НОВЫЕ ВЕЩЕСТВА, МАТЕРИАЛЫ И ПОКРЫТИЯ

УДК 621.794.62:546.3

ХИМИЧЕСКОЕ ФОСФАТИРОВАНИЕ УГЛЕРОДИСТОЙ СТАЛИ

© 2019 г. И. А. Казаринов¹, Л. А. Исайчева^{2, *}, А. Махммод Адиба³, Н. М. Трепак¹

¹ФГБОУ ВО "Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского", Саратов, Россия

²ФГБОУ ВО "Саратовский государственный аграрный университет имени Н.И. Вавилова", Саратов, Россия

³Университет Дияла, Диял, Ирак *e-mail: isaichevala@yandex.ru Поступила в редакцию 30.10.2017 г. После доработки 12.10.2018 г. Принята к публикации 15.11.2018 г.

Изучена кинетика формирования фосфатных покрытий (**ФП**) на углеродистой стали марки CT3 в цинк-нитрат-фосфатном растворе (0.65 M Zn^{2+} + 0.3 M PO₄³⁻ + 1.0 M NO₃⁻, pH 1.95) с различными добавками при температуре 25°С. Показано, что введение в фосфатирующий раствор эффективной кремнийсодержащей добавки и последующая обработка фосфатных пленок в водном растворе, содержащем соединения кремния, обеспечивало получение на CT3 коррозионностойких ФП. С помощью метода математического планирования экстремального эксперимента Бокса–Уилсона оптимизирован процесс получения в данных условиях ФП с повышенной защитной способностью.

Ключевые слова: сталь марки Ст3, фосфатирование, кинетика, добавки, коррозионная стойкость, дополнительная обработка

DOI: 10.1134/S0044185619040077

введение

Возрастающие требования к эксплуатации стальных изделий и конструкций обусловливают необходимость усовершенствования методов защиты их от коррозии. Для этих целей применяются ингибиторы коррозии, защитные металлические и неметаллические покрытия. В настоящее время широкое развитие получил метод фосфатирования [1–6]. Применение $\Phi\Pi$ в качестве промежуточного слоя под окраску, промасливание, лакирование и другие операции позволяет увеличить коррозионную стойкость металлоконструкций, улучшить противозадирные и антифрикционные свойства, повысить адгезию лакокрасочных материалов и т.п.

Имеющиеся в литературе данные по фосфатированию стали предусматривают использование преимущественно растворов, в которых образование ФП происходит при повышенной температуре. Число предлагаемых составов для фосфатирования стали при температуре ниже 40°С ограничено, и, как правило, они являются многокомпонентными и токсичными [1, 2, 6, 7].

Задача данного исследования состояла в изучении кинетики процесса холодного фосфатирования углеродистой стали марки Ст3 с целью получения на ней ФП с повышенными защитными свойствами.

МЕТОДИКА ЭКСПЕРИМЕНТА

В качестве исследуемого материала использовалась углеродистая сталь марки Ст3. Предварительная обработка поверхности сводилась к зачистке наждачной бумагой р300 и обезжириванию этиловым спиртом, что позволяло по сравнению со стандартной подготовкой сохранить активные центры кристаллизации покрытия и оказывать минимальное влияние на изменение первоначальной структуры поверхности стальных образцов.

Процесс фосфатирования стали изучался в растворах на основе цинк-фосфат-содержащего (ЦФС) и цинк-нитрат-содержащего (ЦНС) сырья (0.65 M Zn²⁺ + 0.3 M PO₄³⁻ + 1.0 M NO₃⁻, pH 1.95) с различными добавками при температуре 25°С. Электрохимические исследования проводились в модельных растворах, имитирующих по содержанию фосфатов, нитратов, модифицирующих добавок и кислотности фосфатирующий раствор (0.3 M H₃PO₄ + 1.0 M HNO₃ + NaOH, pH 1.95).

Использовался комплекс различных экспериментальных методов: потенциодинамический

N⁰	Состав раствора	pН	<i>Р</i> , г/м ²	γ, c
1	Концентрат КФ-7	1.9	8.2	90
2	ЦНС сырье – 200 г/л ФС сырье – 40 г/л Неорганическая солевая добавка (НСД-1) – 15 г/л	1.7	8.5	90
3	ЦНС сырье – 200 г/л ФС сырье – 40 г/л Неорганическая солевая добавка (НСД-1) – 15 г/л Неорганическая добавка (НД-Ц) – 9 г/л	1.6	6.6	85
4	ЦНС сырье – 150 г/л ЦФС сырье – 45 г/л	2.0	7.0	90

Таблица 1. Составы фосфатирующих растворов и характеристики полученных в них $\Phi\Pi$ на стали марки Ст3 ($t_{\text{фосф}} = 30$ мин)

(1 В/мин), методы определения массы растворившегося металла (*m*) и массы фосфатной пленки (*P*) [8], капельный метод определения защитных свойств ФП (γ) [9], электронная микроскопия (MIRA 2LMU, х5000), рентгенофазовый анализ (ДРОН-3, фильтрованное Fe_{Ka}-излучение), метод импедансной спектроскопии (измерительный комплекс "Autolab", для обработки результатов которой применялась программа ZView) и др. В качестве электрода сравнения применялся насыщенный хлоридсеребряный электрод. В работе все потенциалы даны относительно нормального водородного электрода (НВЭ).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Исследования были начаты с изучения возможности получения коррозионностойких ФП на стали марки Ст3 в стандартных растворах, в частности, на основе соли Мажеф и концентрата типа КФ, и в растворах, разработанных на кафедре физической химии СГУ [10–13]. Некоторые из используемых растворов приведены в табл. 1. Качество образующихся покрытий оценивалось на основании визуального осмотра пленки и определения массы ФП и их коррозионной стойкости.

Стандартный раствор 1 (табл. 1) предусматривал обработку деталей при повышенной температуре, что приводило к дополнительному расходу электроэнергии, создавало определенные трудности обработки крупногабаритных деталей и невозможность фосфатирования деталей, для которых нагрев недопустим. Раствор 2 (табл. 1), в отличие от состава КФ, хотя и позволял получать ФП с достаточной защитной способностью на стали при комнатной температуре, но был сложен в приготовлении. Для устранения этого недостатка был разработан фосфатирующий состав на основе цинк-фосфат-нитрат-содержащего сырья отечественного производства (раствор 4, табл. 1), который был выбран в качестве базового раствора. Защитная способность ФП, сформированных в данных условиях на стали марки Ст3, составляла 90 с.

С целью оптимизации условий получения на стали коррозионностойких покрытий на основе базового раствора была исследована серия новых растворов с измененной концентрацией основных его компонентов, а также с различными добавками, способствующими созданию условий для формирования покрытий улучшенного качества. Выбор добавок, учитывая электрохимическую природу процессов, протекающих при фосфатировании, был основан на их способности оказывать влияние на скорость электрохимических процессов, а также на процесс кристаллизации ФП [1-3]. Проведенные исследования процесса фосфатирования стали в цинк-нитрат-фосфатных растворах с различными модифицирующими добавками (оксидно-солевые добавки, соединения металлов более электроположительных, чем железо (Ni, Mn, Ca, Co), кремний- и бор-содержащие соединения) позволили выявить эффективную неорганическую кремнийсодержащую солевую добавку, условно обозначаемую СД-С (табл. 2).

Изучение влияния концентрации добавки СД-С (0.1—30 г/л) на процесс фосфатирования показало, что наибольшая защитная способность фосфатной пленки прослеживалась при ее концентрации 20 г/л (табл. 2).

Учитывая положительное влияние кремнийсодержащей добавки СД-С на коррозионную стойкость ФП, именно в растворе 10 была подробно изучена кинетика формирования фосфатной пленки на стали. Полученные результаты сопоставлялись с результатами фосфатирования стали в базовом растворе (рис. 1, 2).

Как следует из рис. 1 и 2, характер изменения основных характеристик покрытий (m, P, γ) в ис-

КАЗАРИНОВ и др.

№ п/п	Состав раствора, г/л	pH	γ, c
1	ЦНС сырье – 150 ЦФС сырье – 45 Mn(NO ₃) ₂ · 6H ₂ O – 5	1.9	90
2	ЦНС сырье — 150 ЦФС сырье — 45 MgSO ₄ — 4	2.0	95
3	ЦНС сырье – 150 ЦФС сырье – 45 FeSO ₄ – 9	2.0	95
4	ЦНС сырье – 150 ЦФС сырье – 45 Na ₂ SiF ₆ – 8	2.4	70
5	ЦНС сырье – 150 ЦФС сырье – 45 NH ₂ HF ₂ – 1	1.9	60
6	ЦНС сырье – 150 ЦФС сырье – 45 Na ₂ B ₄ O ₇ – 4	2.2	45
7	ЦНС сырье — 150 ЦФС сырье — 45 Солевая добавка СД-С — 0.1	1.8	90
8	ЦНС сырье —150 ЦФС сырье — 45 Солевая добавка СД-С — 1	1.9	95
9	ЦНС сырье —150 ЦФС сырье — 45 Солевая добавка СД-С — 10	2.0	110
10	ЦНС сырье -150 ЦФС сырье - 45 Солевая добавка СД-С - 20	2.0	150
11	ЦНС сырье -150 ЦФС сырье - 45 Солевая добавка СД-С - 30	2.1	80
12	ЦНС сырье -150 ЦФС сырье - 45 Na ₅ P ₃ O ₁₀ - 1	1.9	30

Таблица 2. Составы фосфатирующих растворов и коррозионная стойкость полученных в них ΦΠ на стали марки Ст3. Время фосфатирования – 30 мин. Температура фосфатирования – 25°С

следуемых растворах аналогичен. Протекающие электрохимические процессы анодного растворения стали и катодного восстановления окислителей, присутствующих в растворе, приводят к выпадению фосфатов уже на начальной стадии соприкосновения стали с фосфатирующим раствором. Первоначальный период фосфатирования сплава отличается синхронным изменением скорости роста ФП, скорости растворения фосфатируемого сплава, что подтверждает электрохимическую природу процесса их фосфатирования. В цинк-нитрат-фосфатном растворе с выявленной добавкой СД-С в первые минуты фосфатирования на стали устанавливался более отрицательный потенциал, и отмечалось увеличение скорости протекания электрохимических процессов. Согласно данным электрохимических исследований добавка СД-С в области потенциала фосфатирования приводила к ускорению электрохимического растворения стали (рис. 3). Анализируя возможные причины влияния этой добавки, следует иметь в виду, что это связано, ве-

Рис. 1. Изменение массы растворившегося металла (1, 2) и потенциала (3, 4) в процессе фосфатирования стали марки Ст3 в цинк-нитрат-фосфатном растворе (1, 3) и цинк-нитрат-фосфатном растворе с добавкой СД-С (2, 4).

Рис. 3. Анодные (*1*, *2*) и катодные (*I'*, *2'*) поляризационные кривые на стали марки СтЗ в модельных растворах (pH 1,95): *1*, *I'* – 0.3 M H_3PO_4 + 1.0 M HNO_3 + + NaOH; *2*, *2'* – 0.3 M H_3PO_4 + 1.0 M HNO_3 + 0.7 M СД-С +NaOH.

роятно, с изменением свойств поверхности стали в ее присутствии. Образование покрытий в модифицированном фосфатирующем растворе на стали заканчивается уже к 15–20 мин против 20–30 мин в базовом растворе (рис. 2) и фосфатные пленки отличались большей коррозионной стойкостью ($\gamma =$ = 150–170 с против $\gamma = 90$ с).

Подтверждением изменения защитной способности фосфатных пленок, сформированных на стали в цинк-нитрат-фосфатном растворе в присутствии добавки С-ДС, являются и результаты импедансных измерений ФП в 0.1 М растворе сульфата натрия. Фосфатное покрытие является пористым диэлектриком, обладающим в растворе электролита импедансом, хорошо описываемым эквивалентной схемой, состоящей из активного

Рис. 2. Изменение массы (1, 2) и коррозионной стойкости (3, 4) ФП, полученных на стали марки Ст3 в цинк-нитрат-фосфатном растворе (1,3) и цинк-нитрат-фосфатном растворе с добавкой СД-С (2, 4).

Рис. 4. Эквивалентная схема для интерпретации импеданса стального электрода (сталь марки Ст3) в 0.1 M Na₂SO₄ с фосфатными покрытиями, сформированными в различных условиях: R_1 – сопротивление раствора электролита, C_1 – емкость двойного электрического слоя, R_2 – поляризационное сопротивление, W – импеданс Варбурга, обусловленный проводимостью электролита в порах фосфатной пленки.

сопротивления (R_1), представляющего собой сопротивление электролита, емкости двойного электрического слоя (C_1), являющейся геометрической емкостью фосфатной пленки, активного сопротивления (R_2), являющегося поляризационным сопротивлением фосфатного покрытия и диффузионного импеданса Варбурга (W), ответственного за диффузию ионов электролита в порах ФП (рис. 4). Рассчитанные значения элементов данной эквивалентной схемы для ФП, полученных в базовом фосфатирующем растворе и в растворе с кремнийсодержащей добавкой, приведены в табл. 3.

Из сравнительного анализа годографов импеданса стальных электродов с фосфатными пленками, сформированными в различных по составу растворах (рис. 5), следует, что наибольшее сопротивление ($R_2 = 5886$ Ом см² – раствор 10 (табл. 2) против $R_2 = 650$ Ом см² – раствор 4 (табл. 1)) при одновременном уменьшении их электрической емкости имеют стальные электроды с фосфатными покрытиями, полученными в растворе с кремнийсодержащей добавкой. Это служит доказательством повышенной защитной способности ФП, сформированных в фосфатирующем растворе именно в присутствии эффективной модифицирующей добавки СД-С.

Согласно результатам кинетических исследований, увеличение времени выдержки стального электрода в фосфатирующем растворе, приводит к образованию более толстых и коррозионностойких ФП. Увеличение толщины фосфатных пленок, сформированных в данных условиях подтверждается уменьшением емкости C_1 и ростом поляризационного сопротивления R_2 фосфатной пленки. Наблюдаемое увеличение сопротивления электролита (R_1) по мере возрастания времени фосфатирования стального электрода в фосфатирующем растворе 10 (табл. 2) может свидетельствовать об уменьшении размера пор фосфатной пленки.

Фосфатные покрытия, сформированные в растворе с неорганической солевой добавкой СД-С, были крупнокристаллическими, но для них характерна большая равномерность и однородность по сравнению с покрытиями, полученными в базовом растворе (рис. 6). Выявленная добавка, видимо, влияет не только на скорость электрохимических процессов, как отмечалось выше, но и на процесс кристаллизации. С помощью рентгено-

Рис. 5. Годографы импеданса в 0.1 М Na₂SO₄ стальных электродов с фосфатными покрытиями, сформированными на стали марки Ст3 в различных растворах (время фосфатирования 10 мин): *1* – цинкнитрат-фосфатный раствор, *2* – цинк-нитрат-фосфатный раствор с добавкой СД-С.

Таблица 3. Рассчитанные значения элементов эквивалентной схемы, моделирующей импеданс стальных электродов (сталь марки Ст3) с фосфатными покрытиями в 0.1 М Na₂SO₄ при стационарном потенциале

Состав раствора, г/л	τ _{фосф} , мин	<i>R</i> ₁ , Ом	<i>С</i> ₁ , мкФ	<i>R</i> ₂ , Ом
ЦНС сырье – 150 ЦФС сырье – 45	10	11.2	650	650
ЦНС сырье — 150 ЦФС сырье — 45 Солевая добавка СД-С — 20	3 10 30	9.4 12.9 14.1	150 0.7 0.5	500 5886 11100

фазового анализа в $\Phi\Pi$, образованных в модифицированном фосфатирующем растворе, зафиксирована фаза гопеита ($Zn_3(PO_4)_2 \cdot 4H_2O$) с основными рефлексами, как и в случае базового раствора, но с перераспределениями их интенсивностей [14]. Образцы стали с $\Phi\Pi$, полученными в растворе 10 (табл. 2), по защитным свойствам отвечали требованиям ГОСТ 9.302-88.

Этот фосфатирующий раствор можно рассматривать и как универсальный, в котором при комнатной температуре могут быть получены коррозионностойкие покрытия на низкоуглеродистых сталях разных марок: Ст3, 10, 45, 50, 17Г1С, 08КП. Однако, следует отметить, что скорость взаимодействия сталей с фосфатирующим раствором зависит от их состава, что сказывается впоследствии на скорости формирования фосфатных пленок. Так, в частности, на сталях марки 50, 17Г1С на начальной стадии фосфатирования устанавливается более положительный потенциал (E = -0.240 В и E = -0.245 В соответственно) по сравнению со сталью марки Ct3 (E = -0.264 B), т.е. электрохимические процессы протекают с меньшей скоростью и процесс фосфатирования заканчивается к 25-30 мин против 15-20 мин на Ст3.

Рис. 6. Микроструктура ФП, сформированных на стали марки Ст3 в различных растворах (время фосфатирования 30 мин): а – цинк-нитрат-фосфатный раствор, б – цинк-нитрат-фосфатный раствор с добавкой СД-С (MIRA 2LMUx5000).

	Уровни			Интервал	
Факторы	нижний	основной	верхний	варьиро- вания, %	
<i>X</i> ₁ , г/л	16	20	24	20	
Х₂, г/л	0.05	0.1	0.15	50	
<i>X</i> ₃ , мин	3.5	5.0	6.5	30	

Таблица 4. Характеристика плана эксперимента

ФП пронизаны огромным количеством микропор, площадь которых составляет от 0.1 до 1% фосфатированной поверхности. Поэтому в практике противокоррозионной защиты металлов большое влияние уделяют дополнительным мерам повышения защитных свойств фосфатных пленок. Одна из них – заключительная обработка ФП пассиваторами, которые в дефектах покрытия химически взаимодействуют с непокрытым металлом [3].

В нашем случае повышение коррозионной стойкости покрытий прослеживалось при использовании последующей обработки ФП, сформированных в цинк-фосфатном растворе с солевой добавкой СД-С (С = 20 г/л, т_{фосф} = = 15 мин, $t = 25^{\circ}$ С), в водном растворе, содержащем соединения кремния (С = 0.1 г/л, т = = 5 мин, $t = 25^{\circ}$ C). Исходя из этих начальных условий, для оптимизации процесса получения ФП с улучшенными характеристиками на стали марки Ст3 был использован метод математического планирования экстремального эксперимента Бокса-Уилсона [15], описываемый матрицей типа 2³. В качестве варьируемых факторов были выбраны концентрации выявленной эффективной солевой добавки СД-С фосфатирующего раствора (X_1), кремнийсодержащей добавки в растворе для дополнительной обработки (X₂) и время дополнительной обработки (X₃). За параметр оптимизации принята коррозионная стойкость ΦП (γ). Уровни факторов в натуральном масштабе и интервалы варьирования представлены в табл. 4.

Пошаговое планирование эксперимента позволило получить функцию отклика и нахождение с ее помощью оптимальных условий:

$$X_1 = 20$$
 г/л, $X_2 = 0.135$ г/л, $X_3 = 3$ мин 30 с – для $\hat{y} = 2.5$;
 $X_1 = 20$ г/л, $X_2 = 0.145$ г/л, $X_3 = 4$ мин 15 с – для $\hat{y} = 3$;
 $X_1 = 20$ г/л, $X_2 = 0.153$ г/л, $X_3 = 5$ мин 0 с – для $\hat{y} = 3.5$.

В данных условиях были поставлены контрольные опыты. Коррозионная стойкость ФП соответственно была равной 2.4; 2.9; 3.7 мин. Расхождение с расчетными данными ($\hat{y} = 2.5$; 3; 3.5 мин) лежит в

Рис. 7. Изменение массы (1, 2) и коррозионной стойкости (3, 4) ФП, полученных на стали марки Ст3 в цинк-нитрат-фосфатном растворе с добавкой СД-С: 1, 3 – без дополнительной обработки; 2, 4 – с дополнительной обработкой в кремнийсодержащем растворе.

пределах ошибки эксперимента. Далее было проведено сопоставление кинетики образования фосфатного покрытия в цинк-фосфатном растворе с добавкой СД-С без последующей и с последующей обработкой в водном растворе, содержащем соединения кремния (рис. 7). Дополнительная обработка фосфатных пленок в кремнийсодержащем растворе способствует формированию ФП, отличающихся при незначительном увеличении их массы повышенной защитной способностью ($\gamma = 200 - 220$ с против $\gamma =$ 150-170 с). По-видимому, на ФП образуется силикатная пленка, имеющая адсорбционную природу и при дополнительной обработке в растворе силиката пленка самозалечивается. Кроме того, дополнительная обработка в растворе с силикатом исключала операции промывки после фосфатирования, то есть давала переход к малоотходной технологии.

Таким образом, на основании проведенных исследований определены оптимальные состав фосфатирующего раствора и условия для получения при температуре 25°С на СтЗ ФП с заданными функциональными свойствами.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Лапатухин В.С.* Фосфатирование металлов. М.: Машгиз, 1958. 255 с.
- 2. Грилихес С.Я. Оксидные и фосфатные покрытия металлов. М.: Машгиз, 1958. С. 8395.
- 3. *Хаин И.И.* Теория и практика фосфатирования металлов. Л.: Химия, 1978. 308 с.
- Бабакина Н.А., Мачевская Р.А. // Исследования в области техники и технологии лакокрасочных покрытий: Сб. науч. тр. М., 1975. Вып. 4. С. 13–19.
- 5. Ильина Л.К., Лямина Л.А., Кучинская М.М. и др. // Защита металлов. 1991. Т. 27. № 3. С. 500-502.
- Козлова Л.А., Окулов В.В. // Гальванотехника и обработка поверхности. 2000. Т. 8. № 3. С. 40–48.
- Ваграмян Т.А., Григорян Н.С., Мазурова Д.В. и др. // Коррозия: материалы, защита. 2011. № 2. С. 20–27.
- ГОСТ 9.402-2004. Покрытия лакокрасочные. Подготовка металлических поверхностей к окрашиванию. М. 2004. 38 с. (Единая система защиты от коррозии и старения).

- ГОСТ 9.302-88. Покрытия металлические и неметаллические неорганические. Методы контроля. М. 1988. 38 с. (Единая система защиты от коррозии и старения).
- 10. Ильина Л.К., Фортунатов А.В., Дубровский А.П.// Защита металлов. 1968. Т. 4. № 2. С. 171–174.
- Ильина Л.К., Трепак Н.М., Дворкина Р.М. и др. // Расширенные тез.докл. Конгресса "Защита – 92". М., 1992. С. 94–95.
- Трепак Н.М., Исайчева Л.А., Ильина Л.К. и др.// Тез. докл. III Междун. Конгресса "Защита – 98". М., 1998. С. 67.
- Исайчева Л.А., Трепак Н.М., Ильина Л.К. и др. // Физикохимия поверхности и защита материалов. 2006. Т. 42. № 4. С. 425–429.
- JCPDC (Картотека Объединенного Комитета Дифракционных Стандартов). 1987.
- Адлер Ю.П., Маркова Е.В., Грановский Ю.П. Планирование эксперимента при поиске оптимальных условий. М.: Наука, 1976. 279 с.