____ ФИЗИКО-ХИМИЧЕСКИЕ ПРОЦЕССЫ ____ НА МЕЖФАЗНЫХ ГРАНИЦАХ ____

УДК 541.183.1:66.071.6

ЦЕОЛИТЫ ТИПА Ү, МОДИФИЦИРОВАННЫЕ НАНОЧАСТИЦАМИ ПЕРЕХОДНЫХ МЕТАЛЛОВ, ДЛЯ ВЫДЕЛЕНИЯ АРГОНА ИЗ ЕГО СМЕСИ С КИСЛОРОДОМ

© 2019 г. Е. Н. Иванова¹, М. Б. Алехина^{1, *}, А. О. Дудоладов¹, Г. Ф. Губайдуллина¹, К. А. Чумак¹

¹ФГБОУ ВО "Российский химико-технологический университет имени Д.И. Менделеева", Миусская пл., д. 9, Москва, 125047 Россия *e-mail: mbalekhina@yandex.ru

Поступила в редакцию 26.04.2018 г. После доработки 27.10.2018 г.

Принята к публикации 14.11.2018 г.

На основе гранулированных синтетических цеолитов NaY и HY без связующих веществ получены адсорбенты, содержащие наночастицы переходных металлов и обладающие селективностью в отношении аргона при его адсорбции из смеси с кислородом. Модифицирование проводили путем взаимодействия с обратномицеллярными растворами наночастиц серебра, а также путем ионного обмена с растворами солей переходных металлов и последующим восстановлением ионов металла до наночастиц в жидких средах под воздействием ультразвука. Методом просвечивающей электронной микроскопии были определены фактические размеры частиц металлов и их распределение на поверхности модифицированных образцов цеолитов. Определены равновесные адсорбционные емкости образцов по кислороду и аргону при 25° С и атмосферном давлении и коэффициенты разделения смеси аргон-кислород, как соотношение коэффициентов Генри. Показано, что наибольшей селективностью в отношении аргона при выделении его из смеси с кислородом обладали образцы цеолита NaY, модифицированные наночастицами серебра. Значение коэффициента разделения газовой смеси аргон-кислород составило 1.5-1.6.

Ключевые слова: цеолиты типа Y, наночастицы переходных металлов, кислород, аргон **DOI:** 10.1134/S0044185619030185

введение

Основным ограничением применимости адсорбционных генераторов кислорода является недостаточная чистота продуктового кислорода (не выше 95 об. %, с основной примесью аргона) из-за схожих адсорбционных свойств кислорода и аргона [1, 2]. Для удаления аргона (и выделения его из смеси в концентрированном виде) актуальным является поиск высокоактивных пористых наноструктурированных материалов, эффективных в разделении кислорода и аргона.

В ряде работ опубликованы результаты по синтезу и исследованию адсорбентов различных типов, способных к селективной сорбции аргона из его смесей [3–9]. Например, в патентах [3–5], описываются серебросодержащие цеолиты типа X со степенью замещения на серебро 20–80%. Все они проявили повышенную селективность к аргону и предложены для использования в процессах PSA для производства O_2 чистотой выше 97 об. %. Значения коэффициента разделения, рассчитанные как соотношение констант Генри, составили 1.05–1.4 при 23°С.

В работах [6, 7] путем ионного обмена с раствором AgNO₃ получены Ag-содержащие цеолиты различных типов: AgA, AgX, AgY, AgBEA, AgMOR, AgZSM-5, AgL. Наибольшие значения коэффициента разделения смеси аргон-кислород, рассчитанные как соотношение констант Генри при 15°С и 0.1 МПа, составили для цеолитов AgA и AgZSM-5 1.63 и 1.65, соответственно. В качестве замечания следует отметить то, что объектами измерения были порошкообразные цеолиты, емкость которых всегда на 20% выше, чем промышленных, гранулированных со связующим.

В [8, 9] изучена адсорбция аргона, кислорода и азота на титаносиликатном молекулярном сите ETS-10 с обменными ионами серебра и Ад-мордените. Значения коэффициента разделения смеси аргон-кислород, рассчитанные по изотермам адсорбции аргона и кислорода, как соотношение констант Генри, при 30°С составили для Ад-морденита 1.25; а для Ag-ETS-10 – 1.49.

По предположению авторов [6, 9], при нагревании внутри полостей цеолитов ионы Ag⁺ взаимодействуют друг с другом с образованием кластеров и группировок серебра (Ag^0+Ag^+) , занимающих различные места в цеолитной структуре и изменяющих ее состав. Все это приводит к появлению особых адсорбционных свойств серебросодержащих цеолитов.

Илеологию и направление поиска адсорбентов с повышенной селективностью к аргону мы основывали на различии механизмов адсорбции молекул кислорода и аргона. Аргон, согласно классификации молекул по их способности к различным видам взаимодействия А.В. Киселева [10], взаимолействует с поверхностью алсорбентов только за счет неспецифических сил, в основном дисперсионного притяжения. Молекула кислорода обладает слабым квадрупольным моментом, она относится к группе, в которой молекулы адсорбтива могут вступать в специфические взаимодействия с поверхностью адсорбента, если адсорбент имеет положительный заряд. локализованный на группах малого радиуса (H⁺ или Kt⁺ в цеолите) [10]. Кислород взаимодействует с поверхностью адсорбентов за счет неспецифических сил и специфических сил (ориентация диполей и квадруполей, донорно-акцепторные связи).

В работе была поставлена задача по созданию микропористого адсорбента на основе цеолитов, с отсутствием в структуре активных центров сорбции кислорода или их пониженным содержанием, чтобы ослабить специфическую составляющую сил взаимодействия кислорода при адсорбции. В этом случае молекула аргона, обладающая большей массой, чем молекула кислорода, будет сорбироваться сильнее за счет дисперсионных сил.

Основными центрами адсорбции кислорода, способными к специфическим взаимодействиям в цеолитах, являются катионы металлов и ОН-группы кристаллической решетки цеолита.

Как известно, наименьшей катионной плотностью среди цеолитов обладают цеолиты с низким содержанием алюминия. Модифицирование поверхности высококремнистых цеолитов типа У с помощью введения наночастиц (НЧ) металлов на наш взгляд, одно из перспективных направлений для изменения их адсорбционных свойств по благородным газам. Как показано Л.Д. Беляковой с коллегами [11], при исследовании адсорбционных свойств исходного кремнезема (силохрома) и силохрома, модифицированного наночастицами никеля, вклады специфических взаимодействий полярных соединений на сорбентах, содержащих НЧ никеля, меньше, чем на исходном кремнеземе. Авторы объясняют этот факт экранированием наночастицами металлов активных центров поверхности силохрома – гидроксильных групп. Тем самым полярность модифицированного кремнезема уменьшается.

Модифицирование цеолитов (и других материалов) наночастицами металлов возможно проводить путем ионного обмена с обратномицеллярными растворами, содержащими наноструктурированные частицы металлов [12–14], а также путем ионного обмена с последующим восстановлением ионов металла до нейтральных частиц под воздействием ультразвука [15].

Целью работы являлось получение адсорбентов на основе цеолитов типа Y, обладающих селективностью в отношении аргона для выделения его из смеси с кислородом, путем модифицирования поверхности наночастицами переходных металлов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В эксперименте были использованы цеолиты NaY и HY без связующего, предоставленные нам лабораторией катализаторов Института нефтехимии и катализа РАН. Гранулы цеолитов имели цилиндрическую форму (черенки), длина гранул составляла 6 мм, диаметр — 1.6—1.8 мм. Для исследований использовали фракцию с размером частиц 1—2 мм.

Модифицирование образцов цеолитов наночастицами переходных металлов проводили двумя различными способами:

 путем взаимодействия с суспензией наночастиц металлов (Ag) в обратномицеллярном растворе (далее OMP HЧ Ag);

 путем однократного ионного обмена с растворами солей переходных металлов и последующим восстановлением ионов металла до нейтральных частиц под воздействием ультразвука в жидких средах.

В табл. 1 приведена маркировка образцов, а также условия их модифицирования. В скобках под названием приведено содержание переходного металла в образце.

Модифицирование цеолитов НҮ и NaY путем взаимодействия с обратномицеллярными растворами наночастиц серебра

К предварительно прокаленному при 350°С цеолиту типа Y добавляли обратномицеллярный раствор наночастиц серебра. Обратномицеллярный раствор был приготовлен смешением 1 М водного раствора нитрата серебра и ПАВ, в качестве которого использовался АОТ (бис(2-этилгексил)сульфосукцинат натрия). Основной средой (растворителем) являлся изооктан, концентрация АОТ в котором составляла 0.15 М.

Образцы обратномицеллярных растворов наночастиц серебра были предоставлены академиком РАЕН, д. х. н. А.А. Ревиной [16, 17].

Объемное соотношение компонентов цеолит/раствор ОМР НЧ Аg/изооктан (среда) составило 1 : 1 : 1. Выдержку цеолита в растворе проводили в течение суток. Содержание наночастиц се-

Обозначение образца	Описание условий модифицирования					
Ag/HY 1	НҮ, модифицированный путем взаимодействия с ОМР НЧ Ад ([Ag ⁺] = 4 мМ)					
Ag/HY 2	HY, модифицированный путем взаимодействия с ОМР НЧ Ад ([Ag ⁺] = 8 мМ)					
Ag/NaY 1	NaY, модифицированный путем взаимодействия с ОМР НЧ Ад ([Ag ⁺] = 4 мМ)					
Ag/NaY 2	NaY, модифицированный путем взаимодействия с ОМР НЧ Ад ([Ag ⁺] = 8 мМ)					
Аg/NaY (УЗ/ИПС)	NaY, модифицированный путем однократного ионного обмена с 0.05 М AgNO ₃ при 35°C,					
(24.5 мас. % Ад)	6 ч и восстановленный под действием ультразвука в изопропиловом спирте					
Cu/NaY (УЗ/ИПС)	NaY, модифицированный путем однократного ионного обмена с 0.1 M Cu(NO ₃) ₂ при					
	80°C, 5 ч и восстановленный под действием ультразвука в изопропиловом спирте					
Ce/NaY (УЗ/ИПС)	NaY, модифицированный путем ионного обмена с 0.1 М Ce(NO ₃) ₃ при 35°C, 6 ч и восста-					
(8.5 мас. % Се)	новленный под действием ультразвука в изопропиловом спирте					
Zr/NaY (УЗ/ИПС)	NaY, модифицированный путем ионного обмена с 0.1 М ZrO(NO ₃) ₂ при 35°C, 6 ч и вос-					
(0.7 мас. % Zr)	становленный под действием ультразвука в изопропиловом спирте					
Ag/NaY (Y3/H ₂ O)	NaY, модифицированный путем ионного обмена с 0.1 М AgNO ₃ при 35°C, 6 ч и восста-					
(35.8 мас. % Ад)	новленный под действием ультразвука в дистиллированной воде					

Таблица 1. Маркировка образцов и условия модифицирования цеолитов типа Ү

ребра в растворе в процессе взаимодействия с цеолитом контролировали с помощью спектрофотометра СФ-2000 (ООО "ОКБ СПЕКТР", Россия). Полученный образец фильтровали на воронке Бюхнера (с фильтром "синяя лента") и сушили при комнатной температуре.

Модифицирование цеолита NaY путем ионного обмена с растворами солей переходных металлов и последующим восстановлением ионов металла до наночастиц в жидких средах под воздействием ультразвука

В образцы цеолита NaY (предварительно прокаленные при 350°С) были введены ионы Ag⁺, Cu^+ . Ce^{3+} и Zr^{4+} путем однократного ионного обмена с 0.1 М водными растворами нитратов серебра, меди, церия и циркония. Масса образцов составляла 2 г, объем реакционной среды 250 мл. Ионный обмен проводили при 35-80°С, в течение 5-6 ч при интенсивном перемешивании. Ионный обмен на ионы серебра проводили в реакторе без доступа света. Протекание ионного обмена катионов натрия в цеолите на катионы переходных металлов из соответствующих растворов в ходе модифицирования контролировали по изменению содержания натрия в растворе методом пламенной фотометрии с использованием автоматического пламенного фотометра ФПА-2-01 (ОАО "Загорский оптико-механический завод", Россия).

Затем ионы введенных металлов в образцах восстанавливали воздействием ультразвука в жидких средах (дистиллированной воде и изопропиловом спирте). Для создания ультразвука использовали ультразвуковой гомогенизатор "Sonoplus HD 3100" (Bandelin) с титановым зондом. Процесс проводили на воздухе при комнатной температуре и атмосферном давлении в течение 2 ч.

Элементный состав образцов определяли рентгенофлуоресцентным методом с помощью приставки X-MAX INCA ENERGY (Oxford Instruments, Великобритания) к электронному микроскопу JEOL JSM-6510 LV (JEOL, Япония) в Центре коллективного пользования имени Д.И. Менделеева.

Определение структурно-энергетических характеристик адсорбентов проводили по изотермам адсорбции азота при 77 К, снятым на объемной установке Nova 1200е (Quantachrome, США). Перед измерением изотерм проводили дегазацию образцов при 400°С и остаточном давлении 10^{-3} мм рт. ст. в течение 4 ч. Удельную поверхность (S_{yq}) образцов рассчитывали по уравнению БЭТ, объем микропор (W_o) и характеристическую энергию адсорбции (E_o) — по уравнению Дубинина—Астахова. Суммарный сорбционный объем мезо- и микропор (V_s) определяли по изотерме адсорбции азота при значении относительного давления, равном 0.995.

Определение фазового состава образцов проводили на порошковом дифрактометре Empyreап, медное излучение CuK_{α} , Ni-фильтр, линейный детектор X'celerator, съемка на отражение (геометрия Брэгга–Брентано) в области углов 3°– 140° (2 θ).

Анализ микроструктуры полученных образцов проводили методом просвечивающей электронной микроскопии (ПЭМ) на микроскопе LEO 912

Цеолит	<i>S</i> _{уд} (БЭТ), м²/г	<i>Е</i> ₀ , кДж/моль	<i>W</i> ₀ , см ³ /г	<i>V</i> _s , см ³ /г	Равновесная адсорбция при 25°С и 0.1 МПа, см ³ /г		$K_{\rm p}$
					O ₂	Ar	AI/O_2
NaY исх.	536	36.8	0.28	0.29	3.8	3.5	_
Ag/NaY 1	571	31.4	0.28	0.28	1.9	2.1	1.1
Ag/NaY 2	581	32.6	0.30	0.30	1.6	2.6	1.6
НҮ исх.	495	25.4	0.25	0.29	3.0	3.0	1.0
Ag/HY 1	473	20.9	0.22	0.28	2.5	3.0	1.2
Ag/HY 2	464	21.3	0.23	0.28	3.6	3.3	_

Таблица 2. Структурно-энергетические и адсорбционные свойства цеолитов NaY, HY и образцов, модифицированных путем взаимодействия с ОМР НЧ Аg

АВ Omega ("Carl Zeiss"). Микроскоп снабжен интегрированным энергетическим фильтром OMEGA (Zeiss), а также цифровой камерой SIS/Olympus Cantega 2K. Ускоряющее напряжение микроскопа: 100 кВ, разрешение изображения: 0.2–0.34 нм. Пробоподготовка заключалась в помоле полученных образцов в агатовой ступке с последующим ультразвуковым диспергированием в среде этанола, далее образцы наносили на медные сетки и сушили на воздухе.

В качестве адсорбтивов были использованы кислород и аргон из баллонов. В качестве калибровочного газа применяли гелий. Кислород, аргон и гелий произведены в РНЦ "Курчатовский институт" и имели чистоту: кислород марки "особо чистый" — 99.999 об. % О₂; гелий марки А — 99.995 об. % Не; аргон марки "высший сорт" — 99.993 об. % Аг.

Значения равновесной адсорбционной емкости образцов по кислороду и аргону были определены на основании кинетических кривых адсорбции этих газов при 25°С и атмосферном давлении, снятых на волюмометрической установке. Относительная погрешность измерения составляла не более 5%.

В качестве меры адсорбционной селективности образцов использовали коэффициент разделения (K_p) , который рассчитывали как соотношение коэффициентов Генри при атмосферном давлении и 25°С. Известно, что изотермы индивидуальной адсорбции макрокомпонентов воздуха на цеолитах при комнатной температуре в интервале рабочих давлений в адсорбционных кислородных генераторах линейны, поэтому адсорбцию каждого из них считают независимой от адсорбции других присутствующих компонентов [2].

РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТОВ И ИХ ОБСУЖДЕНИЕ

В табл. 2 представлены рассчитанные структурно-энергетические характеристики и адсорбционные данные по газам для образцов цеолитов, модифицированных путем взаимодействия с ОМР НЧ Аg.

Как следует из результатов, после контакта цеолита NaY с обратномицеллярным раствором наночастиц серебра объемы микропор и значения V_s по отношению к исходному цеолиту практически не изменились. Адсорбция наночастиц серебра из ОМР цеолитом НУ привела к некоторому снижению объемов микропор модифицированных образцов, что говорит о проникновении наночастиц серебра из раствора в микропористую структуру цеолита НУ.

Из данных табл. 2 также следует, что для всех образцов, содержащих НЧ серебра, характерно снижение значений характеристической энергии адсорбции азота (E_0) по сравнению с исходными цеолитами.

По данным табл. 2 видно, что наибольшей селективностью к аргону среди образцов, модифицированных путем взаимодействия с обратномицеллярными растворами наночастиц серебра, обладал образец цеолита Ag/NaY 2. Коэффициент разделения смеси аргон-кислород на котором, составил 1.6.

Методом просвечивающей электронной микроскопии были определены фактические размеры частиц серебра и их распределение по размерам в исходном обратномицеллярном растворе и на образцах цеолита после модифицирования (рис. 1).

Электронная фотография (рис. 1а) свидетельствует, что в исходном растворе наночастицы серебра имели сферическую форму. Как следует из гистограммы, представленной на рис. 16, размер детектируемых ПЭМ частиц составлял от 1 до 16 нм, при этом 55% от общего числа наночастиц имели размер в диапазоне 1—3 нм, далее наблюдалась агрегация в наночастицы размером до 15 нм.

Электронная фотография на рис. 1в (полученная после взаимодействия цеолита с обратномицелярным раствором наночастиц серебра) свиде-

Рис. 1. Микрофотография (а) и гистограмма распределения частиц серебра по размерам в ОМР НЧ Ад (б). Число обработанных частиц – 209. Микрофотография поверхности образца Ag/NaY1 (в).

тельствует, что происходило равномерное распределение частиц по поверхности цеолита, при этом размер детектируемых ПЭМ частиц составлял 1–3 нм.

В табл. 3 представлены структурно-энергетические характеристики и адсорбционные данные по газам для образцов цеолитов, модифицированных путем ионного обмена с растворами солей металлов и последующим восстановлением ионов металла до нейтральных частиц под воздействием ультразвука в жидких средах.

Из табл. 3 следует, что после модифицирования цеолитов значения W_0 и V_s снизились по сравнению с величинами, рассчитанными для исходного NaY. Это говорит о том, что наночастицы в основном располагалась в микропорах, объем пространства переходных пор практически не изменился.

Рис. 2. Микрофотография поверхности образца Ag/NaY(V3/H₂O) и гистограмма распределения частиц серебра по размерам. Число обработанных частиц – 236.

Из данных табл. 3 также следует, что наибольшим значением коэффициента разделения облалал образец NaY. молифицированный наночастицами серебра и восстановленный ультразвуком в изопропиловом спирте Ag/NaY (УЗ/ИПС). Образец NaY, модифицированный наночастицами серебра и восстановленный ультразвуком в водной среде $Ag/NaY(Y3/H_2O)$, а также образец Cu/NaY(УЗ/ИПС) проявили меньшую селективность к аргону: значение коэффициента разделения составило 1.3. Образны неолитов, содержащие церий и цирконий, не проявили селективности по отношению к аргону.

Методом ПЭМ были определены фактические размеры частиц металлов и их распределение на модифицированных образцах цеолитов (образец Ag/NaY (УЗ/H₂O)). Электронная фотография и картина дифракции электронов представлены для образца Ag/NaY(УЗ/H₂O) на рис. 2.

Гистограмма распределения частиц серебра по размерам свидетельствует, что размер детектируемых ПЭМ частиц составлял от 1 до 8 нм, при этом ~80% от общего числа наночастиц имели размеры в диапазоне от 2 до 5 нм.

Адсорбент	<i>S</i> _{уд} (БЭТ), м ² /г	<i>Е</i> ₀ , кДж/моль	W ₀ , см ³ /г	$V_{ m s},$ см $^3/\Gamma$	Равновесная адсорбция при 25°С и 0.1 МПа, см ³ /г		$K_{\rm p}$
					O ₂	Ar	<i>i</i> u / U ₂
NaY	536	36.8	0.28	0.29	3.8	3.5	_
Аg/NaY (УЗ/ИПС)	441	21.2	0.24	0.26	5.6	8.2	1.5
Ag/NaY ($Y3/H_2O$)	417	32.4	0.21	0.23	5.0	6.5	1.3
Си/NaY (УЗ/ИПС)	451	30.0	0.24	0,28	3.9	5.1	1.3
Се/NaY (УЗ/ИПС)	471	30.8	0.24	0.26	3.8	4.1	1.1
Zr/NaY (У3/ИПС)	418	26.9	0.21	0.27	12.7	12.3	1.0

Таблица 3. Структурно-энергетические характеристики и адсорбционные свойства цеолитов, модифицированных путем ионного обмена и последующим восстановлением ультразвуком в жидких средах

Рис. 3. Микрофотография поверхности образца Ag/NaY(УЗ/ИПС) и гистограмма распределения частиц по размерам.

Микрофотография поверхности и гистограмма распределения частиц по размерам для образца Ag/NaY(УЗ/ИПС) представлены на рис. 3.

Размер детектируемых ПЭМ частиц составлял от 1 до 20 нм, при этом ~70% от общего числа наночастиц — это частицы с размерами в диапазоне от 3 до 5 нм. Также встречались кластеры серебра с размерами 10–15 нм.

Аналогичные результаты были получены в работе [15]. Авторы статьи отметили, что восстановленные атомы серебра слабо удерживаются в полостях цеолита (только за счет дисперсионного притяжения), поэтому они легко перемещаются в транспортные поры, выходят на внешнюю поверхность и начинают расти на внешней поверхности. Было зафиксировано размещение части наночастиц серебра (размером до 1.2 нм) в полостях цеолита Y, а часть из них присутствовала на внешней поверхности, их размеры составили ~10 нм.

Согласно данным рентгенофазового анализа, в процессе модифицирования не происходило разрушения структуры цеолитов. В образцах, восстановленных в водной среде и среде ИПС, серебро было обнаружено в виде нанесенного металла и частично в виде силиката $Ag_2Si_2O_5$. На дифрактограммах для модифицированных образцов цеолитов (фрагмент приведен на рис. 4), присутствовал новый пик в области углов $2\theta \sim 37^\circ$.

Этот пик может быть отнесен к металлическому серебру. Аналогичный пик наблюдали в работе [15] для образцов цеолитов типа Y, модифицированных наночастицами серебра.

Таким образом, сопоставляя данные рентгенофазового анализа и просвечивающей электронной микроскопии, можно сделать вывод, что в цеолитах типа Y в результате модифицирования происходило формирование наночастиц серебра.

Данные табл. 2 и 3 говорят о том, что модифицирование поверхности цеолита NaY наночастицами серебра, вне зависимости от метода их введения в структуру цеолита, приводило к повышению

Рис. 4. Фрагмент дифрактограммы для образца Ag/NaY (УЗ/ИПС).

селективности адсорбента в отношении аргона. Адсорбционная селективность по отношению к аргону цеолитов, модифицированных наночастицами других переходных металлов, была ниже.

Мы полагаем, что наночастицы серебра, располагаясь в порах и на внешней поверхности цеолитов, экранируют положительно-заряженные активные центры сорбшии кислорода, снижая тем самым адсорбшионную емкость цеолитов по этому веществу. Модифицирование цеолитов методом ионного обмена на ионы переходных металлов с последующим восстановлением ионов металла до наночастиц предполагало снижение количества катионов в микропорах цеолита. Однако, в виду того, что наночастицы металлов легко мигрируют из микропор цеолита в транспортные поры и на внешнюю поверхность, то распределение зарядов в структуре цеолита, может меняться еще и по этой причине. Поэтому, в сущности, метод введения НЧ серебра в структуру цеолита не имеет значения, оба использованных метода приводили к повышению селективности Ад-содержаших цеолитовых адсорбентов в отношении аргона.

ЗАКЛЮЧЕНИЕ

Модифицированием цеолитов типа Y наночастицами переходных металлов получены адсорбенты с повышенной селективностью к аргону в системе аргон-кислород. Установлено, что наибольшей селективностью в отношении аргона обладали образцы цеолитов, полученные на основе цеолита NaY и содержащие наночастицы серебра, которые были получены двумя способами: модифицированием путем взаимодействия с OMP HЧ Ag и модифицированием путем ионного обмена с раствором AgNO₃ и последующим восстановлением в изопропиловом спирте под действием ультразвука. Коэффициенты разделения смеси аргон-кислород составили 1.6 и 1.5, соответственно.

металлов позволило повысить их сорбнионные

емкости, как по кислороду, так и по аргону. Од-

нако, в случае введения в цеолит наночастиц се-

ребра, интенсивность возрастания адсорбционной емкости цеолита по аргону превышала тако-

вую по кислороду, что в итоге приводило к росту

пова (Институт нефтехимии и катализа РАН),

Благодарность. Авторы благодарят Б.И. Куте-

селективности в отношении аргона.

СПИСОК ЛИТЕРАТУРЫ

- 1. Шумяцкий Ю.И. // Хим. пром. 1989. № 8. С. 586.
- 2. Шумяцкий Ю.И. Промышленные адсорбционные процессы. М.: КолосС, 2009. 183 с.
- Пат. США № 6432170, 2002.
- 4. Пат. США № 5470378. 1995.
- 5. Пат. США № 5226933. 1993.
- 6. Sebastian J., Jastra R.V. // The Royal Society of Chemistry. Chem. Commun. 2003. P. 268.

- Исследования показали, что модифицирова-7. Sebastian J., Jasra R.V. // Ind. Eng. Chem. Res. 2005. V. 44. № 21. P. 8014. ние цеолитов типа У наночастицами переходных
 - 8. Shi M., Kim J., Sawada J.A. et al. // AIChE Journal. 2013. V. 59. № 3. P. 982.
 - 9. Anson A., Kuznicki S.M., Kuznicki T. et al. // Microporous and Mesoporous Mater. 2008. V. 109. № 1-3. P. 577.
 - 10. Киселев А.В. Межмолекулярные взаимодействия в адсорбции и хроматографии. М.: Высш. шк., 1986. 360 c.
 - 11. Белякова Л.Д., Горностаева С.В., Павлова Н.А. и др. // Защита металлов. 2008. Т. 44. № 2. С. 177.
 - 12. Ревина А.А., Ларионов О.Г., Белякова Л.Д., Алексеев А.В. // Сорбционные и хроматографические процессы. 2004. Т. 4. № 6. С. 689.
 - 13. Ярцев С.Д., Милюшкин А.Л., Хесина З.Б. и др. // Сорбционные и хроматографические процессы. 2017. T. 17. № 2. C. 212.
 - 14. Антонов А.Ю., Боева О.А., Ревина А.А. и др. // Перспективные материалы. 2011. № 10. С. 268.
 - 15. Talebi J., Halladj R., Askari S. // J. Materials Science. 2010. V. 45. № 12. P. 3318.
 - 16. Ревина А.А. Патент РФ № 2312741 // Б. И. 2007. № 35. C. 16.
 - 17. Ревина А.А. Патент РФ № 2322327 // Б. И. 2008. № 11. C. 22.