, $\sigma_{\phi' o \eta \gamma} = 14^{+14}_{-10} \pm 2$ пбн,

которые согласуются с оценками $\sigma_{\rho'\eta\gamma} \approx 15$ пбн, $\sigma_{\phi'\eta\gamma} \approx 10$ пбн, сделанными в работе [5] на основе предсказаний кварковой модели $\Gamma_{\rho'\to\eta\gamma} \approx \Gamma_{\phi'\to\eta\gamma} \approx \approx 100$ кэВ [23].

Работа выполнена на базе УНУ "Комплекс ВЭПП-4 — ВЭПП-2000".

СПИСОК ЛИТЕРАТУРЫ

- 1. M. N. Achasov *et al.* (SND Collab.), Phys. Rev. D 74, 014016 (2006); 76, 077101 (2007).
- 2. R. R. Akhmetshin *et al.* (CMD-2 Collab.), Phys. Lett. B **509**, 217 (2001).
- 3. V. M. Aulchenko *et al.*, J. Exp. Theor. Phys. **97**, 24 (2003).
- D. Shwartz, O. Belikov, D. Berkaev, D. Burenkov, V. Denisov, A. Kasaev, A. Kirpotin, S. Kladov, I. Koop, A. Krasnov, A. Kupurzhanov, G. Kurkin, M. Lyalin, A. Lysenko, S. Motygin, E. Perevedentsev, *et al.*, JACoW **IPAC2021**, TUPAB002 (2021), https://jacow.org/ipac2021/papers/tupab002.pdf
- 5. M. N. Achasov *et al.* (SND Collab.), Phys. Rev. D **90**, 032002 (2014).
- J. P. Lees *et al.* (BABAR Collab.), Phys. Rev. D 95, 052001 (2017).
- M. N. Achasov *et al.* (SND Collab.), Phys. Rev. D 97, 032011 (2018).
- 8. M. N. Achasov *et al.* (SND Collab.), Phys. Rev. D **99**, 112004 (2019).
- M. N. Achasov *et al.* (SND Collab.), Eur. Phys. J. C 80, 1008 (2020).
- 10. V. L. Ivanov *et al.* (CMD-3 Collab.), Phys. Lett. B **798**, 134946 (2019).
- 11. M. N. Achasov *et al.* (SND Collab.), Phys. Rev. D **94**, 032010 (2016).
- 12. J. P. Lees *et al.* (BABAR Collab.), Phys. Rev. D **98**, 112015 (2018).

- 13. J. P. Lees *et al.* (BABAR Collab.), Phys. Rev. D **103**, 092001 (2021).
- M. N. Achasov *et al.*, Nucl. Instrum. Methods 598, 31 (2009); V. M. Aulchenko *et al.*, Nucl. Instrum. Methods 598, 102 (2009); A. Yu. Barnyakov *et al.*, Nucl. Instrum. Methods 598, 163 (2009); V. M. Aulchenko *et al.*, Nucl. Instrum. Methods 598, 340 (2009).
- 15. M. N. Achasov *et al.* (SND Collab.), Phys. Rev. D 88, 054013 (2013).
- 16. M. N. Achasov *et al.* (SND Collab.), Phys. Rev. D **94**, 112001 (2016).
- 17. R. R. Akhmetshin *et al.* (CMD-2 Collab.), Phys. Lett. B **489**, 125 (2000).

- B. Aubert *et al.* (BABAR Collab.), Phys. Rev. D 76, 092005 (2007); Phys. Rev. D 77, 119902 (Erratum) (2008).
- 19. J. P. Lees *et al.* (BABAR Collab.), Phys. Rev. D **89**, 092002 (2014).
- 20. E. A. Kuraev and V. S. Fadin, *A*Φ **41**, 733 (1985)[Sov. J. Nucl. Phys. **41**, 466 (1985)].
- 21. G. Bonneau and F. Martin, Nucl. Phys. B 27, 381 (1971).
- 22. R. L. Workman *et al.* (Particle Data Group), Prog. Theor. Exp. Phys. **2022**, 083C01 (2022).
- 23. F. E. Close, A. Donnachie, and Y. S. Kalashnikova, Phys. Rev. D **65**, 092003 (2002).

STUDY OF THE PROCESS $e^+e^- \rightarrow \eta\gamma \rightarrow 7\gamma$ in the energy range $\sqrt{s} = 1.07-2$ GeV

M. N. Achasov^{1),2)}, A. Yu. Barnyakov¹⁾, K. I. Beloborodov^{1),2)}, A. V. Berdyugin^{1),2)},
A. G. Bogdanchikov¹⁾, A. A. Botov¹⁾, V. S. Denisov¹⁾, T. V. Dimova^{1),2)}, V. P. Druzhinin^{1),2)},
L. B. Fomin¹⁾, A. G. Kharlamov^{1),2)}, L. V. Kardapoltsev^{1),2)}, A. N. Kyrpotin¹⁾, I. A. Koop^{1),2)},
A. A. Korol^{1),2)}, D. P. Kovrizhin¹⁾, A. P. Kryukov¹⁾, A. S. Kupich^{1),2)}, N. A. Melnikova^{1),2)},
N. Yu. Muchnoi^{1),2)}, A. E. Obrazovsky¹⁾, E. V. Pakhtusova¹⁾, E. A. Perevedentsev^{1),2)},
K. V. Pugachev^{1),2)}, Yu. A. Rogovsky^{1),2)}, S. I. Serednyakov^{1),2)}, Z. K. Silagadze^{1),2)},
I. K. Surin¹⁾, M. V. Timoshenko¹⁾, Yu. V. Usov¹⁾, V. N. Zhabin^{1),2)}, V. V. Zhulanov¹⁾,
I. M. Zemlyansky¹⁾, Yu. M. Shatunov¹⁾, D. A. Shtol¹⁾, E. A. Eminov¹⁾

¹⁾Budker Institute of Nuclear Physics of Siberian Branch Russian Academy of Sciences, Novosibirsk, Russia ²⁾Novosibirsk State University, Novosibirsk, Russia

The $e^+e^- \rightarrow \eta\gamma$ cross section is measured in the center-of-mass energy range from 1.07 to 2.00 GeV in the decay channel $\eta \rightarrow 3\pi^0, \pi^0 \rightarrow \gamma\gamma$. The data set with an integrated luminosity of 242 pb⁻¹ accumulated in the experiment with the SND detector at the VEPP-2000 e^+e^- collider is analyzed.