____ ФИЗИКО-ХИМИЧЕСКИЕ ПРОЦЕССЫ ____ НА МЕЖФАЗНЫХ ГРАНИЦАХ _____

УДК 541.13;622

К УСЛОВИЯМ СМЕНЫ ТИПА КРИВОЙ ЗАВИСИМОСТИ ВЕЛИЧИНЫ ЭФФЕКТА РЕБИНДЕРА ОТ ОБЪЕМНОЙ КОНЦЕНТРАЦИИ АДСОРБАТА С ИЗОТЕРМОЙ S-ОБРАЗНОГО ВИДА

© 2019 г. Э. М. Подгаецкий*

Федеральное государственное бюджетное учреждение науки Институт прикладной механики Российской академии наук, Россия 119991, Москва, Ленинский просп., 32a *e-mail: Podgaetsky@mail.ru

Поступила в редакцию 23.08.2018 г. После доработки 30.08.2018 г. Принята к публикации 05.09.2018 г.

Исследуется аналитически величина термодинамической оценки эффекта Ребиндера как функция объемной концентрации адсорбата в жидком растворе омывающем твердую поверхность в случае, когда его изотерма на недеформированной поверхности имеет S-обраную форму. В терминах построенной ранее теории равновесной адсорбции на твердой поверхности с учетом ее деформации и наличия на ней электрического заряда выводятся условия смены типа зависимости величины эффекта Ребиндера от объемной концентрации адсорбата – от куполообразной к монотонно возрастающей.

Ключевые слова: адсорбция, эффект Ребиндера, концентрационная зависимость **DOI:** 10.1134/S0044185619020244

введение

Открытие эффекта Ребиндера [1] – снижение, например, поверхностной твердости после адсорбции активного компонента на поверхности и введение его в научный оборот в последующие десятилетия способствовали применению эффекта в различных видах производственной деятельности прежде всего в горном деле [2]. Широкое применение эффекта со временем столкнулось с трудностями управления в его использовании – адсорбционный эффект мог и снижать, а мог и повышать поверхностную твердость в зависимости от многих факторов – от рода поверхности, от адсорбата, его концентрации в растворе и даже от растворителя [3]. Эти трудности и отсутствие объясняющей теории приводили иногда даже к отрицанию практической пользы эффекта в горном деле [4].

Построенная в [5–8] термодинамическая теория равновесной адсорбции из жидкости на твердой поверхности с учетом электрического заряда на ней и ее деформации позволила вывести [9, 10] аналитически зависимость приращения $\Delta \tilde{\sigma}_r$, поверхностного натяжения $\tilde{\sigma}_r$ межфазного слоя вследствие адсорбции в функции объемной концентрации адсорбата \tilde{c} учетом электрического потециала $\tilde{\phi}$ твердой фазы и ее деформации. Полное выражение этого приращения в построенной теории [9, 10] содержит слагаемое – интегральный оператор, оказавшийся отрицательно определенной величиной. В [11] для случая, когда адсорбатом являлось ПАВ (поверхностно активное вещество) — ДТАБ (додецилтриметиламмония бромид), а адсорбентом кварц, гранит и микроклин, была использована аналитически простая аппроксимация исходной изотермы адсорбции из [12], имевшей выраженный S-образный вид ее формы. Выведенные благодаря этому аналитические выражения приращения $\Delta \tilde{\sigma}_r$ смогли описать наличие у него острого максимума на оси \tilde{c} , полученного экспериментально при бурении в граните и кварце — рис. 1.

При этом точка максимума на оси $\tilde{c} - \tilde{c}_{max} - в$ использованной теории оказалась весьма близкой к экспериментальным значениям точки максимума эффекта Ребиндера в эксперименте для гранита и кварца.

Наличие такого острого максимума, т.е. узость по оси \tilde{c} области действия эффекта Ребиндера ($-\Delta \tilde{\sigma}_r > 0$), называемая часто "избирательностью" активного компонента, является типичным случаем для многих ПАВ [13]. Что и послужило автору [4] поводом заключить, что в реальных условиях бурения в горном деле эффект Ребиндера мало применим.

Таким образом возникает потребность анализа теории эффекта, чтобы избежать либо значительно уменьшить остроту такой избирательности.

Логарифм концентрации ДТАБ, моль/л

Рис. 1. Изменение скорости бурения в различных породах алмазной бурильной коронкой при использовании водных растворов ДТАБ: *1* – гранит уэстерли; *2* – кварц; *3* – микроклин [3].

ИСХОДНЫЕ УРАВНЕНИЯ

S-образная форма изотермы адсорбции поверхностно активного компонента в жидкости, омывающей твердую поверхность, например, ПАВ, делает зависимость величины эффекта Ребиндера от \tilde{c} обычно остро избирательной. С другой стороны она позволяет применить, как в [11], кусочно-линейную аппроксимацию графика изотермы и получить возможность сравнительного анализа простых выражений для $\Delta \tilde{\sigma}_r$. Для этого необходимо наличие двух таких однокомпонентных изотерм с одинаковым ПАВ и одинаковым адсорбентом, а их различие вызвано влиянием, например, неактивных добавок в жилком растворе. Такие две изотермы для ДТАБ в водном растворе на кремнеземе, взятые из [14] и аналогичные изотерме из [12] представлены на рис. 2 кривые (1) и (2). Кривая (2) соответствует случаю, когда в раствор добавлен 0.1 M NaBr.

Воспользуемся теперь теорией [9, 10], построенной для однокомпонентной равновесной адсорбции из жидкого раствора на твердой поверхности при наличии на ней электрического заряда с поверхностной плотностью \tilde{q} и с учетом ее деформации, а исходной изотермой, т.е. на недеформированной и не заряженной поверхности, является изотерма S-образного вида, подобно изотермам на рис. 2. Для применения аналитики теории [9, 10] введем безразмерные переменные

Рис. 2. Изотерма адсорбции додецилтриметиламмония бромида в водном растворе на кремнеземе в отсутствие -(1) и с добавкой 0.1 M NaBr -(2) [14].

$$\Gamma = \frac{\tilde{\Gamma}}{\Gamma_*}, \quad c = \frac{\tilde{c}}{c_*}, \quad \sigma_r = \frac{\tilde{\sigma}_r}{RT\Gamma_*}, \quad q = \frac{\tilde{q}\phi_*}{RT\Gamma_*}, \quad (1)$$
$$\phi = \frac{\tilde{\phi}}{\phi_*}, \quad \vartheta \equiv \frac{S - S_0}{S_0},$$

где \tilde{c} , $\tilde{\Gamma}$, $\tilde{\sigma}_r$, \tilde{q} , $\tilde{\phi}$ — размерные объемная концентрация адсорбата в жидкости, удельная поверхностная концентрация адсорбата, поверхностное натяжение тонкого межфазного слоя, удельная плотность поверхностного электрического заряда, электрический потенциал твердой фазы; S — площадь межфазной поверхности жидкость/твердая фаза, $S_0 \equiv S|_{\vartheta=0}$, R — универсальная газовая постоянная, T — абсолютная температура в слое. $c_* > 0$, $\Gamma_* > 0$, ϕ_* — масштабные параметры соответствующих переменных.

Выпишем из [9, 10] аналитические выражения термодинамической оценки величины эффекта Ребиндера Δσ

$$\overline{\Delta\sigma} \equiv \sigma_r (0, \varphi, \vartheta) - \sigma_r (\Gamma, \varphi, \vartheta) =$$

$$= \int_0^{\Gamma} \Gamma \frac{A'}{A} d\Gamma - z\Gamma \equiv I - z\Gamma, \qquad (2)$$

$$z \equiv -(1 + \vartheta)(g + k_0),$$

$$I \equiv \int_{0}^{1} \Gamma \frac{A'}{A} d\Gamma, \qquad (2a)$$

где $k_0 \equiv \text{const}, g(\varphi)$ — параметры теории [9, 10], а функция $A(\Gamma) \equiv A$ определяется уравнением изотермы до деформации поверхности при фиксированном значении потенциала φ_0

$$Bc\Big|_{\substack{\vartheta=0\\\varphi=\varphi_0}} = A(\Gamma), \tag{3}$$
$$B \equiv \text{const} \ge 0.$$

Будем полагать, что функция $A(\Gamma)$ в (3) удовлетворяет обычным условиям

ı.

$$A' \equiv \frac{dA}{d\Gamma} > 0, \quad \Gamma > 0, \tag{3a}$$

A(0) = 0, A'(0) = const > 0. (3b)

Величина $\overline{\Delta}\sigma$, введенная в (2), облегчает использование терминов "положительный" ($\overline{\Delta}\sigma > 0$) или "отрицательный" ($\overline{\Delta}\sigma < 0$) эффект Ребиндера, впервые введенных в [8].

Выпишем также выведенное в [9, 10] уравнение адсорбции

$$Bc \exp\left\{\int_{\phi_0}^{\phi} \varepsilon_1(\phi) d\phi - \frac{\vartheta z}{1+\vartheta}\right\} = A(\Gamma), \qquad (4)$$

в котором функция ε_l(φ) определяется плотностью электрического заряда *q* поверхности адсорбента в виде

$$q \equiv \frac{\tilde{q}\phi_*}{RT\Gamma_*} = \varepsilon_0(\phi,\vartheta) + \varepsilon_1(\phi)\Gamma + \Gamma \frac{dg}{d\phi}\vartheta.$$
(4a)

Реконструкцию функции $A(\Gamma)$ по кривым (1), (2) рис. 2 будем строить, предполагая, что они измерялись на недеформированной поверхности, т.е. при $\vartheta = 0$, и считая $\varepsilon_1 \equiv 0$. Экспериментальные зависимости $\tilde{\Gamma}$ от \tilde{c} на рис. 2, т.е. изотермы адсорбции (1), (2), фрагментарно близки к отрезкам прямых, кроме области малых значений \tilde{c} , в которой эти кривые имеют выраженный нелинейный вид. Граничное значение концентрации \tilde{c} в этой области для кривой (1) обозначим \tilde{c}_{11}^0 , а для кривой (2) – \tilde{c}_{12}^0 . Вне этих областей будем аппроксимировать зависимость $\tilde{\Gamma}(\tilde{c})$ отрезками прямых аналогично способу, изложенному в [11]. Обозначим такую аппроксимацию для изотермы (1) – $\tilde{\Gamma}_{(1)}$, а для изотермы (2) – $\tilde{\Gamma}_{(2)}$.

Как видно из рис. 2 кривые (1) и (2) при больших значениях \tilde{c} можно аппроксимировать константами — $\tilde{\Gamma}_{(1)} = \tilde{\Gamma}_{31} \equiv \text{сопst}$ для кривой (1) и $\tilde{\Gamma}_{(2)} = \tilde{\Gamma}_{32} \equiv \text{сопst}$ для кривой (2). Теперь проведем вручную прямую с наклоном $\tilde{\kappa}_{21}$, приближенную по ее наклону и положению к центральному участку кривой (1) и аналогично с наклоном $\tilde{\kappa}_{22}$ для кривой (2). Пересечение такой прямой с асимптотой $\tilde{\Gamma}_{(1)} = \tilde{\Gamma}_{31} \equiv \text{сопst}$ для кривой (1) определяет точку \tilde{c}_{31}^0 , а для кривой (2) — точку \tilde{c}_{32}^0 . Далее проведем прямую линию, приближенную вручную по ее наклону $\tilde{\kappa}_{11}$ и положению к кривой (1), и аналогично по наклону $\tilde{\kappa}_{12}$ и положению к кривой (2) в выпуклой части этих кривых, предшествующих точке изгиба. Пересечение этих наклонных прямых с наклонными прямыми с коэффициентами $\tilde{\kappa}_{21}$, $\tilde{\kappa}_{22}$, построенными ранее, определяет точку ($\tilde{c}_{21}^0, \tilde{\Gamma}_{21}$), соответствующую изотерме (1), и точку ($\tilde{c}_{22}^0, \tilde{\Gamma}_{22}$) – изотерме (2). Обе эти точки являются правыми концами отрезков прямолинейной аппроксимации, соответственно, для кривой (1) и (2), в выпуклой области этих кривых. Крайние левые точки $\tilde{c}_{11}^0, \tilde{c}_{12}^0$ в дальнешем выбираются на этих отрезках из условия наибольшего удлинения фрагментов ($\tilde{c}_{11}^0, \tilde{c}_{21}^0$) и ($\tilde{c}_{12}^0, \tilde{c}_{22}^0$), но без скачка кривизны и используются для построения нелинейной аппроксимации функций $\tilde{\Gamma}_{(1)}$ и $\tilde{\Gamma}_{(2)}$ в области $\tilde{c} < \tilde{c}_{11}^0$ и $\tilde{c} < \tilde{c}_{12}^0$ соответственно.

Таким образом каждая из экспериментальных кривых (*I*), (*2*) из рис. 2 может быть аппроксимирована описанным образом ручной подгонки непрерывной кусочно-линейной функцией $\tilde{\Gamma}_{(1)}$ при $\tilde{c} > \tilde{c}_{11}^0$ для кривой (*I*) и функцией $\tilde{\Gamma}_{(2)}$ при $\tilde{c} > \tilde{c}_{12}^0$ для кривой (*2*). Как указывалось ранее при $\tilde{c} > \tilde{c}_{31}^0$ для кривой (*I*) и при $\tilde{c} > \tilde{c}_{32}^0$ для кривой (*2*) будем использовать, соответственно, аппроксимации $\tilde{\Gamma}_{(1)} \equiv \tilde{\Gamma}_{31}$ и $\tilde{\Gamma}_{(2)} \equiv \tilde{\Gamma}_{32}$. Левые концы первых интервалов, т.е. точки \tilde{c}_{11}^0 и \tilde{c}_{12}^0 , определяются подгонкой по указанному выше критерию.

Аналитически построенные аппроксимации $\tilde{\Gamma}_{(1)}$ в области $\tilde{c} > \tilde{c}_{11}^0$ и $\tilde{\Gamma}_{(2)}$ в области $\tilde{c} > \tilde{c}_{12}^0$ имеют вид

$$\tilde{\Gamma}_{(1)} = \begin{cases} \tilde{\Gamma}_{11} + \tilde{k}_{11} \left(\tilde{c} - \tilde{c}_{11}^{0} \right), & \tilde{c}_{11}^{0} < \tilde{c} < \tilde{c}_{21}^{0} \\ \tilde{\Gamma}_{21} + \tilde{k}_{21} \left(\tilde{c} - \tilde{c}_{21}^{0} \right), & \tilde{c}_{21}^{0} < \tilde{c} < \tilde{c}_{31}^{0}, \\ \tilde{\Gamma}_{31}, & \tilde{c} > \tilde{c}_{31}^{0} \end{cases}$$
(5)

$$\tilde{\Gamma}_{(2)} = \begin{cases} \tilde{\Gamma}_{12} + \tilde{k}_{12} \left(\tilde{c} - \tilde{c}_{12}^0 \right), & \tilde{c}_{12}^0 < \tilde{c} < \tilde{c}_{22}^0 \\ \tilde{\Gamma}_{22} + \tilde{k}_{22} \left(\tilde{c} - \tilde{c}_{22}^0 \right), & \tilde{c}_{22}^0 < \tilde{c} < \tilde{c}_{32}^0 \\ \tilde{\Gamma}_{32}, & \tilde{c} > \tilde{c}_{32}^0 \end{cases}$$
(6)

Коэффициенты наклона прямых $\tilde{\kappa}_{11}$, $\tilde{\kappa}_{21}$, $\tilde{\kappa}_{12}$, $\tilde{\kappa}_{22}$ связаны с величинами $\tilde{\Gamma}_{ij}$, \tilde{c}_{ij} (j = 1, 2; i = 1, 2, 3) условиями

$$\tilde{\kappa}_{11} = \frac{\tilde{\Gamma}_{21} - \tilde{\Gamma}_{11}}{\tilde{c}_{21}^0 - \tilde{c}_{11}^0}, \quad \tilde{\kappa}_{21} = \frac{\tilde{\Gamma}_{31} - \tilde{\Gamma}_{21}}{\tilde{c}_{31}^0 - \tilde{c}_{21}^0}, \\ \tilde{\kappa}_{12} = \frac{\tilde{\Gamma}_{22} - \tilde{\Gamma}_{12}}{\tilde{c}_{22}^0 - \tilde{c}_{12}^0}, \quad \tilde{\kappa}_{22} = \frac{\tilde{\Gamma}_{32} - \tilde{\Gamma}_{22}}{\tilde{c}_{32}^0 - \tilde{c}_{22}^0}.$$
(7)

На рис. 3 представлены графики аппроксимаций $\tilde{\Gamma}_{(1)}(\tilde{c})$ и $\tilde{\Gamma}_{(2)}(\tilde{c})$, построенные указанным ме-

Рис. 3. Графики функций $\tilde{\Gamma}_{(1)}$ (5) и $\tilde{\Gamma}_{(2)}$ (6) в области их кусочно-линейной зависимости — при $\tilde{c} > \tilde{c}_{11}^0$ для $\tilde{\Gamma}_{(1)}$ и при $\tilde{c} > \tilde{c}_{12}^0$ для $\tilde{\Gamma}_{(2)}$.

тодом ручной подгонки в области их кусочно-линейной зависимости. А на рис. 4 функции $\tilde{\Gamma}_{(1)}$ и $\tilde{\Gamma}_{(2)}$ изображены иллюстративно также и в области значений $\tilde{c} (\tilde{c} \leq \tilde{c}_{11}^0 \text{ для } \tilde{\Gamma}_{(1)}$ и $\tilde{c} \leq \tilde{c}_{12}^0 \text{ для } \tilde{\Gamma}_{(2)})$, где эти функции зависят от \tilde{c} нелинейно.

Чтобы провести оцифровку значений \tilde{c}_{ij}^0 , $\tilde{\Gamma}_{ij}$, воспользуемся ортогональной сеткой, налагаемой на рис. 2 с построенными на нем аппроксимациями $\tilde{\Gamma}_{(1)}$, $\tilde{\Gamma}_{(2)}$ в области $\tilde{c} > \tilde{c}_{11}^0$ и $\tilde{c} > \tilde{c}_{12}^0$ соответственно. Результаты такой оцифровки в миллиметрах по горизонтальной (\vec{MM}) оси и в миллиметрах по вертикальной (\vec{MM}) оси даны в табл. 1, где приведены также избранные указанным ранее способом значения \tilde{c}_{11}^0 , \tilde{c}_{12}^0 и расчитанные по формулам (7) значения $\tilde{\kappa}_{ij}$.

Таблица 1. Значения $\tilde{c}_{11}^0, \tilde{c}_{21}^0, \tilde{c}_{31}^0, \tilde{\Gamma}_{11}, \tilde{\Gamma}_{21}, \tilde{\Gamma}_{31}, \tilde{\kappa}_{11}, \tilde{\kappa}_{21}$

$\widetilde{c}_{11}^0, \rightarrow MM$	$ \widetilde{c}_{21}^{0}, \\ _{MM} $	$ \widetilde{c}_{31}^{0}, \\ _{MM} $	$ \frac{\tilde{k}_{11}}{\stackrel{\text{MM}}{\longrightarrow}} $	$ \frac{\tilde{k}_{21}}{\stackrel{\text{MM}}{\longrightarrow}} $	Γ ₁₁ , мм ↑	Γ ₂₁ , мм ↑	Γ̃ ₃₁ , мм ↑
4.0	17.5	45.5	0.307	0.964	8.0	13.0	40.0

Рис. 4. К иллюстрации положения точек $\tilde{\Gamma}_{12}$, $\tilde{\Gamma}_{22}$, $\tilde{\Gamma}_{11}$, $\tilde{\Gamma}_{21}$ по оси $\tilde{\Gamma}$ и точек \tilde{c}_{12}^0 , \tilde{c}_{22}^0 , \tilde{c}_{11}^0 , \tilde{c}_{21}^0 по осии \tilde{c} на графиках функций $\tilde{\Gamma}_{(1)}$, $\tilde{\Gamma}_{(2)}$ в области значений $\tilde{c} \leq \tilde{c}_{21}$ и $\tilde{c} \leq \tilde{c}_{22}$ соответственно.

В табл. 2 приведены значения \tilde{c}_{12}^0 , \tilde{c}_{22}^0 , \tilde{c}_{32}^0 , $\tilde{\Gamma}_{12}$, $\tilde{\Gamma}_{22}$, $\tilde{\Gamma}_{32}$, $\tilde{\kappa}_{12}$, $\tilde{\kappa}_{22}$ для аппроксимации $\tilde{\Gamma}_{(2)}$, полученные аналогично.

Для перевода значений \tilde{c} , $\tilde{\Gamma}$, $\tilde{\kappa}$ в табл. 1, 2 в физические размерности $\frac{\text{mmol}}{\text{kg}}$, $\frac{\mu\text{mol}}{\text{M}^2}$, $\frac{\text{kg}}{\text{M}^2}$ нужно воспользоваться удельными на 1 мм вертикальной и горизонтальной оси коэффициентами миллиметровой ортогональной сетки. Наложение указанной сетки на рис. 3 позволяет найти приближенные значения

$$1 \xrightarrow{\text{MM}} = 0.313 \frac{\text{mmol}}{\text{kg}}, \ 1 \text{ MM} \uparrow = 0.1 \frac{\mu \text{mol}}{\text{M}^2}.$$
 (8)

Результат пересчета значений \tilde{c}_{ij}^0 , $\tilde{\Gamma}_{ij}$, \tilde{k}_{ij} на физические размерности с учетом коэффициентов (8) иллюстрирует табл. 3.

Чтобы выразить величины из табл. 3 в безразмерных переменных, выберем конкретные масштабные значения Γ_* и c_*

$$\Gamma_* \equiv \tilde{\Gamma}_{31}, \quad \tilde{c}_* \equiv \tilde{c}_{31}^0 \tag{9}$$

и введем теперь безразмерные значения c_{ij}^0 , Γ_{ij} , k_{ij} и функции $\Gamma_{(1)}$, $\Gamma_{(2)}$

ФИЗИКОХИМИЯ ПОВЕРХНОСТИ И ЗАЩИТА МАТЕРИАЛОВ том 55 № 2 2019

Таблица 2. Значения \tilde{c}_{12}^0 , \tilde{c}_{22}^0 , \tilde{c}_{32}^0 , $\tilde{\Gamma}_{12}$, $\tilde{\Gamma}_{22}$, $\tilde{\Gamma}_{32}$, $\tilde{\kappa}_{12}$, $\tilde{\kappa}_{22}$

$ \widetilde{c}_{12}^{0}, \rightarrow MM $	$\tilde{c}_{22}^{0}, \rightarrow MM$	$\widetilde{c}_{32}^{0}, \rightarrow MM$	$ \begin{array}{c} \tilde{k}_{12}, \\ \underline{MM}^{\uparrow} \\ \overrightarrow{MM} \end{array} $	$ \begin{array}{c} \tilde{k}_{22}, \\ \underline{MM}^{\uparrow} \\ \overrightarrow{MM} \end{array} $	Γ̃ ₁₂ , мм↑	Γ̃ ₂₂ , мм↑	Γ̃ ₃₂ , мм↑
2.0	5.0	15.0	0.166	4.4	1.5	2.0	46.0

$$c_{ij}^{0} \equiv \frac{\tilde{c}_{ij}^{0}}{c_{*}}, \quad \Gamma_{ij} \equiv \frac{\tilde{\Gamma}_{ij}}{\Gamma_{*}} (i = 1, 2, 3; j = 1, 2),$$

$$k_{ij} \equiv \frac{\tilde{k}_{ij}c_{*}}{\Gamma_{*}}, \quad (i = 1, 2; j = 1, 2),$$
(10)

$$\Gamma_{(1)} = \frac{\tilde{\Gamma}_{(1)}}{\Gamma_*}, \ \ \Gamma_{(2)} = \frac{\tilde{\Gamma}_{(2)}}{\Gamma_*}.$$
 (11)

В табл. 4 приведены значения c_{ij}^0 , Γ_{ij} , k_{ij} , расчитанные из табл. 3 с учетом (10), (11) и (8).

Функции $\Gamma_{(1)}$, $\Gamma_{(2)}$ с учетом (5), (6), (8), (10), (11) примут вид соответственно при $c > c_{11}^0$ и $c > c_{21}^0$

$$\Gamma_{(1)} = \begin{cases}
\Gamma_{11} + k_{11}(c - c_{11}^{0}), \quad c_{11}^{0} < c < c_{21}^{0} \\
\Gamma_{21} + k_{21}(c - c_{21}^{0}), \quad c_{21}^{0} < c < c_{31}^{0}, \\
\Gamma_{31}, \quad c > c_{31}^{0}
\end{cases}$$
(12)
$$\Gamma_{(2)} = \begin{cases}
\Gamma_{12} + k_{12}(c - c_{12}^{0}), \quad c_{12}^{0} < c < c_{22}^{0} \\
\Gamma_{22} + k_{22}(c - c_{22}^{0}), \quad c_{22}^{0} < c < c_{32}^{0}. \\
\Gamma_{32}, \quad c > c_{32}^{0}
\end{cases}$$
(13)

Экспериментальные точки (знаки квадратов и кружков) на кривых (*I*) и (*2*) рис. 2 в области малых значений \tilde{c} , т.е. при $\tilde{c} \leq \tilde{c}_{11}^0$ для кривой (*I*) и $\tilde{c} \leq \tilde{c}_{12}^0$ для кривой (*2*) сильно затрудняют построение графической аппроксимации $\tilde{\Gamma}_{(1)}$ и $\tilde{\Gamma}_{(2)}$ в этих областях \tilde{c} , особенно для $\tilde{\Gamma}_{(2)}$ как это видно из рис. 2. Поэтому будем строить аппроксимации $\tilde{\Gamma}_{(1)}$ и $\tilde{\Gamma}_{(2)}$ в этих областях аналитически с использованием специального условия – существование при $\tilde{c} \ll \tilde{c}_{11}^0$ и $\tilde{c} \ll \tilde{c}_{12}^0$ участка Генри у графиков

изотерм на рис. 2 соответственно условию (3в). Тогда такие участки будут и у функций $\Gamma_{(1)}$, $\Gamma_{(2)}$ в области малых *с*.

ПОСТРОЕНИЕ НЕЛИНЕЙНОЙ АППРОКСИМАЦИИ ФУНКЦИЙ $\Gamma_{(1)}$, $\Gamma_{(2)}$

В ОБЛАСТИ $c \le c_{11}^0$ И $c \le c_{12}^0$ СООТВЕТСТВЕННО

Используя теперь безразмерные переменные Γ , *c*, рассмотрим функцию $\Phi(c)$

$$\Phi(c) \equiv \Gamma_{1} + \kappa(c - c_{1}) + \kappa_{1}(c - c_{1})^{2}.$$
 (14)

Полагая $\Gamma_1 > 0$, k > 0, $c_1 > 0$ заданными величинами, найдем параметр k_1 из условия

$$\Phi_{|c=0} = 0, \tag{15}$$

$$\Phi'|_{c=0} \equiv \frac{d\Phi}{dc}|_{c=0} > 0,$$
(16)

$$\Gamma_1 - \kappa c_1 > 0. \tag{17}$$

Подставляя $\Phi(c)$ из (14) в (15), получим

$$\Gamma_1 - \kappa c_1 + \kappa_1 c_1^2 = 0.$$
 (18)

Из (18) найдем к

$$\kappa_1 = -\frac{\Gamma_1 - \kappa c_1}{c_1^2}.$$
(19)

Когда функция $\Phi(c) = \Gamma(c)$, т.е. является изотермой адсорбции, то условия (15)–(17) как раз и служат математическим выражением наличия у изотермы $\Gamma(c)$ участка Генри при малых *c*. С учетом (17) и (19) аппроксимация функции $\Phi(c)$, т.е. $\Gamma_{(1)}$ и $\Gamma_{(2)}$, будет выпуклой кривой в соответствующей области *c*, т.к.

$$\Phi''(c) = 2\kappa_1 = -\frac{\Gamma_1 - \kappa c_1}{c_1^2} < 0.$$
⁽²⁰⁾

Подставляя в (20) $\Gamma_1 = \Gamma_{11}$, $\kappa = \kappa_{11}$, $c_1 = c_{11}^0$, найдем выражение $\Gamma_{(1)} = \Phi(c)$ при $0 \le c < c_{11}^0$

$\tilde{c}_{11}^0, \frac{\mathrm{mmol}}{\mathrm{kg}}$	$\tilde{c}_{21}^0, \frac{\text{mmol}}{\text{kg}}$	$\tilde{c}_{31}^0, \frac{\mathrm{mmol}}{\mathrm{kg}}$	$\tilde{k}_{11}, \frac{\mathrm{kg}}{M^2}$	$\tilde{k}_{21}, \frac{\mathrm{kg}}{M^2}$	$\tilde{\Gamma}_{11}, \frac{\mu mol}{M^2}$	$\tilde{\Gamma}_{21}, \frac{\mu mol}{M^2}$	$\tilde{\Gamma}_{31}, \frac{\mu \text{mol}}{M^2}$
1.25	5.47	14.22	$0.118 \ 10^{-3}$	$0.308 \ 10^{-3}$	0.80	1.30	4.0
$\tilde{c}_{12}^0, \frac{\mathrm{mmol}}{\mathrm{kg}}$	$\tilde{c}_{22}^0, \frac{\text{mmol}}{\text{kg}}$	$\tilde{c}_{32}^0, \frac{\text{mmol}}{\text{kg}}$	$\tilde{k}_{12}, \frac{\mathrm{kg}}{M^2}$	$\tilde{k}_{22}, \frac{\mathrm{kg}}{M^2}$	$\tilde{\Gamma}_{12}, \frac{\mu \text{mol}}{M^2}$	$\tilde{\Gamma}_{22}, \frac{\mu mol}{M^2}$	$\tilde{\Gamma}_{32}, \frac{\mu \text{mol}}{M^2}$
0.625	1.56	4.69	0.533×10^{-4}	1.408×10^{-3}	0.15	0.20	4.60

Таблица 3. Значения \tilde{c}_{ij}^0 , $\tilde{\Gamma}_{ij}$, \tilde{k}_{ij} в физических размерностях для аппроксимаций $\tilde{\Gamma}_{(1)}$, $\tilde{\Gamma}_{(2)}$

 c_{11}^0 c_{21}^{0} c_{31}^0 k_{11} Γ_{11} Γ_{21} Γ_{31} k_{21} $8.79 \times$ 0.385 0.325 1.0 1.0 0.421 1.095 0.2 $\times 10^{-2}$ c_{12}^0 c_{22}^{0} c_{32}^{0} k_{12} Γ_{22} Γ_{32} k_{22} Γ_{12} 4.39 × 0.110 0.329 5.005 0.0375 0.05 1.15 0.19 $\times 10^{-2}$

Таблица 4. Безразмерные значения c_{ii}^0 , Γ_{ii} , k_{ii}

$$\Gamma_{(1)} = \Gamma_{11} + \kappa_{11} (c - c_{11}^0) - \frac{\Gamma_{11} - \kappa_{11} c_{11}^0}{(c_{11}^0)^2} (c - c_{11}^0)^2, \quad 0 \le c < c_{11}^0.$$
(21)

Аналогично, при $\Phi(c) = \Gamma_{(2)}$ подставляя в (14) $\Gamma_1 = \Gamma_{12}, \kappa = \kappa_{12}, c_1 = c_{12}^0,$ получим

$$\Gamma_{(2)} = \Gamma_{12} + \kappa_{12} \left(c - c_{12}^{0} \right) - \frac{\Gamma_{12} - \kappa_{12} c_{12}^{0}}{\left(c_{12}^{0} \right)^{2}} \left(c - c_{12}^{0} \right)^{2}, \quad 0 \le c < c_{12}^{0}.$$
(22)

Чтобы упростить аналитику определения типа функции $\overline{\Delta}\sigma(c)$, т.е. знака ее производной, рассмотрим далее случай, когда $\vartheta = 0$, $\varepsilon_1 = 0$. Это позволяет заменить функцию $\Gamma(c)$ функцией $\Gamma_{|\vartheta=0}^{|\vartheta=0}$, а затем ее аппроксимацией $\Gamma_{(1)}$ или $\Gamma_{(2)}$.

Перейдем в интегральном операторе *I* (2а) к переменной интегрирования *с*

$$I \equiv \int_{0}^{\Gamma} \Gamma \frac{A'}{A} d\Gamma = \int_{0}^{c} \Gamma(c) \frac{dA}{d\Gamma} \frac{\frac{d\Gamma}{dc}}{A[\Gamma(c)]} dc.$$
(23)

Согласно определению функции A в (3) при $\vartheta = 0, \varepsilon_1 = 0$

$$A \equiv Bc(\Gamma)$$

$$\frac{dA}{d\Gamma} = B \frac{dc}{d\Gamma}.$$
(24)

Подставляя (24) в (23), найдем

$$I = \int_{0}^{c} \Gamma(c) \frac{B \frac{dc}{d\Gamma}}{Bc} \frac{dc}{d\Gamma} = \int_{0}^{c} \frac{\Gamma(c)dc}{c}.$$
 (25)

Используя равенство (25) в (2), получим представление производной $\frac{\partial(\overline{\Delta}\sigma)}{\partial c}$

$$\frac{\partial(\overline{\Delta}\sigma)}{\partial c} = \frac{\Gamma(c)}{c} - z\frac{d\Gamma}{dc}.$$
(26)

Или с учетом (26)

$$c\frac{\partial(\Delta\sigma)}{\partial c} = \Gamma(c) - zc\frac{d\Gamma}{dc} \equiv f(c).$$
(27)

Полагая $\Gamma(c) \equiv \Phi(c)$, из (27) и (14) имеем

$$f(c) = \Gamma_{1} + \kappa(c - c_{1}) - \frac{(\Gamma_{1} - \kappa c_{1})}{c_{1}^{2}}(c - c_{1})^{2} - - zc[\kappa - 2\frac{\Gamma_{1} - \kappa c_{1}}{c_{1}^{2}}(c - c_{1})] = = \Gamma_{1} + \kappa[(1 - z)c - c_{1}] - - \frac{\Gamma_{1} - \kappa c_{1}}{c_{1}^{2}}[(c - c_{1})^{2} - 2zc(c - c_{1})].$$
(28)

Функция f(c) (28) с учетом (17) удовлетворяет условиям

$$f(c)_{|c=0} = \Gamma_{1} - \kappa c_{1} - (\Gamma_{1} - \kappa c_{1}) = 0$$

$$\frac{\partial f}{\partial c} = \kappa (1 - z) - \frac{\Gamma_{1} - \kappa c_{1}}{c_{1}^{2}} [2(c - c_{1}) - c_{1} - 2z(c - c_{1} + c)] = \kappa (1 - z) - (29)$$

$$- 2 \frac{\Gamma_{1} - \kappa c_{1}}{c_{1}^{2}} [(1 - z)(c - c_{1}) - zc] > 0,$$

$$0 \le c < c_{1},$$

если

$$z \le 1. \tag{29a}$$

Из (29) и (29а) следует, что

$$f(c) \equiv c \frac{\partial(\Delta \sigma)}{\partial c} > 0, \quad 0 < c < c_1.$$
(30)

Из (30) тогда находим

$$\frac{\partial(\Delta\sigma)}{\partial c} > 0, \quad 0 < c \le c_1. \tag{31}$$

Неравенство (31) при $\Gamma = \Gamma_{(1)}$, когда $c_1 = c_{11}^0$, и при $\Gamma = \Gamma_{(2)}$, когда $c_1 = c_{12}^0$, приводит к

$$\frac{\partial(\overline{\Delta}\sigma)}{\partial c}\Big|_{\Gamma=\Gamma_{(1)}} > 0, \quad 0 < c < c_{11}^0, \tag{32}$$

$$\frac{\partial(\Delta\sigma)}{\partial c}\Big|_{\Gamma=\Gamma_{(2)}} > 0, \quad 0 < c < c_{12}^0.$$
(33)

При этом неравенство (17), используемое для вывода (32) и (33), при подстановке в него значений c_1 , Γ_1 , к из табл. 4, соответствующих функции $\Gamma_{(1)}$ или $\Gamma_{(2)}$, выполняется

$$\Gamma_{11} - \kappa_{11}c_{11}^0 = 0.163 > 0,$$

$$\Gamma_{12} - r_{12}c_{12}^0 = 0.0292 > 0.$$
(34)

Условие (29а), налагаемое и далее, является необходимым, как показано в [11], для адекватно-

ФИЗИКОХИМИЯ ПОВЕРХНОСТИ И ЗАЩИТА МАТЕРИАЛОВ том 55 № 2 2019

го описания знака эффекта Ребиндера при малых концентрациях адсорбата.

Важно также отметить, что построенные в итоге аппроксимации $\Gamma_{(1)}$ и $\Gamma_{(2)}$ в (12), (13) и в (21), (22) по изотермам (*1*) и (*2*) физически также отвечают, как и сами изотермы, условиям, когда $\vartheta = 0, \varepsilon_1 = 0.$

ОПРЕДЕЛЕНИЕ ЗНАКА ПРОИЗВОДНОЙ $\frac{\partial(\bar{\Delta}\sigma)}{\partial c}$ И ТОЧКИ МАКСИМУМА ВЕЛИЧИНЫ $\frac{\partial c}{\Delta\sigma}$ ПО ОСИ *С* ДЛЯ АППРОКСИМАЦИЙ $\Gamma_{(1)}$ И $\Gamma_{(2)}$

Вначале найдем условия, при которых производная $\frac{\partial(\overline{\Delta}\sigma)}{\partial c}$ может изменить свой знак с положительного на отрицательный в некоторой точке на оси *c*, т.е. в этой точке реализуется куполообразная форма функции $\overline{\Delta}\sigma(c)$. Используя выражение величины $\overline{\Delta}\sigma$ в (2), представим производную $\frac{\partial(\overline{\Delta}\sigma)}{\partial c}$ в виле

$$\frac{\partial c}{\partial c} = \frac{\partial (\overline{\Delta}\sigma)}{\partial c} = \frac{\partial (\overline{\Delta}\sigma)}{\partial \Gamma} \frac{\partial \Gamma}{\partial c} = \left(\Gamma \frac{A'}{A} - z\right) \frac{\partial \Gamma}{\partial c}.$$
(35)

Из уравнения изотермы (4) найдем производную $\frac{\partial \Gamma}{\partial c}$

$$\frac{\partial \Gamma}{\partial c} = \frac{A}{cA}.$$
(36)

Подставляя (36) в (35), получим

$$\frac{\partial(\Delta\sigma)}{\partial c} = \left(\Gamma\frac{A'}{A} - z\right)\frac{A'}{cA}.$$
(37)

Из (37) и неравенства (3а) следует

$$\frac{\partial(\Delta\sigma)}{\partial c} > 0, \quad z \le 0, \quad c > 0.$$
(38)

Неравенство (38) означает, что куполообразная форма зависимости $\overline{\Delta}\sigma(c)$ при $z \leq 0$ невозможна, поэтому далее примем условие

$$z > 0, \tag{39}$$

а с учетом (29а) из (39) придем к ограничению для z

$$0 < z < 1.$$
 (39a)

Из (32) и (33) следует, что отрицательное значение производной $\frac{\partial(\overline{\Delta}\sigma)}{\partial c}$ возможно только при $c > c_{11}^0$ для $\Gamma_{(1)}$ и при $c > c_{12}^0$ для $\Gamma_{(2)}$. Для определения знака производной $\frac{\partial(\overline{\Delta}\sigma)}{\partial c}$ в указанном диапазоне *с* воспользуемся знакоопределяющей

функцией f(c) (27), учитывая представление функций $\Gamma_{(1)}$, $\Gamma_{(2)}$ в (12) и (13)

$$f(c)_{|\Gamma=\Gamma_{(1)}} = \Gamma_{(1)} - zc \frac{\partial \Gamma_{(1)}}{\partial c} =$$

$$= \begin{cases} \Gamma_{11} + k_{11} [(1-z)c - c_{11}^{0}], \ c_{11}^{0} < c < c_{21}^{0} \\ \Gamma_{21} + k_{21} [(1-z)c - c_{21}^{0}], \ c_{21}^{0} < c < c_{31}^{0}, \\ \Gamma_{31}, \ c > c_{31}^{0} \end{cases}$$

$$f(c)_{|\Gamma=\Gamma_{(2)}} = \Gamma_{(2)} - zc \frac{\partial \Gamma_{(2)}}{\partial c} =$$

$$= \begin{cases} \Gamma_{12} + k_{12} [(1-z)c - c_{12}^{0}], \ c_{12}^{0} < c < c_{32}^{0} \\ \Gamma_{22} + k_{22} [(1-z)c - c_{22}^{0}], \ c_{22}^{0} < c < c_{32}^{0}. \end{cases}$$
(40)

Выпишем выражения функций $f(c)|_{\Gamma=\Gamma_{(1)}}$ и $f(c)|_{\Gamma=\Gamma_{(2)}}$ отдельно при $c_{11}^0 < c < c_{21}^0$ и при $c_{12}^0 < c < c_{22}^0$ из (40) и (41) в форме

 $|\Gamma_{32}, c > c_{32}^0$

$$f(c)_{|\Gamma=\Gamma_{(1)}|} = \kappa_{11} c \left(1 - z + \frac{\Gamma_{11} - \kappa_{11} c_{11}^0}{\kappa_{11} c} \right), \qquad (42)$$
$$c_{11}^0 < c < c_{21}^0,$$

$$f(c)_{|\Gamma=\Gamma_{(2)}|} = \kappa_{12}c \left(1 - z + \frac{\Gamma_{12} - \kappa_{12}c_{12}^{0}}{\kappa_{12}c}\right), \qquad (43)$$
$$c_{12}^{0} < c < c_{22}^{0},$$

полагая выполнеными неравенства, эквивалентные (17)

$$\Gamma_{11} - \kappa_{11} c_{11}^0 > 0, \qquad (42a)$$

$$\Gamma_{12} - \kappa_{12} c_{12}^0 > 0.$$
 (43a)

Учитывая неравенства (34) и (39а), из (42), (43) и (27) получим

$$\frac{\partial(\overline{\Delta}\sigma)}{\partial c}\Big|_{\Gamma=\Gamma_{(1)}} > 0, \quad 0 < c < c_{21}^0, \tag{44}$$

$$\frac{\partial(\overline{\Delta}\sigma)}{\partial c}\Big|_{\Gamma=\Gamma_{(2)}} > 0, \quad 0 < c < c_{22}^0.$$
(45)

Неравенства (44), (45) означают, что с учетом (32) и (33) условие куполообразности, когда $\frac{\partial(\overline{\Delta}\sigma)}{\partial c} < 0$, для обеих аппроксимаций $\Gamma_{(1)}$, $\Gamma_{(2)}$ возможно лишь при $c_{21}^0 < c < c_{31}^0$ и $c_{22}^0 < c < c_{32}^0$. Выпишем для этого соответствующие неравенства

$$\frac{\partial(\overline{\Delta}\sigma)}{\partial c}\Big|_{\Gamma=\Gamma_{(1)}} = \kappa_{21}\left(1 - z + \frac{\Gamma_{21} - \kappa_{21}c_{21}^0}{\kappa_{21}c}\right) < 0, \quad (46)$$
$$c_{21}^0 < c < c_{31}^0, \quad \Gamma_{21} - \kappa_{21}c_{21}^0 < 0,$$

$$\frac{\partial(\overline{\Delta}\sigma)}{\partial c}\Big|_{\Gamma=\Gamma_{(2)}} = \kappa_{22}\left(1 - z + \frac{\Gamma_{22} - \kappa_{22}c_{22}^0}{\kappa_{22}c}\right) < 0, \quad (47)$$
$$c_{22}^0 < c < c_{32}^0, \quad \Gamma_{22} - \kappa_{22}c_{22}^0 < 0.$$

Так как $\kappa_{21} > 0$ и, согласно (29а), z < 1, решением неравенства (46) относительно *с* является интервал

$$c_{21}^{0} < c < \min\left(c_{31}^{0}, c_{M1}\right)$$

$$c_{M1} \equiv \frac{\kappa_{21}c_{21}^{0} - \Gamma_{21}}{(1-z)\kappa_{21}} = \frac{1-P_{1}}{1-z}c_{21}^{0},$$
(48)

$$P_1 \equiv \frac{\Gamma_{21}}{\kappa_{21} c_{21}^0}.$$
 (49)

Из неравенства (48) с необходимостью следует условие

$$c_{\rm Ml} > c_{21}^0.$$
 (50)

Подставляя в (50) выражение $c_{\rm Ml}$ из (48), придем к неравенству

$$z > P_1. \tag{51}$$

Используя значения Γ_{21} , κ_{21} , c_{21}^0 из табл. 4, найдем соответствующее частное значение P_1

$$P_1 \approx 0.77. \tag{52}$$

Таким образом с учетом (51) и (29а) условие куполообразной зависимости функции $\overline{\Delta \sigma}(c)$ для аппроксимации $\Gamma_{(1)}$ (12) примет вид

$$P_1 < z < 1$$

$$c_{21}^0 < c < \min(c_{31}^0, c_{\rm M1}).$$
(53)

При этом максимальное значение величины $\overline{\Delta}\sigma$ по оси *c*, учитывая (44) и (46) будет в точке c_{\max}^0

$$c_{\max|\Gamma=\Gamma_{(1)}}^{0} = c_{21}^{0}.$$
 (54)

Аналогичное условие куполообразной зависимости функции $\overline{\Delta}\sigma(c)$ для аппроксимации $\Gamma_{(2)}$ (13) примет вид

$$P_2 < z < 1$$

$$c_{22}^0 < c < \min(c_{32}^0, c_{M^2}),$$
(55)

$$c_{M2} \equiv \frac{1 - P_2}{1 - z} c_{22}^0$$

$$P_2 \equiv \frac{\Gamma_{22}}{\kappa_{22} c_{22}^0} \approx 0.091.$$
(56)

Точка максимума c_{\max}^0 величины $\overline{\Delta}\sigma$ для аппроксимации $\Gamma_{(2)}$ с учетом неравенств (45) и (47) будет равна

$$c_{\max|\Gamma=\Gamma_{(2)}}^{0} = c_{22}^{0}.$$
 (57)

ФИЗИКОХИМИЯ ПОВЕРХНОСТИ И ЗАЩИТА МАТЕРИАЛОВ том 55 № 2

УСЛОВИЯ СМЕНЫ ТИПА ЗАВИСИМОСТИ Δσ(c) – ОТ КУПОЛООБРАЗНОЙ К МОНОТОННО ВОЗРАСТАЮЩЕЙ

Куполообразная форма зависимости эффекта Ребиндера от с при использовании ПАВ встречается часто в форме резкой избирательности по концентрации с, что яляется уязвимым местом в применении ПАВ в производственной деятельности [4]. Поэтому представляет интерес найти условия перехода к монотонно возрастающей зависимости по с термодинамической оценки эффекта, т.е. $\overline{\Delta}\sigma$ от *c*. Будем полагать для аппроксимации Г₍₂₎ выполненным условие (55) – условие куполообразной формы функции $\overline{\Delta}\sigma(c)_{|\Gamma=\Gamma_{(2)}}$. Так как условие (53) приводит тоже к куполообразной форме функции $\overline{\Delta}\sigma(c)_{|\Gamma=\Gamma_{(1)}}$, примем альтернативное к (53) ограничение на величину z, чтобы исключить для аппроксимации $\Gamma_{(1)}$ куполообразный тип функции $\overline{\Delta}\sigma(c)$

$$z < P_1. \tag{58}$$

Рассмотрим в интервале $c_{21}^0 < c < c_{31}^0$ с учетом (58) неравенство, вытекающее из условия монотонного роста функции $\overline{\Delta}\sigma(c)_{|\Gamma=\Gamma_{01}}$

$$\frac{\partial(\overline{\Delta}\sigma)}{\partial c}|_{\Gamma=\Gamma_{(1)}} = \kappa_{21} \left(1 - z + \frac{\Gamma_{21} - \kappa_{21}c_{21}^0}{\kappa_{21}c}\right) > 0, \quad (59)$$
$$c_{21}^0 < c < c_{31}^0.$$

Запишем теперь(59) в виде

$$\frac{c}{c_{21}^0} > \frac{1 - P_1}{1 - z}, \quad c_{21}^0 < c < c_{31}^0.$$
(60)

Так как с учетом (58)

$$\frac{1 - P_1}{1 - z} < 1 \tag{61}$$

и в указанном интервале

$$\frac{c}{c_{21}^0} > 1,$$
 (62)

то из (59) с учетом (61) и (62) следует

$$\frac{\partial(\overline{\Delta}\sigma)}{\partial c}|_{\Gamma=\Gamma_{(1)}} = \kappa_{21}(1-z) \left[1 - \frac{(1-P_1)c_{21}^0}{1-zc_{21}} \right] = \\ = \kappa_{21} \frac{(1-z)c_{21}^0}{c} \left[\frac{c}{c_{21}^0} - \frac{1-P_1}{1-z} \right] >$$
(63)

$$> \kappa_{21} \frac{(1-z)c_{21}^0}{c} \left\lfloor 1 - \frac{1-P_1}{1-z} \right\rfloor > 0, \ c_{21}^0 < c < c_{31}^0$$

Учитывая, что $\kappa_{21} > 0$ из (63), (61) следует

2019

$$\frac{\partial(\Delta\sigma)}{\partial c}\Big|_{\Gamma=\Gamma_{(1)}} > 0, \quad c_{21}^0 < c < c_{31}^0.$$
(64)

Из представления функции $f(c)_{|\Gamma=\Gamma_{(1)}}$ при $c > c_{31}^0$ в (41) найдем из (27)

$$\frac{\partial(\bar{\Delta}\sigma)}{\partial c}\Big|_{\Gamma=\Gamma_{(1)}} = \frac{\Gamma_{31}}{c} > 0, \quad c > c_{31}^0.$$
(65)

Из (64), (65) и (44) в итоге получим

$$\frac{\partial(\bar{\Delta}\sigma)}{\partial c}\Big|_{\Gamma=\Gamma_{(1)}} > 0, \quad c > 0.$$
(66)

Так как $\overline{\Delta}\sigma|_{c=0} = 0$ неравенство (66) означает, что

$$\Delta \sigma > 0, \quad c > 0, \tag{66a}$$

т.е. эффект Ребиндера по аппроксимации $\Gamma_{(1)}$ имеет положительный знак при c > 0 и величина его термодинамической оценки $\overline{\Delta}\sigma$ монотонно растет с концентрацией *с* при c > 0.

Неравенства (53) и (55) позволяют заключить, что при выполнении дополнительного условия

$$P_2 < z < P_1 < 1, \tag{67}$$

а также (42а) и (43а) при переходе от изотермы (2) к изотерме (1) рис. 2 происходит смена типа зависимости функции $\overline{\Delta\sigma}(c)$ — от куполообразной к монотонно растущей с концентрацией *c*. Нумерация изотерм в таком переходе — от 2 к 1 — не имеет обязательного значения и может быть перенумерована.

При этом можно допустить, что физической причиной изменения формы изотермы адсорбата — от (1) к (2) на рис. 2 и наоборот может быть не только добавка в раствор простого электролита как в [14]. Важно, чтобы адсорбция оставалась однокомпонентной для возможности применения теории [9, 10] и для обеих изотерм сохранялась S-образная форма.

Если значения параметра *z* теории [9, 10], соответствующие изотерме (1) и (2) $z_1 \neq z_2$ и удовлетворяют аналогичным (53) и (55) неравенствам

$$z_1 < P_1 < 1 P_2 < z_2 < 1,$$
(68)

то условием смены типа зависимости $\overline{\Delta}\sigma(c)$ – от куполообразной к монотонно растущей в дополнение к (68) будет неравенство

$$P_2 < P_1. \tag{68a}$$

Критерием выбора, например, из двух ПАВ в обоих случаях, когда $z_1 = z_2$ или $z_1 \neq z_2$, может служить увеличение параметра P_1 или/и уменьшение параметра P_2 , как это следует из (68а), (68), (67). Такой критерий выбора изотермы адсорбции достигается оптимизацией характеристик функций $\Gamma_{(1)}$ и $\Gamma_{(2)}$ с учетом определения параметров P_1 , P_2 в (49) и (56).

Определение величины параметра *z*, который сильно облегчил бы проверку адекватности тео-

рии и ее использование, является новой, выходящей за рамки статьи, задачей. Ее решение требует разработки специальных методик в будущих исследованиях.

ЗАКЛЮЧЕНИЕ

1. На основе построенной ранее теории однокомпонентной равновесной адсорбции из жидкости на твердой поверхности исследована аналитически термодинамическая оценка эффекта Ребиндера — приращение поверхностного натяжения межфазного слоя — в функции от объемной концентрации адсорбата в жидком растворе в случае исходной изотермы — на недеформированной поверхности — S-образного вида.

2. Показано, что функция этой зависимости может иметь и куполообразную форму и монотонно растущую с концентрацией адсорбата.

3. В терминах параметров теории выведены условия, при которых происходит переход от куполообразной формы к монотонно возрастающей.

4. Такой переход от одной изотермы к другой может помочь избежать резкую концентрационную избирательность действия эффекта Ребиндера при использовании ПАВ в разрушении твердых материалов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Ребиндер П.А. // VI съезд русских физиков. М.: ОГИЗ, 1928. С. 29.
- Ребиндер П.А., Шрейнер Л.А., Жигач К.Д. Понизители твердости в бурении. М., Л.: АН СССР, 1944. 199 с.
- 3. Грей Дж.Р., Дарли Г.С.Г. Состав и свойства буровых агентов. М.: Изд. "Недра", 1985. 509 с.
- 4. Евсеев В.Д. // Бурение и нефть. 2010. № 9. С. 16.
- 5. Подгаецкий Э.М. // Электрохимия. 1999. Т. 35. С. 528.
- 6. Подгаецкий Э.М. // Электрохимия. 2005. Т. 41. С. 20.
- 7. *Подгаецкий Э.М.* // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. 2010. № 1. С. 97.
- 8. Подгаецкий Э.М. // Физикохимия поверхности и защита материалов. 2013. Т. 49. С. 155.
- 9. Подгаецкий Э.М. // Физикохимия поверхности и защита материалов. 2013. Т. 49. С. 239.
- 10. Подгаецкий Э.М. // Физикохимия поверхности и защита материалов. 2014. Т. 50. С. 339.
- Подгаецкий Э.М. // Физикохимия поверхности и защита материалов. 2017. Т. 53. С. 572; 2017. Т. 53. С. 233; 2018. Т. 54. С. 435.
- 12. Bouzerda M. Ph.D. Thesis, CNRS Lab 330 Montpelier, 1991.
- Латышев О.Г. Разрушение горных пород. М.: Теплотехник, 2007. 672 с.
- Bouzerda M., Lindheimer M., Partyka S., Brun B. // Adsorption on New and Modified Inorganic Sorbents. 1996. V. 99. P. 611.