____ ФИЗИКО-ХИМИЧЕСКИЕ ПРОЦЕССЫ ____ НА МЕЖФАЗНЫХ ГРАНИЦАХ ____

УДК 544.723.212

СОРБЦИОННАЯ АКТИВНОСТЬ КОМПОЗИТА ЦЕЛЛЮЛОЗА/ФУЛЛЕРЕН ПО ОТНОШЕНИЮ К ИОНАМ ТЯЖЕЛЫХ МЕТАЛЛОВ

© 2019 г. О. В. Алексеева¹, Н. А Багровская¹, А. В. Носков^{1, *}

¹Институт химии растворов им. Г.А. Крестова РАН Россия 153045 Иваново, ул. Академическая, 1 *e-mail: avn@isc-ras.ru Поступила в редакцию 06.12.2017 г.

> После доработки 15.02.2018 г. Принята к публикации 21.03.2018 г.

Проведена модификация целлюлозы методом импрегнирования образца полимера раствором наноуглеродных частиц C₆₀ в *о*-ксилоле. Изучена кинетика сорбции ионов Cu(II), Ni(II) и Cd(II) из водных сред на целлюлозе и композиционном материале. Выявлено увеличение эффективности извлечения металлов фуллеренсодержащим сорбентом по сравнению с исходным полимером. Количественные характеристики кинетики сорбции ионов металлов определены в рамках моделей реакций псевдопервого и псевдовторого порядков. Установлено, что равновесие сорбции ионов Cu(II) на целлюлозе и композите описывается различными типами изотерм, что объясняется различными механизмами взаимодействия ионов металла с исходной целлюлозой и композитом.

Ключевые слова: сорбция, композит целлюлоза/фуллерен, тяжелые металлы, порядок реакции, изотерма Лэнгмюра

DOI: 10.1134/S0044185619010029

введение

Целлюлоза является одним из самых распространенных природных полимеров, имеющих постоянно возобновляемую сырьевую базу, и находит широкое применение в производстве бумаги, волокон, мембран, ионитов, а также в медицине и фармацевтике. Целлюлоза и полимеры на ее основе проявляют катионообменные свойства, обладают высокоразвитой поверхностью, что наряду с их химической природой обусловливает сорбционные свойства целлюлозных материалов [1]. Большой практический интерес представляет создание сорбентов на основе целлюлозы и ее производных для выделения высокотоксичных ионов тяжелых металлов, таких как Cu(II), Ni(II), Cd(II) из промышленных и бытовых сточных вод.

Целлюлозосодержащие иониты извлекают ионы тяжелых металлов из водных растворов электролитов, проявляют селективность, легко регенерируются и сохраняют работоспособность в водно-органических средах [2]. Волокнистые сорбенты, полученные на основе природного полимера, являются перспективными для концентрирования и выделения микроэлементов из водной среды и технологических растворов. Однако сорбционная емкость целлюлозы невелика и поэтому для повышения сорбционной активности используют различные способы модификации биополимера. Одним из таких способов является получение композиционных материалов на основе целлюлозы путем введения в полимерную матрицу сорбционно-активных неорганических наполнителей, таких как наночастицы оксидов металлов, углеродные нанотрубки, фуллерены.

Известно, что различные формы фуллерена (C_{60} , C_{70} , углеродные нанотрубки, фуллереновая сажа) проявляют адсорбционную активность по отношению к органическим растворителям и ионам металлов. Допирование полимеров фуллеренами позволяет получать материалы с улучшенными физико-химическими и сорбционными характеристиками [3–6]. Однако многие аспекты влияния модифицирующих добавок в структуре полимера на процессы адсорбции оказались малоизученными.

В связи с этим целью настоящей работы является модификация целлюлозы наночастицами углерода и изучение сорбционных свойств нанокомпозитов целлюлоза/ C_{60} по отношению к ионам тяжелых металлов – Cu(II), Ni(II), Cd(II).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Объектом исследования служила древесная целлюлоза марки РБ. В качестве модифицирующего агента использовали фуллерен С₆₀ (степень

чистоты 99.9%, ООО "Фуллереновые технологии", Санкт-Петербург). Модифицирование целлюлозы проводили методом импрегнирования: навеску полимера 1.23 г заливали 20 мл раствора фуллерена в о-ксилоле (0.035 мас. %) и выдерживали 30 мин. Выбор о-ксилола связан с хорошей растворимостью С₆₀ в этом растворителе [7]. Далее образец целлюлозы отделяли от раствора и высушивали на воздухе до полного удаления растворителя. По данным ИК-спектроскопии, в образцах обработанной целлюлозы следов о-ксилола не обнаружено. Содержание фуллеренов в композите определяли по приросту массы модифицированного образца; концентрация С₆₀ составила 0.38 мас. %. Модифицированная целлюлоза имела светло-коричневую окраску.

Сорбнионно-кинетические свойства исхолного и модифицированного образцов целлюлозы по отношению к ионам тяжелых металлов были исследованы в статических условиях при 293 К. Кинетику сорбции ионов Cu(II), Ni(II) и Cd(II) проводили из водных растворов сульфатов этих металлов методом ограниченного объема [8] при модуле, равном 100 мл/г (отношение объема раствора (мл) к массе сорбента (г)). Пробирки с одинаковыми навесками полимера т (0.05 г) и одинаковыми объемами V (0.005 л) водного раствора сульфата металла помещали в термостат и выдерживали от 10 мин до 24 ч при встряхивании. Начальная концентрация солей металлов (C_0) составляла 5.4×10^{-5} моль/л. После определенного времени выдержки (t) пробирки вынимали, разделяли фазы фильтрованием и в водной фазе методом атомно-абсорбционной спектроскопии (Сатурн 3Р-1, Беларусь) определяли остаточную концентрацию ионов металла (C_t). Относительная погрешность при определении величины С, не превышала 7%. Количество сорбированных ионов металла в данный момент времени (A_t) находили из соотношения (1):

$$A_t = \frac{(C_0 - C_t)V}{m}.$$
 (1)

Экспериментальные данные по кинетике адсорбции ионов металлов были обработаны с помощью моделей реакций псевдопервого порядка (модель I) [9] и псевдовторого порядка (модель II) [10], которым соответствуют уравнения (2) и (3):

$$A_t = A_{\rm eq} \left[1 - e^{-k_{\rm i} t} \right], \tag{2}$$

$$A_{t} = \frac{k_{2}A_{eq}^{2}t}{1 + k_{2}A_{eq}t},$$
(3)

где A_{eq} — равновесная концентрация сорбированных ионов металла, моль/г; k_1 и k_2 — кинетические константы для реакций псевдопервого (мин⁻¹) и псевдовторого [г/(моль мин)] порядков соответственно.

Величины A_{eq} , k_1 , k_2 рассчитаны с использованием программного пакета OriginPro7.0. Степень адекватности выбранных моделей экспериментальным данным была оценена по значениям коэффициента корреляции (R^2) и приведенного параметра адекватности (χ^2_{red}).

Равновесие сорбции ионов меди изучали в диапазоне начальных концентраций CuSO₄ 0.001–0.2 N. Экспериментальные данные по изотермам сорбции были обработаны по уравнению Лэнгмюра (4):

$$A_{\rm eq} = A_{\infty} \frac{KC_{\rm eq}}{1 + KC_{\rm eq}},\tag{4}$$

где C_{eq} — равновесная концентрация ионов в растворе, моль/л; A_{∞} — сорбционная емкость мономолекулярного слоя, моль/г; K — концентрационная константа сорбционного равновесия, характеризующая интенсивность процесса сорбции, л/моль.

ИК-спектры пленочных образцов целлюлозы и нанокомпозита регистрировали в области $400-4000 \text{ см}^{-1}$ на спектрофотометре Avatar 360 FT-IR ESP (Thermo Nicolet, US).

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Изучение кинетики межфазного распределения ионов металлов в гетерогенной системе раствор электролита-сорбент имеет большое значение для определения кинетических характеристик адсорбента и характера лимитирующей стадии адсорбции. Кинетические кривые, характеризующие процесс накопления ионов металлов в фазе сорбента в зависимости от времени контакта фаз, представлены на рис. 1-3. Количественные параметры кинетики сорбции на целлюлозе и композите приведены в табл. 1. Как видно, при сорбции ионов Cu(II) и Ni(II) на образцах исходного полимера сорбционное равновесие устанавливается через 60 мин после начала процесса, для ионов Cd(II) - примерно через 2 ч. Степень извлечения ионов меди на исходной целлюлозе составляет 60%, для ионов никеля и кадмия 30 и 25% соответственно. Эти данные свидетельствуют о хороших кинетических характеристиках сорбента, но недостаточно высокой сорбционной активности. Для повышения сорбционной емкости сорбента была проведена модификация целлюлозы фуллереном методом импрегнирования полимера раствором С₆₀ в о-ксилоле.

Кинетические исследования показали увеличение скорости сорбционного процесса на композите, о чем свидетельствует сокращение времени достижения равновесия до 40 мин для ионов

Рис. 1. Кинетика сорбции ионов меди: *1* – на целлюлозе; *2* – на композите.

Cu(II) (рис. 1, кривая 2) и до 90 мин для ионов Cd(II) (рис. 3, кривая 2). Степень извлечения меди и кадмия фуллеренсодержащим полимером возрастает до 75 и 50% соответственно. В то же время интенсивность сорбции никеля при переходе от целлюлозы к композиту изменяется в меньшей степени, что иллюстрируется кинетическими кривыми, представленными на рис. 2.

Экспериментальные данные процесса сорбции ионов металлов на целлюлюзе и композите были обработаны с помощью кинетических моделей реакций псевдопервого порядка (модель I) и псевдовторого порядка (модель II) по уравнениям (2) и (3). Результаты расчетов приведены в табл. 2-4. Как видно из табл. 2, в случае сорбции меди коэффициенты корреляции (R^2) для уравнений (2) и (3) имеют близкие значения, но величина параметра адекватности (χ^2_{red}) для модели I существенно меньше, чем для модели II. Это дает основание полагать, что для математического описания кинетики сорбции ионов меди как на исходной, так и на модифицированной целлюлозе предпочтительнее использовать уравнение реакции псевдопервого порядка. Сравнение параметров A_{eq} и k_1 , приведенных в табл. 2, подтверждает сделанный ранее вывод о том, что композит эффективнее извлекает медь по сравнению с немодифицированной целлюлозой.

В случае сорбции ионов никеля как на исходном полимере, так и на композите кинетическая модель I также предпочтительнее, чем модель II. Это следует из сопоставления соответствующих значений коэффициентов корреляции, приведенных в табл. 3. Как видно, $R^2 \approx 0.98$ (удовлетворительная корреляция) в случае использования модели псевдопервого порядка, тогда как $R^2 \approx$ ≈ 0.90 (неудовлетворительная корреляция) для

Рис. 2. Кинетика сорбции ионов никеля: *1* – на целлюлозе; *2* – на композите.

модели псевдовторого порядка. Кроме того, значения приведенных параметров адекватности (χ^2_{red}) для модели I существенно меньше, чем для модели II. Из данных табл. 3 также можно заключить, что при сорбции ионов никеля константа

скорости k₁ практически не изменяется при мо-

дифицировании полимера фуллеренами.

Сорбция ионов кадмия на модифицированной целлюлозе адекватно описывается кинетической моделью псевдопервого порядка (табл. 4). В то же время для немодифицированного полимера получены неудовлетворительные коэффициенты корреляции ($R^2 < 0.9$) как для модели I, так и для модели II. Это означает, что для процесса сорбции ионов Cd(II) на исходной целлюлозе нельзя сделать однозначный вывод о порядке реакции и величине кинетической константы.

Рис. 3. Кинетика сорбции ионов кадмия: *1* – на целлюлозе; *2* – на композите.

Таблица 1. Количественные характеристики сорбции ионов тяжелых металлов на целлюлозе и композите целлюлоза/С₆₀

Сорбент	Сорбат	<i>A</i> _{eq (exp)} × 10 ³ , ммоль/г	<i>t</i> _{eq} , мин	α, %
Целлюлоза	Cu(II)	4.1	60	60
	Ni(II)	3.1	60	30
	Cd(II)	2.2	120	25
Композит	Cu(II)	4.7	40	75
	Ni(II)	3.25	40	35
	Cd(II)	2.7	90	50

Селективность сорбции ионов тяжелых металлов как на немодифицированной целлюлозе, так и на композите можно охарактеризовать рядом Cu(II) > Ni(II) > Cd(II).

Для определения предельной сорбционной емкости изученных полимерных материалов по отношению к ионам меди было исследовано равновесие в системе водный раствор CuSO₄/сорбент и получены изотермы. Изотермы для исходной и модифицированной целлюлозы (рис. 4, 5) различаются по внешнему виду: их типы описаны в классификации ИЮПАК [11]. Изотерма сорбции ионов Cu(II) на исходной целлюлозе является выпуклой кривой (рис. 4), относится к I типу по классификации IUPAC, который характеризуется высокой энергией взаимодействия адсорбатадсорбент. Изотерма для модифицированной целлюлозы представляет собой вогнутую кривую (рис. 5). Такого рода изотермы по классификации IUPAC относятся к III типу, что ассоциируется с повышенным взаимодействием адсорбат-адсорбат по сравнению с адсорбат-адсорбент.

Изотерма сорбции ионов меди на исходной целлюлозе (рис. 4) была обработана по уравнению Лэнгмюра (4), которое используют для описания мономолекулярной адсорбции. Удовлетворительное значение коэффициента детерминации ($R^2 = 0.93$) свидетельствует о правильности предположения, что процесс сорбции ионов

Cu(II) на целлюлозе описывается моделью Лэнгмюра.

Результаты аппроксимации экспериментальных данных показывают, что величина предельной сорбционной емкости по ионам меди (A_{∞}) для исходной целлюлозы составляет 2.48 ммоль/г, константа сорбционного равновесия — K == 30.4 л/моль. Полученное значение параметра Kпозволяет рассчитать безразмерный коэффициент разделения R_L [12]:

$$R_L = \frac{1}{1 + KC_0^m},$$
 (5)

где C_0^m — наибольшая начальная концентрация сорбата в растворе. Найденная величина ($R_L = 0.248$) меньше 1, что свидетельствует о "благо-приятном" характере сорбционного процесса.

Различие в типах изотерм сорбции ионов меди на целлюлозе и фуллеренсодержащем полимере свидетельствует о различных механизмах взаимодействия металла с исходным и модифицированным полимерным сорбентом. Информация о структурных и химических изменениях в целлюлозе в результате модификации полимера фуллереном и о характере взаимодействия ионов меди с целлюлозой и композитом в процессе сорбции была получена из анализа ИК-спектров исходных и модифицированных образцов, а также образцов, насыщенных ионами металла (рис. 6).

В ИК-спектре целлюлозы наблюдается широкая полоса в области 3400–3100 см⁻¹, относящаяся к валентным колебаниям гидроксильных групп, включенных в водородные связи; поглощение в области 2900–2800 см⁻¹ относится к валентным колебаниям СН₂ и СН групп. Полоса поглощения при 1634 см⁻¹ относится к адсорбированным молекулам кристаллизационной воды, полоса при 1425 см⁻¹ идентифицируется как колебания групп δ (CH₂) и δ (CH). Деформационные плоскостные колебания групп δ (OH) и δ (CH) проявляются в области 1360–1280 см⁻¹. Широкая полоса с интенсивным максимумом при 1028 см⁻¹ включает валентные колебания связи С–ОН и де-

Таблица 2. Кинетические параметры сорбции ионов меди на целлюлозе и композите целлюлоза/фуллерен, рассчитанные при помощи моделей реакций псевдопервого и псевдовторого порядков

Сорбент	Модель	$A_{ m eq} imes 10^3,$ <u>ммоль</u> г	$k_1 \times 10^2$, мин ⁻¹	$k_2, \frac{\Gamma}{_{\text{MMOЛЬ MИH}}}$	<i>R</i> ²	$\chi^2_{ m red} imes 10^6, \ \left(rac{{ m MMOJb}}{\Gamma} ight)^2$
Целлюлоза	Ι	4.10	7.73		0.999	0.003
	II	4.59		24.25	0.990	0.023
Композит	Ι	4.72	9.69		0.998	0.006
	II	5.15		31.27	0.989	0.033

АЛЕКСЕЕВА и др.

Сорбент	Модель	$A_{\rm eq} imes 10^3,$ <u>ммоль</u> г	$k_1 \times 10^2$, мин ⁻¹	$k_2, \frac{\Gamma}{\text{ммоль мин}}$	<i>R</i> ²	$\chi^2_{red} imes 10^6,$ $\left(rac{\mathrm{MMOJB}}{\Gamma} ight)^2$
Целлюлоза	Ι	3.10	5.67		0.976	0.025
	II	3.10		38.84	0.899	0.107
Композит	Ι	3.25	5.64		0.977	0.027
	II	3.25		36.74	0.901	0.115

Таблица 3. Кинетические параметры сорбции ионов никеля на целлюлозе и композите целлюлоза/фуллерен, рассчитанные при помощи моделей реакций псевдопервого и псевдовторого порядков

Таблица 4. Кинетические параметры сорбции ионов кадмия на целлюлозе и композите целлюлоза/фуллерен, рассчитанные при помощи моделей реакций псевдопервого и псевдовторого порядков

Сорбент	Модель	$A_{ m eq} imes 10^3,$ <u>ммоль</u> г	$k_1 \times 10^2$, мин ⁻¹	$k_2, \frac{\Gamma}{$ ммоль мин	<i>R</i> ²	$\chi^2_{\rm red} imes 10^6,$ $\left(\frac{ m Mmojb}{\Gamma} ight)^2$
Целлюлоза	Ι	2.13	2.29		0.870	0.063
	II	2.26		14.90	0.897	0.049
Композит	Ι	2.66	7.34		0.997	0.002
	II	2.66		63.36	0.961	0.026

формационные колебания групп СН и ОН [13]. ИК-спектр фуллерена содержит четыре характерные полосы поглощения, обусловленные колебаниями свободной молекулы C_{60} , при 1429, 1183, 577 и 527 см⁻¹. Колебания полосы при 1429 см⁻¹ наиболее чувствительны к переносу заряда [14].

Спектры исходной целлюлозы и модифицированной фуллереном имеют некоторые различия. В спектре фуллеренсодержащего полимера наблюдаются небольшие сдвиги полос при 1634 и 1425 см⁻¹ на 3 см⁻¹ в высокочастотную область и низкочастотные сдвиги полос при 1369 и 1028 см⁻¹ на 2 см⁻¹.

В настоящей работе анализ ИК-спектров исследуемых образцов проведен с использованием структурно-чувствительного параметра D_{1369}/D_{2900} , характеризующего перераспределение системы водородных связей в целлюлозном материале, и параметра D_{1028}/D_{2900} , связанного с изменением концентрации кислородсодержащих групп [13]. Уменьшение значения параметра D_{1369}/D_{2900} для спектра композита по сравнению с параметром для исходного образца (табл. 5) происходит вследствие

Рис. 4. Изотерма сорбции ионов меди на целлюлозе.

Рис. 5. Изотерма сорбции ионов меди на композите.

Рис. 6. ИК-спектры образцов: 1 – целлюлоза; 2 – композит; 3 – целлюлоза, насыщенная ионами Cu(II); 4 – композит, насыщенный ионами Cu(II).

разрыхления структуры фуллеренсодержащей целлюлозы и увеличения доли аморфной области. Снижение величины параметра D_{1028}/D_{2900} и сдвиг (на 2 см⁻¹) максимума полосы поглощения при 1028 см⁻¹ в спектре модифицированной целлюлозы обусловлены уменьшением электронной плотности на атоме кислорода ОН-группы. На основании этих данных можно предположить, что электронодонорные группы полимера взаимодействуют с акцепторной молекулой С₆₀. Небольшая величина сдвига (на 2 см⁻¹) полосы поглощения при 1028 см⁻¹ в ИК-спектре композита (рис. 6) свидетельствует о том, что взаимодействие происходит без переноса заряда с донора на акцептор, а образующийся комплекс следует отнести к межмолекулярным.

Однозначно определить природу взаимодействия ионов меди и целлюлозных сорбентов на основании спектральных данных весьма затруднительно. Среди возможных механизмов связывания ионов металлов целлюлозосодержащими материалами указываются ионный обмен с участием карбоксильных и гидроксильных групп, комплексообразование с участием групп –OH, –CO, ионный обмен или комплексообразование для групп–СООН, а также физическая адсорбция [15]. Снижение относительной интенсивности полосы при 1028 см⁻¹ в спектре целлюлозы, насыщенной ионами меди, с 9.55 до 9.18 (табл. 5) указывает на уменьшение электронной плотности на атоме кислорода электронодонорной группы природного лиганда (\overline{L}) в результате координационного взаимодействия с ионом металла (M) по схеме:

$$\overline{L} + M \leftrightarrow \overline{L}M$$

В спектре композита, содержащего ионы меди, изменение параметра D_{1028}/D_{2900} (с 8.93 до 8.97) незначительно. Вероятно, это связано с тем, что в композите непосредственное взаимодействие ионов металла с активными центрами целлюлозы затруднительно, т.к. электронодонорные группы полимера взаимодействуют с молекулой C_{60} с образованием межмолекулярных комплексов. Адсорбция ионов Cu(II) на композите осуществляется с участием межмолекулярных комплексов целлюлозы и фуллерена за счет дисперсионных сил.

Установление механизма взаимодействия ионов металлов с полимерными сорбентами важно для выявления возможностей их практического применения, включая количественное разделение многокомпонентных растворов электролитов и концентрирование ионов металлов. Поэтому была изучена десорбция ионов меди из исследованных сорбентов растворами кислот и щелочей. Результаты элюирования показали, что степень извлечения ионов меди из фазы композита целлюлоза/фуллерен в течение 50 мин растворами 0.1N HCl и 1N NaOH составляет 60 и 70% соответственно.

ЗАКЛЮЧЕНИЕ

Проведена модификация целлюлозы методом импрегнирования полимера раствором наноуглеродных частиц C_{60} в *о*-ксилоле. Показано, что введение фуллеренов в полимерную матрицу позволяет получить полимерные материалы с улучшенной сорбционной способностью по отношению к меди, никелю и кадмию. Установлено, что кинетика сорбции ионов меди и никеля как на исходной, так и на фуллеренсодержащей целлюлозе, а также кадмия на модифицированном полимере описывается уравнением реакции псевдо-

Таблица 5. Относительные интенсивности полос поглощения в спектрах образцов целлюлозы и композита

Отношение оптических плотностей	Целлюлоза	Композит	Целлюлоза, насыщенная ионами Cu(II)	Композит, насыщенный ионами Cu(II)
D_{1028}/D_{2900}	9.55	8.93	9.18	8.97
D_{1369}/D_{2900}	1.32	9.18	1.18	1.22

первого порядка. Селективность сорбции ионов тяжелых металлов на исходной целлюлозе и композите характеризуется рядом Cu(II) > Ni(II) > > Cd(II). Обнаружено, что равновесие сорбции ионов Cu(II) на целлюлозе и композите описывается различными типами изотерм, что объясняется различными механизмами взаимодействия ионов металла с исходной целлюлозой и композитом. Методом ИК-спектороскопии выявлено, что в композите осуществляется взаимодействие полимера и фуллерена с образованием межмолекулярного комплекса.

СПИСОК ЛИТЕРАТУРЫ

- Растворы в химии и технологии модифицирования полимерных материалов (Проблемы химии растворов) / Отв. ред. Цивадзе А.Ю. Издательство "Иваново", 2014. 544 с.
- Багровская Н.А., Алексеева О.В., Рожкова О.В. и др. // Физикохимия поверхности и защита материалов. 2008. Т. 44. № 4. С. 423. (Bagrovskaya N.A., Alekseeva O.V., Rozhkova O.V. et al. // Protection of Metals and Physical Chemistry of Surfaces. 2008. V. 44. № 4. P. 394–396).
- 3. *Самонин В.В., Слуцкер Е.М.* // Журн. физ. химии. 2005. Т. 79. № 1. С. 95. (Samonin V.V., Slutsker E.M. // Russian J. of Physical Chemistry A. 2005. V. 79. № 1. P. 87–90.)
- Badamshina E., Gafurova M. // J. Mater. Chem. 2012. V. 22. Is. 19. P. 9427.
- Li Y.-H., Ding J., Luan Z. et al. // Carbon. 2003. V. 41. P. 2787.

- Alekseeva O.V., Bagrovskaya N.A., Noskov A.V. // Arab. J. Chem. 2018. V.11. Is. 7. P.1160.
- Безмельницын В.Н., Елецкий А.В., Окунь М.В. // Успехи физ. наук. 1998. Т. 168. № 11. С. 1195. (Bezmel'nitsyn V.N., Eletskiĭ A.V., Okun' M.V. // Physics-uspekhi. 1998. V. 41. № 11. Р. 1091–1114.)
- Багровская Н.А., Никифорова Т.Е., Козлов В.А. // Журн. общей химии. 2002. Т. 72. Вып. 3. С. 373. (Bagrovskaya N.A., Nikiforova T.E., Kozlov V.A. // Russian Journal of General Chemistry. 2002. V. 72. № 3. Р. 345–348).
- 9. Ho Sh.// Scientometrics. 2004. V. 59. № 1. P. 171
- 10. Cazetta A.L., Vargas A.M.M., Nogami E.M. et al. // Chem. Eng. J. 2011. V. 174. Is. 1. P. 117.
- 11. *Sing K., Everett D., Haul R. et al.* // Pure Appl. Chem. 1985. V. 57. № 4. P. 603–619.
- Ayawei N., Ebelegi A.N., Wankasi D. // J. Chemistry. 2017. V. 2017. 3039817.
- Дехант И., Данц Р., Киммер В., Шмольке Р. Инфракрасная спектроскопия полимеров / Пер. с нем. под ред. Архангельского В.В. М. Химия, 1976. 471 с. (Dechant J., Danz R., Kimmer W., Schmolke R. Ultraspectroscopische untersuchungen an polymeren. Berlin: Akademie Verlag, 1972).
- Конарев Д.В., Любовская Г.Н. // Успехи химии. 1999. Т. 68. № 1. С. 22. (Konarev D.V., Lyubovskaya G.N. // Russian Chemical Reviews. 1999 V. 68. № 1. Р. 19– 38).
- 15. Никифорова Т.Е., Багровская Н.А., Козлов В.А., Лилин С.А. // Химия растительного сырья. 2009. № 1. С. 5.